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Introduction

This fourth edition of Designing Clinical Research (DCR) marks the 25th anniversary of the
publication of our first edition. It has become the most widely used textbook of its kind, with
more than 130,000 copies sold and foreign language editions produced in Spanish, Portuguese,
Arabic, Chinese, Korean, and Japanese. We designed it as a manual for clinical research in all
its flavors: clinical trials, observational epidemiology, translational science, patient-oriented
research, behavioral science, and health services research. We used epidemiologic terms and
principles, presented advanced conceptual material in a practical and reader-friendly way, and
suggested common sense approaches to the many judgments involved in designing a study.

Many of our readers are physicians, nurses, pharmacists, and other health scientists who,
as trainees and junior faculty, are developing careers in clinical research and use this book as
a guide in designing and carrying out their studies. Many others are clinicians in residency
programs and pre-doctoral students in professional schools—medicine, nursing, pharmacy,
and public health among others—who use DCR to help them become discerning readers with
a grasp of the strengths and limitations of the research studies that inform evidence-based clini-
cal practice. A third audience consists of undergraduate students preparing to apply to these
schools who are interested in looking ahead at the world of clinical research.

What’s new in the fourth edition? The most visible innovation is color, which, in addition
to improving the esthetics, will speed comprehension of the color-coded components. A larger
innovation that accompanies each purchase of the paperback text is an interactive digital
experience powered by Inkling®, viewable through a browser or as a download to tablet or
smartphone. Its features include rapid index-based search options that link to a newly created
glossary; bookmarking, highlighting, and annotating capability; cross-linking of relevant con-
tent; the ability to cut-and-paste figures or text into PowerPoint presentations; and live Internet
links to jump instantly from citations to articles on PubMed, and to Google topics.

The substantive revisions to the fourth edition include updated and tightened text, figures,
and tables in every chapter; many new examples and references; and new sections covering
recent advances in the field. For example:

e The chapters on observational studies have been reorganized with an entire chapter now
devoted to various case—control designs, including the incidence-density approach for ad-
dressing changes in risk factor levels and differences in follow-up time.

e The chapters on clinical trials have an expanded section on the non-inferiority trials that
have become popular in comparative effectiveness research, and they address subgroup
analysis and effect modification more fully.

e The chapter on studying medical tests has a new section on the growing practice of develop-
ing clinical prediction rules.

e The chapter on utilizing existing data sets emphasizes attractive options for beginning inves-
tigators to publish rapidly and inexpensively.

e The chapter on research ethics is updated to reflect current policy on whole genome se-
quencing and other topics, with new cases that illustrate the resolution of ethical dilemmas
in clinical research.

Xl
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e The chapter on data management has been extensively updated with the latest Web-based
approaches.

e The chapter on getting funded has strategies for addressing the new NIH grant-writing re-
quirements, as well as updates on funding by foundation and corporate sponsors.

The fourth edition is accompanied by an upgraded DCR website at www.epibiostat.ucsf.
edw/dcr/ that contains materials for teaching DCR, including links to a detailed syllabus for the
4- and 7-week DCR workshops that we present to 300 trainees each year at UCSF. There are
also instructor’s notes for the workshops that faculty who teach this material will find useful,
and links to our Training In Clinical Research (TICR) master’s degree program at UCSF, with
more than 30 other courses and their materials. In addition, there are useful tools for investiga-
tors, including an excellent interactive sample size calculator.

Many things have not changed in the fourth edition. It is still a simple book that leaves out
unnecessary technicalities and invites the investigator to focus on the important things: how
to find a good research question and how to plan an efficient, effective, ethical design. The
chapters on estimating sample size continue to demystify the process and enable readers with
minimal training in statistics to make these calculations themselves, thoughtfully, and without
needing to wrestle with formulas. The book still works best when combined with the essential
ingredient of one or more long-term mentors. It still does not address the important areas of
how to analyze, present, and publish the findings of clinical research—topics that our readers
can pursue with other books (e.g., 1-4). And we still do use the feminine pronoun in the first
half of the book, masculine in the second, the goal (besides avoiding the passive tense) being
to symbolically empower clinical investigators of both genders.

The process of becoming an independent clinical scientist can be challenging, especially
getting over the hump of acquiring a substantial grant for the first time. But it is gratifying that
many of our former trainees who used this book have achieved this goal, discovered that they
like doing research, and settled into a great career. For those with inquiring minds, the pursuit
of truth can become a lifelong fascination. For perfectionists and craftsmen, there are endless
challenges in creating elegant studies that conclusively answer questions, large and small, at
an affordable cost in time and money. Investigators who enjoy teamwork will develop reward-
ing relationships with colleagues, staff, and students, as well as friendships with collaborators
working in the same field in distant places. And for those with the ambition to make a lasting
contribution to society, there is the prospect that with skill and tenacity they will participate
in the incremental advances in clinical and public health practice that is the natural order of
our science.
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CHAPTER

Getting Started: The Anatomy
and Physiology of Clinical Research

Stephen B. Hulley, Thomas B. Newman, and Steven R. Cummings

This chapter introduces clinical research from two viewpoints, setting up themes that run
together throughout the book. One is the anatomy of research—what it'’s made of. This includes
the tangible elements of the study plan: research question, design, subjects, measurements,
sample size calculation, and so forth. An investigator’s goal is to design these components in a
fashion that will make the project feasible and efficient.

The other theme is the physiology of research—how it works. Studies are useful to the ex-
tent that they yield valid inferences, first about what happened in the study sample and then
about how these findings generalize to people outside the study. The goal is to minimize the
errors, random and systematic, that threaten conclusions based on these inferences.

Separating the two themes is artificial in the same way that the anatomy of the human body
doesn’t make much sense without some understanding of its physiology. But the separation has
the same advantage: It clarifies our thinking about a complex topic.

B ANATOMY OF RESEARCH: WHAT IT'S MADE OF

The structure of a research project is set out in its protocol, the written plan of the study.
Protocols are well known as devices for seeking grant funds and Institutional Review Board
(IRB) approval, but they also have a vital scientific function: helping the investigator organize
her research in a logical, focused, and efficient way. Table 1.1 outlines the components of a
protocol. We introduce the whole set here, expand on each component in the ensuing chapters
of the book, and return to put the completed pieces together in Chapter 19.

Research Question

The research question is the objective of the study, the uncertainty the investigator wants to
resolve. Research questions often begin with a general concern that must be narrowed down to
a concrete, researchable issue. Consider, for example, the general question:

e Should people eat more fish?

This is a good place to start, but the question must be focused before planning efforts can
begin. Often this involves breaking the question into more specific components, and singling
out one or two of these to build the protocol around:

e How often do Americans eat fish?

e Does eating more fish lower the risk of cardiovascular disease?

e Is there a risk of mercury toxicity from increasing fish intake in older adults?

¢ Do fish oil supplements have the same effects on cardiovascular disease as dietary fish?
e Which fish oil supplements don’t make your breath smell like fish?
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TABLE 1.1 ANATOMY OF RESEARCH: THE STUDY PLAN

DESIGN COMPONENTS PURPOSE
Research questions What questions will the study address?
Background and significance Why are these questions important?
Design How is the study structured?

Time frame

Epidemiologic design

Subjects Who are the subjects and how will they be selected?
Selection criteria

Sampling design

Variables What measurements will be made?
Predictor variables
Confounding variables

Outcome variables

Statistical issues How large is the study and how will it be analyzed?
Hypotheses
Sample size

Analytic approach

A good research question should pass the “So what?” test. Getting the answer should con-
tribute usefully to our state of knowledge. The acronym FINER denotes five essential char-
acteristics of a good research question: It should be feasible, interesting, novel, ethical, and
relevant (Chapter 2).

Background and Significance

A brief background and significance section in a protocol sets the proposed study in context
and gives its rationale: What is known about the topic at hand? Why is the research question
important? What kind of answers will the study provide? This section cites relevant previous
research (including the investigator’s own work) and indicates the problems with the prior re-
search and what uncertainties remain. It specifies how the findings of the proposed study will
help resolve these uncertainties, lead to new scientific knowledge, or influence practice guide-
lines or public health policy. Often, the literature review and synthesis done for the significance
section will lead the investigator to modify the research question.

Design

The design of a study is a complex issue. A fundamental decision is whether to take a passive
role in making measurements on the study subjects in an observational study or to apply an
intervention and examine its effects in a clinical trial (Table 1.2). Among observational studies,
two common designs are cohort studies, in which observations are made in a group of subjects
that is followed over time, and cross-sectional studies, in which observations are made on a
single occasion. Cohort studies can be further divided into prospective studies that begin in the
present and follow subjects into the future, and retrospective studies that examine information
collected over a period of time in the past. A third common option is the case—control design,
in which the investigator compares a group of people who have a disease or other outcome
with another group who do not. Among clinical trial options, the randomized blinded trial is
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TABLE 1.2 EXAMPLES OF CLINICAL RESEARCH DESIGNS TO FIND OUT
WHETHER FISH INTAKE REDUCES CORONARY HEART DISEASE RISK

EPIDEMIOLOGIC DESIGN KEY FEATURE EXAMPLE

Observational Designs

Cohort study A group of subjects identified The investigator measures fish intake
at the beginning and fol- in a group of subjects at baseline and
lowed over time periodically examines them at follow-

up visits to see if those who eat more
fish have fewer coronary heart disease
(CHD) events.

Cross-sectional study A group examined at one She interviews a group of subjects
point in time about current and past history of fish
intake and correlates results with
history of CHD and current coronary
calcium score.

Case—control study Two groups selected based on  She examines a group of patients with
the presence or absence of an CHD (the “cases”) and compares them
outcome with a group who do not have CHD

(the “controls”), asking about past fish
intake.

Clinical Trial Design

Randomized blinded trial Two groups created by She randomly assigns subjects to re-
a random process, and a ceive fish oil supplements or a placebo
blinded intervention that is identical in appearance, then

follows both treatment groups for
several years to observe the incidence
of CHD.

usually the best design but nonrandomized or unblinded designs may be all that are feasible
for some research questions.

No one approach is always better than the others, and each research question requires a
judgment about which design is the most efficient way to get a satisfactory answer. The ran-
domized blinded trial is often held up as the best design for establishing causality and the ef-
fectiveness of interventions, but there are many situations for which an observational study is
a better choice or the only feasible option. The relatively low cost of case—control studies and
their suitability for rare outcomes makes them attractive for some questions. Special consid-
erations apply to choosing designs for studying diagnostic tests. These issues are discussed in
Chapters 7 through 12, each dealing with a particular set of designs.

A typical sequence for studying a topic begins with observational studies of a type that is
often called descriptive. These studies explore the lay of the land—for example, describing
distributions of health-related characteristics and diseases in the population:

e What is the average number of servings of fish per week in the diet of Americans with a his-
tory of coronary heart disease (CHD)?

Descriptive studies are usually followed or accompanied by analytic studies that evaluate
associations to permit inferences about cause-and-effect relationships:

e Do people with a CHD who eat a lot of fish have a lower risk of recurrent myocardial infarc-
tion than people with a history of CHD who rarely eat fish?

The final step is often a clinical trial to establish the effects of an intervention:

e Does treatment with fish oil capsules reduce total mortality in people with CHD?
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Clinical trials usually occur relatively late in a series of research studies about a given ques-
tion, because they tend to be more difficult and expensive, and to answer more definitively the
narrowly focused questions that arise from the findings of observational studies.

It is useful to characterize a study in a single sentence that summarizes the design and research
question. If the study has two major phases, the design for each should be mentioned.

e This is a cross-sectional study of dietary habits in 50- to 69-year-old people with a history of
CHD, followed by a prospective cohort study of whether fish intake is associated with lower
risk of subsequent coronary events.

This sentence is the research analog to the opening sentence of a medical resident’s report on
a new hospital admission: “This 62-year-old white policewoman was well until 2 hours before
admission, when she developed crushing chest pain radiating to the left shoulder.”

Some designs do not easily fit into the categories listed above, and classifying them with a
single sentence can be surprisingly difficult. It is worth the effort—a concise description of the
design and research question clarifies the investigator’s thoughts and is useful for orienting
colleagues and consultants.

Study Subjects

Two major decisions must be made in choosing the study subjects (Chapter 3). The first is to
specify inclusion and exclusion criteria that define the target population: the kinds of people
best suited to the research question. The second decision concerns how to recruit an appropri-
ate number of people from an accessible subset of this population to be the subjects of the study.
For example, the study of fish intake in people with CHD might identify subjects seen in the
clinic with diagnostic codes for myocardial infarction, angioplasty, or coronary artery bypass
grafting in their electronic medical record. Decisions about which patients to study often rep-
resent trade-offs; studying a random sample of people with CHD from the entire country (or at
least several different states and medical care settings) would enhance generalizability but be
much more difficult and costly.

Variables

Another major set of decisions in designing any study concerns the choice of which variables to
measure (Chapter 4). A study of fish intake in the diet, for example, might ask about different
types of fish that contain different levels of omega-3 fatty acids, and include questions about
portion size, whether the fish was fried or baked, and use of fish oil supplements.

In an analytic study the investigator studies the associations among variables to predict
outcomes and to draw inferences about cause and effect. In considering the association
between two variables, the one that occurs first or is more likely on biologic grounds to be
causal is called the predictor variable; the other is called the outcome variable.! Most obser-
vational studies have many predictor variables (age, race, sex, smoking history, fish and fish
oil supplement intake) and several outcome variables (heart attacks, strokes, quality of life,
unpleasant odor).

Clinical trials examine the effects of an intervention—a special kind of predictor variable
that the investigator manipulates, such as treatment with fish oil capsules. This design al-
lows her to observe the effects on the outcome variable using randomization to minimize
the influence of confounding variables—other predictors of the outcome such as smoking
or income level that could be associated with dietary fish and confuse the interpretation of
the findings.

"Predictors are sometimes termed independent variables and outcomes dependent variables, but the meaning of these
terms is less self-evident and we prefer to avoid their use.



6 Section | e Basic Ingredients

Statistical Issues

The investigator must develop plans for estimating sample size and for managing and analyzing
the study data. This generally involves specifying a hypothesis (Chapter 5).

Hypothesis: 50- to 69-year-old women with CHD who take fish oil supplements will have a
lower risk of recurrent myocardial infarction than those who do not.

This is a version of the research question that provides the basis for testing the statistical
significance of the findings. The hypothesis also allows the investigator to calculate the sample
size—the number of subjects needed to observe the expected difference in outcome between
study groups with reasonable probability (an attribute known as power) (Chapter 6). Purely
descriptive studies (what proportion of people with CHD use fish oil supplements?) do not in-
volve tests of statistical significance, and thus do not require a hypothesis; instead, the number
of subjects needed to produce acceptably narrow confidence intervals for means, proportions,
or other descriptive statistics can be calculated.

B PHYSIOLOGY OF RESEARCH: HOW IT WORKS

The goal of clinical research is to draw inferences from findings in the study about the nature
of the universe around it. Two major sets of inferences are involved in interpreting a study
(illustrated from right to left in Figure 1.1). Inference #1 concerns internal validity, the de-
gree to which the investigator draws the correct conclusions about what actually happened in
the study. Inference #2 concerns external validity (also called generalizability), the degree to
which these conclusions can be appropriately applied to people and events outside the study.
When an investigator plans a study, she reverses the process, working from left to right in
the lower half of Figure 1.1 with the goal of maximizing the validity of these inferences at the
end of the study. She designs a study plan in which the choice of research question, subjects,
and measurements enhances the external validity of the study and is conducive to implemen-
tation with a high degree of internal validity. In the next sections we address design and then
implementation before turning to the errors that threaten the validity of these inferences.

Designing the Study
Consider this simple descriptive question:
What is the prevalence of daily ingestion of fish oil supplements among people with CHD?

This question cannot be answered with perfect accuracy because it would be impossible to
study all patients with CHD and our approaches to discovering whether a person has CHD

Drawing TRUTHINTHE " TRUTHINTHE ' FINDINGS IN
Conclusions UNIVERSE STUDY THE STUDY
Desiani
: ni?)ll?err:reigt?:: Resea_lrch Stludy A;:ttéal
questlon Design plan Implement stuay
EXTERNAL INTERNAL
VALIDITY VALIDITY

M FIGURE 1.1 The process of designing and implementing a research project sets the stage for drawing conclusions
based on inferences from the findings.
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and is taking fish oil are imperfect. So the investigator settles for a related question that can be
answered by the study:

Among a sample of patients seen in the investigator’s clinic who have a previous CHD
diagnosis and respond to a mailed questionnaire, what proportion report taking daily fish
oil supplements?

The transformation from research question to study plan is illustrated in Figure 1.2. One ma-
jor component of this transformation is the choice of a sample of subjects that will represent the
population. The group of subjects specified in the protocol can only be a sample of the population
of interest because there are practical barriers to studying the entire population. The decision to
study patients in the investigator’s clinic identified through the electronic medical record system
is a compromise. This is a sample that is feasible to study but has the disadvantage that it may
produce a different prevalence of fish oil use than that found in all people with CHD.

The other major component of the transformation is the choice of variables that will repre-
sent the phenomena of interest. The variables specified in the study plan are usually proxies
for these phenomena. The decision to use a self-report questionnaire to assess fish oil use is a
fast and inexpensive way to collect information, but unlikely to be perfectly accurate because
people usually do not accurately remember or record how much they take in a typical week.

In short, each of the differences in Figure 1.2 between the research question and the study
plan has the purpose of making the study more practical. The cost of this increase in prac-
ticality, however, is the risk that design choices may cause the study to produce a wrong or
misleading conclusion because it is designed to answer a somewhat different question from the
research question of interest.

Implementing the Study

Returning to Figure 1.1, the right-hand side is concerned with implementation and the degree
to which the actual study matches the study plan. At issue here is the problem of a wrong answer

Infer
TRUTH IN THE < 1 TRUTH IN THE
UNIVERSE STUDY
--------------------------------
Research question J Study plan
p N Design
Intended
|
Target sample
population AII_patlents with a
. history of CHD
FEAZEWIin CiRlD seen in clinic
last year
L v
4 N\ 4 N\
Phenomena
of interest Intgnded
. variables
The proportion who
take fish S_elf-r_eported use of
oil supplements fish oil supplements
A J EXTERNAL \ J
VALIDITY

B FIGURE 1.2 Design errors and external validity: If the intended sample and variables do not
sufficiently represent the target population and phenomena of interest, these errors may distort
inferences about what actually happens in the population.
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to the research question because the way the sample was actually drawn, or the measurements
made, differed in important ways from the way they were designed (Figure 1.3).

The actual sample of study subjects is almost always different from the intended sample. The
plans to study all eligible clinic patients with CHD, for example, could be disrupted by incom-
plete diagnoses in the electronic medical record, wrong addresses for the mailed questionnaire,
and refusal to participate. Those subjects who are reached and agree to participate may have a
different prevalence of fish oil use than those not reached or not interested. In addition to these
problems with the subjects, the actual measurements can differ from the intended measure-
ments. If the format of the questionnaire is unclear subjects may get confused and check the
wrong box, or they may simply omit the question by mistake.

These differences between the study plan and the actual study can alter the answer to the
research question. Figure 1.3 illustrates that errors in implementing the study join errors of
design in leading to a misleading or wrong answer to the research question.

Causal Inference

A special kind of validity problem arises in studies that examine the association between a
predictor and an outcome variable in order to draw causal inference. If a cohort study finds an
association between fish intake and CHD events, does this represent cause and effect, or is fish
intake just an innocent bystander in a web of causation that involves other variables? Reducing
the likelihood of confounding and other rival explanations is one of the major challenges in
designing an observational study (Chapter 9).

The Errors of Research

Recognizing that no study is entirely free of errors, the goal is to maximize the validity of in-
ferences from what was observed in the study sample to what is happening in the population.

Infer
STUDY f THE STUDY
-------------------------------
Study plan J Actual study
e N = ' A
Intended implement Actual
sample subjects
All 215 patients The 104 patients
with a history of with a CHD diagnosis
CHD seen in in chart last year who
clinic last year filled out questionnaire
L v L v
4 N\ 4 N\
Intended Actual
variables measurements
Self-reported Responses to
use of fish oil questionnaire items on
supplements fish oil supplements
> g INTERNAL > ‘
VALIDITY

M FIGURE 1.3 Implementation errors and internal validity: If the actual subjects and measure-
ments do not sufficiently represent the intended sample and variables, these errors may distort
inferences about what happened in the study.
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Erroneous inferences can be addressed in the analysis phase of research, but a better strategy
is to focus on design and implementation (Figure 1.4), preventing errors from occurring in the
first place to the extent that this is practical.

The two main kinds of errors that interfere with research inferences are random error and
systematic error. The distinction is important because the strategies for minimizing them are
quite different.

Random error is a wrong result due to chance—sources of variation that are equally likely to
distort measurements from the study in either direction. If the true prevalence of daily fish oil
supplement use in the several hundred 50- to 69-year-old patients with CHD in the investigator’s
clinic is 20%, a well-designed sample of 100 patients from that population might contain exactly
20 patients who use these supplements. More likely, however, the sample would contain a nearby
number such as 18, 19, 21, or 22. Occasionally, chance would produce a substantially different
number, such as 12 or 28. Among several techniques for reducing the influence of random error
(Chapter 4), the simplest is to increase the sample size. The use of a larger sample diminishes the
likelihood of a substantially wrong result by increasing the precision of the estimate—the degree
to which the observed prevalence approximates 20% each time a sample is drawn.

Systematic error is a wrong result due to bias—sources of variation that distort the study
findings in one direction. An illustration is the decision in Figure 1.2 to study patients in the
investigator’s clinic, where the local treatment patterns have responded to her interest in the
topic and her fellow doctors are more likely than the average doctor to recommend fish oil.
Increasing the sample size has no effect on systematic error. The best way to improve the
accuracy of the estimate (the degree to which it approximates the true value) is to design the
study in a way that reduces the size of the various biases. Alternatively, the investigator can
seek additional information to assess the importance of possible biases. An example would be
to compare results with those from a second sample of patients with CHD drawn from another
setting, for example, examining whether the findings of such patients seen in a cardiology clinic
are different from those seen in a primary care clinic.

The examples of random and systematic error in the preceding two paragraphs are compo-
nents of sampling error, which threatens inferences from the study subjects to the population.

Infer Infer
Error Solution ) ( Error Solution )
Random  Improve design (Ch. 7—13) Random  Quality control (Ch.17)
error Enlarge sample size error

5 strategies to increase
precision (Ch. 4)

Systematic Improve design (Ch. 7-13) Systematic Quality control (Ch.17)
error 7 strategies to increase error
accuracy (Ch. 4)
- J (& J
Design Implement
EXTERNAL INTERNAL
VALIDITY VALIDITY

M FIGURE 1.4 Research errors. This blown-up detail of the error boxes in Figures 1.2 and 1.3
reveals strategies for controlling random and systematic error in the design and implementation
phases of the study.
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Infer Infer
TRUTH IN THE TRUTH IN THE FINDINGS IN
UNIVERSE f STUDY f THE STUDY
Random and Random and
""""""""""" systematic [===s=ssmsssssssssasss== gystematic [FeEmsssssssssssssssses
Research error Study plan error Actual
question study
Target Intended Actual
population sample subjects
Design - Implement'
Phenomena Intended Actual
of interest variables measurements
EXTERNAL INTERNAL
VALIDITY VALIDITY

M FIGURE 1.5 Physiology of research—how it works.

Both random and systematic errors can also contribute to measurement error, threatening the
inferences from the study measurements to the phenomena of interest. An illustration of random
measurement error is the variation in the response when the diet questionnaire is administered
to the patient on several occasions. An example of systematic measurement error is under-
estimation of the prevalence of fish oil use due to lack of clarity in how the question is phrased.
Additional strategies for controlling all these sources of error are presented in Chapters 3 and 4.

The concepts presented in the last several pages are summarized in Figure 1.5 Getting the
right answer to the research question is a matter of designing and implementing the study in a
fashion that minimizes the magnitude of inferential errors.

B DESIGNING THE STUDY
Study Plan

The process of developing the study plan begins with the one-sentence research question that
specifies the main predictor and outcome variables and the population. Three versions of the
study plan are then produced in sequence, each larger and more detailed than the preceding one.

e Study outline (Table 1.1 and Appendix 1). This one-page summary of the design serves as a
standardized checklist to remind the investigator to address all the components. As impor-
tant, the sequence has an orderly logic that helps clarify the investigator’s thinking on the
topic.

e Study protocol. This expansion on the study outline usually ranges from 5 to 15 pages, and
is used to plan the study and to apply for IRB approval and grant support. The protocol parts
are discussed throughout this book and summarized in Chapter 19.

e Operations manual. This collection of specific procedural instructions, questionnaires, and
other materials is designed to ensure a uniform and standardized approach to carrying out
the study with good quality control (Chapters 4 and 17).

The research question and study outline should be written out at an early stage. Putting
thoughts down on paper leads the way from vague ideas to specific plans and provides a con-
crete basis for getting advice from colleagues and consultants. It is a challenge to do it (ideas are
easier to talk about than to write down), but the rewards are a faster start and a better project.

Appendix 1 is an example of a study outline. This one-page outline deals more with the
anatomy of research (Table 1.1) than with its physiology (Figure 1.5), so the investigator must
remind herself to worry about the errors that may result when it is time to draw inferences
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from measurements in the study sample to phenomena of interest in the population. A study’s
virtues and problems can be revealed by explicitly considering how the question the study is
likely to answer differs from the research question, given the plans for acquiring subjects and
making measurements, and given the likely problems of implementation.

With the study outline in hand and the intended inferences in mind, the investigator can
proceed with the details of her protocol. This includes getting advice from colleagues, drafting
specific recruitment and measurement methods, considering scientific and ethical appropriate-
ness, modifying the study question and outline as needed, pretesting specific recruitment and
measurement methods, making more changes, getting more advice, and so forth. This iterative
process is the nature of research design and the topic of the rest of this book.

Trade-offs

Regretably, errors are an inherent part of all studies. The main issue is whether the errors will
be large enough to change the conclusions in important ways. When designing a study, the
investigator is in much the same position as a labor union official bargaining for a new contract.
The union official begins with a wish list—shorter hours, more money, health care benefits,
and so forth. She must then make concessions, holding on to the things that are most impor-
tant and relinquishing those that are not essential or realistic. At the end of the negotiations is
a vital step: She looks at the best contract she could negotiate and decides if it has become so
bad that it is no longer worth having.

The same sort of concessions must be made by an investigator when she transforms the re-
search question to the study plan and considers potential problems in implementation. On one
side are the issues of internal and external validity; on the other, feasibility. The vital last step
of the union negotiator is sometimes omitted. Once the study plan has been formulated, the
investigator must decide whether it adequately addresses the research question and whether it
can be implemented with acceptable levels of error. Often the answer is no, and there is a need
to begin the process anew. But take heart! Good scientists distinguish themselves not so much
by their uniformly good research ideas as by their alacrity in turning over those that won’t work
and moving on to better ones.

B SUMMARY

1. The anatomy of research is the set of tangible elements that make up the study plan: the
research question and its significance, and the design, study subjects, and measurement
approaches. The challenge is to design elements that are relatively inexpensive and easy
to implement.

2. The physiology of research is how the study works. The study findings are used to draw
inferences about what happened in the study sample (internal validity), and about events
in the world outside (external validity). The challenge here is to design and implement a
study plan with adequate control over two major threats to these inferences: random error
(chance) and systematic error (bias).

3. In designing a study the investigator may find it helpful to consider Figure 1.5, the relation-
ships between the research question (what she wants to answer), the study plan (what the
study is designed to answer), and the actual study (what the study will actually answer,
given the errors of implementation that can be anticipated).

4. A good way to develop the study plan is to begin with a one-sentence version of the
research question that specifies the main variables and population, and expand this into a
one-page outline that sets out the study elements in a standardized sequence. Later on the
study plan will be expanded into the protocol and the operations manual.

5. Good judgment by the investigator and advice from colleagues are needed for the many
trade-offs involved, and for determining the overall viability of the project.



APPENDIX 1
Outline of a Study

This is the one-page study plan of a project carried out by Valerie Flaherman, MD, MPH, begun
while she was a general pediatrics fellow at UCSF. Most beginning investigators find observa-
tional studies easier to pull off, but in this case a randomized clinical trial of modest size and
scope was feasible, the only design that could adequately address the research question, and
ultimately successful—see publication by Flaherman et al (1) for the findings, which, if con-
tirmed, could alter policy on how best to initiate breast feeding.

B TITLE: EFFECT OF EARLY LIMITED FORMULA USE ON BREASTFEEDING
Research question:

Among term newborns who have lost > 5% of their birth weight before 36 hours of age, does
feeding 10 cc of formula by syringe after each breastfeeding before the onset of mature milk
production increase the likelihood of subsequent successful breastfeeding?

Significance:

1. Breast milk volume is low until mature milk production begins 2-5 days after birth.

2. Some mothers become worried if the onset of mature milk production is late and their
baby loses a lot of weight, leading them to abandon breastfeeding within the first week. A
strategy that increased the proportion of mothers who succeed in breastfeeding would have
many health and psycho-social benefits to mother and child.

3. Observational studies have found that formula feeding in the first few days after birth is
associated with decreased breastfeeding duration. Although this could be due to confound-
ing by indication (see Chapter 9), the finding has led to WHO and CDC guidelines aimed
at reducing the use of formula during the birth hospitalization.

4. However, a small amount of formula combined with breastfeeding and counseling might
make the early breastfeeding experience more positive and increase the likelihood of suc-
cess. A clinical trial is needed to assess possible benefits and harms of this strategy.

Study design:

Unblinded randomized control trial with blinded outcome ascertainment

Subjects:

e Entry criteria: Healthy term newborns 24-48 hours old who have lost = 5% of their birth
weight in the first 36 hours after birth

e Sampling design: Consecutive sample of consenting patients in two Northern California
academic medical centers

Predictor variable, randomly assigned but not blinded:

e Control: Parents are taught infant soothing techniques.
e Intervention: Parents are taught to syringe-feed 10 cc of formula after each breastfeeding
until the onset of mature milk production.

12
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Outcome variables, blindly ascertained:

1. Any formula feeding at 1 week and 1, 2, and 3 months
2. Any breastfeeding at 1 week and 1, 2, and 3 months
3. Weight nadir

Primary null hypothesis:

Early limited formula does not affect the proportion of women who are breastfeeding their baby
at 3 months.

REFERENCE

1. Flaherman V], Aby J, Burgos AE, et al. Effect of early limited formula on duration and exclusivity of breastfeeding
in at-risk infants: an RCT. Pediatrics, in press.



CHAPTER

Conceiving the Research Question
and Developing the Study Plan

Steven R. Cummings, Warren S. Browner, and Stephen B. Hulley

The research question is the uncertainty that the investigator wants to resolve by performing
her study. There is no shortage of good research questions, and even as we succeed in answer-
ing some questions, we remain surrounded by others. Clinical trials, for example, established
that treatments that block the synthesis of estradiol (aromatase inhibitors) reduce the risk of
breast cancer in women who have had early stage cancer (1). But this led to new questions:
How long should treatment be continued; does this treatment prevent breast cancer in patients
with BRCA 1 and BRCA 2 mutations; and what is the best way to prevent the osteoporosis that
is an adverse effect of these drugs? Beyond that are primary prevention questions: Are these
treatments effective and safe for preventing breast cancer in healthy women?

The challenge in finding a research question is defining an important one that can be trans-
formed into a feasible and valid study plan. This chapter presents strategies for accomplishing
this (Figure 2.1).

B ORIGINS OF A RESEARCH QUESTION

For an established investigator the best research questions usually emerge from the findings
and problems she has observed in her own prior studies and in those of other workers in the
field. A new investigator has not yet developed this base of experience. Although a fresh per-
spective is sometimes useful by allowing a creative person to conceive new approaches to old
problems, lack of experience is largely an impediment.

! 1
( \ Infer ( \ i Infer
i TRUTH IN THE ] f—— TRUTH IN THE :4—//— FINDINGS IN
: UNIVERSE STUDY . THE STUDY
) I I quresmn NN SRR
: Research Study plan ! Actual
: question : study
! 1
:._________________ __________________: Implement
Target Intended Actual
population sample subjects
Phenomena Intended Actual
of interest variables measurements
EXTERNAL INTERNAL
VALIDITY VALIDITY

M FIGURE 2.1 This chapter focuses on the area within the dashed green line, the challenge of choosing a research
question that is of interest and can be tackled with a feasible study plan.
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A good way to begin is to clarify the difference between a research question and a research
interest. Consider this research question:

e Does participation in group counseling sessions reduce the likelihood of domestic violence
among women who have recently immigrated from Central America?

This might be asked by someone whose research interest involves the efficacy of group coun-
seling, or the prevention of domestic violence, or improving health in recent immigrants. The
distinction between research questions and research interests matters because it may turn out
that the specific research question cannot be transformed into a viable study plan, but the in-
vestigator can still address her research interest by asking a different question.

Of course, it's impossible to formulate a research question if you are not even sure about
your research interest (beyond knowing that you're supposed to have one). If you find yourself
in this boat, you're not alone: Many new investigators have not yet discovered a topic that in-
terests them and is susceptible to a study plan they can design. You can begin by considering
what sorts of research studies have piqued your interest when you've seen them in a journal.
Or perhaps you were bothered by a specific patient whose treatment seemed inadequate or
inappropriate: What could have been done differently that might have improved her outcome?
Or one of your attending physicians told you that hypokalemia always caused profound thirst,
and another said the opposite, just as dogmatically.

Mastering the Literature

It is important to master the published literature in an area of study: Scholarship is a
necessary precursor to good research. A new investigator should conduct a thorough
search of published literature in the areas pertinent to the research question and critically
read important original papers. Carrying out a systematic review is a great next step for
developing and establishing expertise in a research area, and the underlying literature re-
view can serve as background for grant proposals and research reports. Recent advances
may be known to active investigators in a particular field long before they are published.
Thus, mastery of a subject entails participating in meetings and building relationships with
experts in the field.

Being Alert to New Ideas and Techniques

In addition to the medical literature as a source of ideas for research questions, it is helpful
to attend conferences in which new work is presented. At least as important as the formal
presentations are the opportunities for informal conversations with other scientists at posters
and during the breaks. A new investigator who overcomes her shyness and engages a speaker
at the coffee break may find the experience richly rewarding, and occasionally she will have a
new senior colleague. Even better, for a speaker known in advance to be especially relevant, it
may be worthwhile to look up her recent publications and contact her in advance to arrange a
meeting during the conference.

A skeptical attitude about prevailing beliefs can stimulate good research questions. For
example, it was widely believed that lacerations which extend through the dermis required su-
tures to assure rapid healing and a satisfactory cosmetic outcome. However, Quinn et al. noted
personal experience and case series evidence that wounds of moderate size repair themselves
regardless of whether wound edges are approximated (2). They carried out a randomized trial
in which all patients with hand lacerations less than 2 c¢cm in length received tap water irriga-
tion and a 48-hour antibiotic dressing. One group was randomly assigned to have their wounds
sutured, and the other group did not receive sutures. The suture group had a more painful and
time-consuming treatment in the emergency room, but blinded assessment revealed similar
time to healing and similar cosmetic results. This has now become a standard approach used
in clinical practice.
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The application of new technologies often generates new insights and questions about famil-
iar clinical problems, which in turn can generate new paradigms (3). Advances in imaging and
in molecular and genetic technologies, for example, have spawned translational research studies
that have led to new treatments and tests that have changed clinical medicine. Similarly, taking
a new concept, technology, or finding from one field and applying it to a problem in a different
field can lead to good research questions. Low bone density, for example, is a risk factor for frac-
tures. Investigators applied this technology to other outcomes and found that women with low
bone density have higher rates of cognitive decline (4), stimulating research for factors, such as
low endogenous levels of estrogen, that could lead to loss of both bone and memory.

Keeping the Imagination Roaming

Careful observation of patients has led to many descriptive studies and is a fruitful source of
research questions. Teaching is also an excellent source of inspiration; ideas for studies often
occur while preparing presentations or during discussions with inquisitive students. Because
there is usually not enough time to develop these ideas on the spot, it is useful to keep them in
a computer file or notebook for future reference.

There is a major role for creativity in the process of conceiving research questions, imagin-
ing new methods to address old questions, and playing with ideas. Some creative ideas come
to mind during informal conversations with colleagues over lunch; others arise from discuss-
ing recent research or your own ideas in small groups. Many inspirations are solo affairs that
strike while preparing a lecture, showering, perusing the Internet, or just sitting and thinking.
Fear of criticism or seeming unusual can prematurely quash new ideas. The trick is to put an
unresolved problem clearly in view and allow the mind to run freely around it. There is also a
need for tenacity, returning to a troublesome problem repeatedly until a resolution is reached.

Choosing and Working with a Mentor

Nothing substitutes for experience in guiding the many judgments involved in conceiving a
research question and fleshing out a study plan. Therefore an essential strategy for a new in-
vestigator is to apprentice herself to an experienced mentor who has the time and interest to
work with her regularly.

A good mentor will be available for regular meetings and informal discussions, encourage
creative ideas, provide wisdom that comes from experience, help ensure protected time for
research, open doors to networking and funding opportunities, encourage the development
of independent work, and put the new investigator’s name first on grants and publications
whenever appropriate. Sometimes it is desirable to have more than one mentor, representing
different disciplines. Good relationships of this sort can also lead to tangible resources that are
needed—office space, access to clinical populations, data sets and specimen banks, specialized
laboratories, financial resources, and a research team.

A bad mentor, on the other hand, can be a barrier. A mentor can harm the career of the
new investigator, for example, by taking credit for findings that arise from the new investiga-
tor’s work, or assuming the lead role on publishing or presenting it. More commonly, many
mentors are simply too busy or distracted to pay attention to the new investigator’s needs. In
either case, once discussions with the mentor have proved fruitless, we recommend finding a
way to move on to a more appropriate advisor, perhaps by involving a neutral senior colleague
to help in the negotiations. Changing mentors can be hazardous, emphasizing the importance
of choosing a good mentor in the first place; it is perhaps the single most important decision a
new investigator makes.

Your mentor may give you a database and ask you to come up with a research question. In that
situation, it's important to identify (1) the overlap between what's in the database and your own
research interests, and (2) the quality of the database. If there isn’t enough overlap or the data are
irrevocably flawed, find a way to move on to another project.
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B CHARACTERISTICS OF A GOOD RESEARCH QUESTION

The characteristics of a research question that lead to a good study plan are that it be Feasible,
Interesting, Novel, Ethical, and Relevant (which form the mnemonic FINER; Table 2.1).

Feasible

It is best to know the practical limits and problems of studying a question early on, before wast-
ing much time and effort along unworkable lines.

e Number of subjects. Many studies do not achieve their intended purposes because they can-
not enroll enough subjects. A preliminary calculation of the sample size requirements of the
study early on can be quite helpful (Chapter 6), together with an estimate of the number of
subjects likely to be available for the study, the number who would be excluded or refuse
to participate, and the number who would be lost to follow-up. Even careful planning often
produces estimates that are overly optimistic, and the investigator should assure that there
are enough eligible and willing subjects. It is sometimes necessary to carry out a pilot survey
or chart review to be sure. If the number of subjects appears insufficient, the investigator can
consider several strategies: expanding the inclusion criteria, eliminating unnecessary exclu-
sion criteria, lengthening the time frame for enrolling subjects, acquiring additional sources
of subjects, developing more precise measurement approaches, inviting colleagues to join in
a multicenter study, and using a different study design.

e Technical expertise. The investigators must have the skills, equipment, and experience
needed for designing the study, recruiting the subjects, measuring the variables, and man-
aging and analyzing the data. Consultants can help to shore up technical aspects that are
unfamiliar to the investigators, but for major areas of the study it is better to have an expe-
rienced colleague steadily involved as a coinvestigator; for example, it is wise to include a
statistician as a member of the research team from the beginning of the planning process.
It is best to use familiar and established approaches, because the process of developing new

TABLE 2.1 FINER CRITERIA FOR A GOOD RESEARCH QUESTION
AND STUDY PLAN

Feasible

Adequate number of subjects
Adequate technical expertise
Affordable in time and money
Manageable in scope
Fundable

Interesting
Getting the answer intrigues the investigator and her colleagues
Novel

Provides new findings

Confirms, refutes, or extends previous findings

May lead to innovations in concepts of health and disease, medical practice, or methodologies
for research

Ethical
A study that the institutional review board will approve
Relevant

Likely to have significant impacts on scientific knowledge, clinical practice, or health policy
May influence directions of future research
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methods and skills is time-consuming and uncertain. When a new approach is needed, such
as measurement of a new biomarker, expertise in how to accomplish the innovation should
be sought.

e Cost in time and money. It is important to estimate the costs of each component of the
project, bearing in mind that the time and money needed will generally exceed the amounts
projected at the outset. If the projected costs exceed the available funds, the only options
are to consider a less expensive design or to develop additional sources of funding. Early
recognition of a study that is too expensive or time-consuming can lead to modification or
abandonment of the plan before expending a great deal of effort.

e Scope. Problems often arise when an investigator attempts to accomplish too much, mak-
ing many measurements at repeated contacts with a large group of subjects in an effort to
answer too many research questions. The solution is to narrow the scope of the study and
focus only on the most important goals. Many scientists find it difficult to give up the op-
portunity to answer interesting side questions, but the reward may be a better answer to the
main question at hand.

e Fundability. Few investigators have the personal or institutional resources to fund their own
research projects, particularly if subjects need to be enrolled and followed, or expensive mea-
surements must be made. The most elegantly designed research proposal will not be feasible
if no one will pay for it. Finding sources of funding is discussed in Chapter 19.

Interesting

An investigator may have many motivations for pursuing a particular research question: be-
cause it will provide financial support, because it is a logical or important next step in building
a career, or because getting at the truth of the matter is interesting. We like this last reason; it
is one that grows as it is exercised and that provides the intensity of effort needed for overcom-
ing the many hurdles and frustrations of the research process. However, it is wise to confirm
that you are not the only one who finds a question interesting. Speak with mentors, outside
experts, and representatives of potential funders such as NIH project officers before devoting
substantial energy to develop a research plan or grant proposal that peers and funding agencies
may consider dull.

Novel

Good clinical research contributes new information. A study that merely reiterates what is al-
ready established is not worth the effort and cost and is unlikely to receive funding. The novelty
of a proposed study can be determined by thoroughly reviewing the literature, consulting with
experts who are familiar with unpublished ongoing research, and searching for abstracts of
projects in your area of interest that have been funded using the NIH Research Portfolio Online
Reporting Tools (RePORT) website (http://report.nih.gov/categorical_spending.aspx.) Reviews
of studies submitted to NIH give considerable weight to whether a proposed study is innovative
(5) such that a successful result could shift paradigms of research or clinical practice through the
use of new concepts, methods, or interventions (Chapter 19). Although novelty is an important
criterion, a research question need not be totally original—it can be worthwhile to ask whether
a previous observation can be replicated, whether the findings in one population also apply to
others, or whether a new measurement method can clarify the relationship between known risk
factors and a disease. A confirmatory study is particularly useful if it avoids the weaknesses of
previous studies or if the result to be confirmed was unexpected.

Ethical

A good research question must be ethical. If the study poses unacceptable physical risks or in-
vasion of privacy (Chapter 14), the investigator must seek other ways to answer the question.
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If there is uncertainty about whether the study is ethical, it is helpful to discuss it at an early
stage with a representative of the institutional review board (IRB).

Relevant

A good way to decide about relevance is to imagine the various outcomes that are likely to
occur and consider how each possibility might advance scientific knowledge, influence prac-
tice guidelines and health policy, or guide further research. NIH reviewers emphasize the sig-
nificance of a proposed study: the importance of the problem, how the project will improve
scientific knowledge, and how the result will change concepts, methods, or clinical services.

B DEVELOPING THE RESEARCH QUESTION AND STUDY PLAN

It helps a great deal to write down the research question and a brief (one-page) outline of the
study plan at an early stage (Appendix 1). This requires some self-discipline, but it forces the
investigator to clarify her ideas about the plan and to discover specific problems that need at-
tention. The outline also provides a basis for specific suggestions from colleagues.

Problems and Approaches

Two complementary approaches to the problems involved in developing a research question
deserve special emphasis.

The first is the importance of getting good advice. We recommend a research team that in-
cludes representatives of each of the major disciplines involved in the study, and that includes
at least one senior scientist. In addition, it is a good idea to consult with specialists who can
guide the discovery of previous research on the topic and the choice and design of measure-
ment techniques. Sometimes a local expert will do, but it is often useful to contact individuals
in other institutions who have published pertinent work on the subject. A new investigator may
be intimidated by the prospect of writing or calling someone she knows only as an author in
the Journal of the American Medical Association, but most scientists respond favorably to such
requests for advice.

The second approach is to allow the study plan to gradually emerge from an iterative pro-
cess of making incremental changes in the study’s design, estimating the sample size, review-
ing with colleagues, pretesting key features, and revising. Once the one-page study outline is
specified, formal review by colleagues will usually result in important improvements. As the
protocol takes shape pilot studies of the availability and willingness of sufficient numbers of
subjects may lead to changes in the recruitment plan. The preferred imaging test may turn
out to be prohibitively costly and a less expensive alternative sought.

Primary and Secondary Questions

Many studies have more than one research question. Experiments often address the effect of the
intervention on more than one outcome; for example, the Women’s Health Initiative was de-
signed to determine whether reducing dietary fat intake would reduce the risk of breast cancer,
but an important secondary hypothesis was to examine the effect on coronary events (5). Almost
all cohort and case—control studies look at several risk factors for each outcome. The advantage
of designing a study with several research questions is the efficiency that can result, with several
answers emerging from a single study. The disadvantages are the increased complexity of design-
ing and implementing the study and of drawing statistical inferences when there are multiple
hypotheses (Chapter 5). A sensible strategy is to establish a single primary research question
around which to focus the study plan and sample size estimate, adding secondary research
questions about other predictors or outcomes that may also produce valuable conclusions.
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B TRANSLATIONAL RESEARCH

Translational research refers to studies of how to translate findings from the ivory tower into
the “real world,” how to assure that scientific creativity has a favorable impact on public health.
Translational research (6) comes in two main flavors (Figure 2.2):

e Applying basic science findings from laboratory research in clinical studies of patients
(sometimes abbreviated as T1 research), and

e Applying the findings of these clinical studies to alter health practices in the community
(sometimes abbreviated as T2 research).

Both forms of translational research require identifying a “translation” opportunity. Just as
a literary translator first needs to find a novel or poem that merits translating, a translational
research investigator must first target a scientific finding or new technology that could have
an important impact on clinical research, practice, or public health. Among the strategies for
making this challenging choice, it may be helpful to pay attention to colleagues when they talk
about their latest findings, to presentations at national meetings about novel methods, and to
speculation about mechanisms in published reports.

Translating from Laboratory to Clinical Research (T1)

A host of tools have become available for clinical investigations, including DNA sequencing, gene
expression arrays, molecular imaging, and proteomics. From the viewpoint of a clinical investiga-
tor, there is nothing epidemiologically different about these novel measurements, technologies, or
test results. The chapter on measurements will be useful in planning studies involving these types
of measurements (Chapter 4), as will the advice about study design (Chapters 7-12), population
samples (Chapter 3), and sample size (Chapter 6). Especially relevant to genomics and other
“omics” will be the concern with multiple hypothesis testing (Chapter 5).

Compared with ordinary clinical research, being a successful T1 translational investigator often
requires having an additional skill set or working with a collaborator with those skills. Bench-to-
bedside research necessitates a thorough understanding of the underlying basic science. Al-
though many clinical researchers believe that they can master this knowledge—just like many
laboratory-based researchers believe doing clinical research requires no special training—in
reality, the skills hardly overlap. For example, suppose a basic scientist has identified a gene that
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affects circadian rhythm in mice. A clinical investigator whose expertise is in sleep has access to
a cohort study with data on sleep cycles and a bank of stored DNA, and wants to study whether
there is an association between variants in the human homolog of that gene and sleep. In order
to propose a T1 study of that association she needs collaborators who are familiar with that gene,
as well as the advantages and limitations of the various methods of genotyping.

Similarly, imagine that a laboratory-based investigator has discovered a unique pattern
of gene expression in tissue biopsy samples from patients with breast cancer. She should not
propose a study of its use as a test for predicting the risk of recurrence of breast cancer without
collaborating with someone who understands the importance of clinical research issues, such
as test-retest reliability, sampling and blinding, and the effects of prior probability of disease on
the applicability of her discovery. Good translational research requires expertise in more than
one area. Thus a research team interested in testing a new drug may need scientists familiar
with molecular biology, pharmacokinetics, pharmacodynamics, phase 1 and II clinical trials,
and practice patterns in the relevant field of medicine.

Translating from Clinical to Population Research (T2)

Studies that attempt to apply findings from clinical trials to larger and more diverse populations
often require expertise in identifying high-risk or underserved groups, understanding the dif-
ference between screening and diagnosis, and knowing how to implement changes in health
care delivery systems. On a practical level, this kind of research usually needs access to large
groups of patients (or clinicians), such as those enrolled in health plans or large clinics. Sup-
port and advice from the department chair, the chief of the medical staff at an affiliated hospital,
the leader of a managed care organization, or a representative from a community organization
may be helpful when planning these studies.

Some investigators take a short cut when doing this type of translational research, expand-
ing a study in their own clinic by studying patients in their colleagues’ practices (e.g., a house
staff-run clinic in an academic medical center) rather than involving practitioners in the com-
munity. This is a bit like translating Aristophanes into modern Greek—it will still not be very
useful for English-speaking readers. Chapter 18 emphasizes the importance of getting as far
into the community as possible.

Testing research findings in larger populations often requires adapting methods to fit organiza-
tions. For example, in a study of whether a new office-based diet and exercise program will be
effective in the community, it may not be possible to randomly assign individual patients. One
solution would be to randomly assign physician practices instead. This may require collaborating
with an expert on cluster sampling and clustered analyses. Many T2 research projects aimed to
improve medical care use proxy “process” variables as their outcomes. For example, if clinical trials
have established that a new treatment reduces mortality from sepsis, a translational research study
comparing two programs for implementing and promoting use of the new treatment might not
need to have mortality as the outcome. Rather, it might just compare the percentages of patients
with sepsis who received the new treatment. Moving research from settings designed for research
into organizations designed for medical care or other purposes requires flexibility and creativity in
applying principles that assure as much rigor and validity of the study results as possible.

B SUMMARY

1. All studies should start with a research question that addresses what the investigator
would like to know. The goal is to find one that can be developed into a good study plan.

2. Scholarship is essential to developing research questions that are worth pursuing. A
systematic review of research pertinent to an area of research interest is a good place to
start. Attending conferences and staying alert to new results extends the investigator’s ex-
pertise beyond what is already published.
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The single most important decision a new investigator makes is her choice of one or two
senior scientists to serve as her mentor(s): experienced investigators who will take time to
meet, provide resources and connections, encourage creativity, and promote the indepen-
dence and visibility of their junior scientists.

Good research questions arise from finding new collaborators at conferences, from critical
thinking about clinical practices and problems, from applying new methods to old is-
sues, and from considering ideas that emerge from teaching, daydreaming, and tenacious
pursuit of solutions to vexing problems.

Before committing much time and effort to writing a proposal or carrying out a study, the
investigator should consider whether the research question and study plan are “FINER™:
feasible, interesting, novel, ethical, and relevant. Those who fund research give priority
to proposals that may have innovative and significant impacts on science and health.
Early on, the research question should be developed into a one-page written study outline
that specifically describes how many subjects will be needed, how the subjects will be se-
lected, and what measurements will be made.

Developing the research question and study plan is an iterative process that includes
consultations with advisors and friends, a growing familiarity with the literature, and pilot
studies of the recruitment and measurement approaches.

Most studies have more than one question, and it is useful to focus on a single primary
question in designing and implementing the study.

Translational research is a type of clinical research that studies the application of ba-
sic science findings in clinical studies of patients (T1) and how to apply these findings
to improve health practices in the community (T2); it requires collaborations between
laboratory and population-based investigators, using the clinical research methods
presented in this book.
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CHAPTER

Choosing the Study Subijects:
Specification, Sampling,
and Recruitment

Stephen B. Hulley, Thomas B. Newman, and Steven R. Cummings

A good choice of study subjects serves the vital purpose of ensuring that the findings in
the study accurately represent what is going on in the population of interest. The protocol
must specify a sample of subjects that can be studied at an acceptable cost in time and money
(i.e., modest in size and convenient to access), yet large enough to control random error
and representative enough to allow generalizing study findings to populations of interest.
An important precept here is that generalizability is rarely a simple yes-or-no matter; it is a
complex qualitative judgment that depends on the investigator’s choice of population and of
sampling design.

We will come to the issue of choosing the appropriate number of study subjects in Chapter 6.
In this chapter we address the process of specifying and sampling the kinds of subjects who
will be representative and feasible (Figure 3.1). We also discuss strategies for recruiting these
people to participate in the study.

H BASIC TERMS AND CONCEPTS
Populations and Samples

A population is a complete set of people with specified characteristics, and a sample is a
subset of the population. In lay usage, the characteristics that define a population tend to be
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M FIGURE 3.1 This chapter focuses on choosing a sample of study subjects that represent the population of interest
for the research question.
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geographic—for example, the population of Canada. In research, the defining characteristics
are also clinical, demographic, and temporal:

e Clinical and demographic characteristics define the target population, the large set of people
throughout the world to which the results may be generalized—teenagers with asthma, for
example.

e The accessible population is a geographically and temporally defined subset of the target
population that is available for study—teenagers with asthma living in the investigator’s
town this year.

e The intended study sample is the subset of the accessible population that the investigator
seeks to include in the study.

e The actual study sample is the group of subjects that does participate in the study.

Generalizing the Study Findings

The classic Framingham Study was an early approach to scientifically designing a study
to allow inferences from findings observed in a sample to be applied to a population
(Figure 3.2).

The sampling design called for identifying all the families in Framingham with at least one
person aged 30-59, listing the families in order by address, and then asking age-eligible persons
in the first two of every set of three families to participate. This “systematic” sampling design
is not as tamperproof as choosing each subject by a random process (as discussed later in this
chapter), but two more serious concerns were the facts that one-third of the Framingham
residents selected for the study refused to participate, and that in their place the investigators
accepted age-eligible residents who were not in the sample and volunteered (1).

Because respondents are often healthier than nonrespondents, especially if they are volun-
teers, the characteristics of the actual sample undoubtedly differed from those of the intended
sample. Every sample has some errors, however, and the issue is how much damage has been
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done. The Framingham Study sampling errors do not seem large enough to invalidate the con-
clusion that risk relationships observed in the study—for example, that hypertension is a risk
factor for coronary heart disease (CHD)—can be generalized to all the residents of Framingham.
The next concern is the validity of generalizing the finding that hypertension is a risk fac-
tor for CHD from the accessible population of Framingham residents to target populations
elsewhere. This inference is more subjective. The town of Framingham was selected not with a
scientific sampling design, but because it seemed fairly typical of middle-class white communi-
ties in the United States and was convenient to the investigators. The validity of generalizing
the Framingham risk relationships to populations in other parts of the country involves the
precept that, in general, analytic studies and clinical trials that address biologic relationships
produce more widely generalizable results across diverse populations than descriptive studies
that address distributions of characteristics. Thus, the strength of hypertension as a risk factor
for CHD is similar in Caucasian Framingham residents to that observed in inner city African
Americans, but the prevalence of hypertension is much higher in the latter population.

Steps in Designing the Protocol for Acquiring Study Subjects

The inferences in Figure 3.2 are presented from right to left, the sequence used for interpreting
the findings of a completed study. An investigator who is planning a study reverses this se-
quence, beginning on the left (Figure 3.3). She begins by specifying the clinical and demographic
characteristics of the target population that will serve the research question well. She then uses
geographic and temporal criteria to specify a study sample that is representative and practical.

B SELECTION CRITERIA

If an investigator wants to study the efficacy of low dose testosterone supplements versus
placebo for enhancing libido in postmenopausal women, she can begin by creating selection
criteria that define the population to be studied.
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Establishing Selection Criteria

Inclusion criteria define the main characteristics of the target population that pertain to the
research question (Table 3.1). Age is often a crucial factor, and in this study the investigator
might decide to focus on women in their fifties, speculating that in this group the benefit-to-
harm ratio of the drug might be optimal; another study might make a different decision and
focus on older decades. The investigator also might incorporate African American, Hispanic,
and Asian women in the study in an effort to expand generalizability. This is generally a good
idea, but it's important to realize that the increase in generalizability is illusory if there is other
evidence to suggest that the effects differ by race. In that case the investigator would need
enough women of each race to statistically test for the presence of effect modification (an
effect in one race that is different from that in other races, also known as “an interaction”;
Chapter 9); the number needed is generally large, and most studies are not powered to detect
effect modification.

Inclusion criteria that address the geographic and temporal characteristics of the accessible
population often involve trade-offs between scientific and practical goals. The investigator
may find that patients at her own hospital are an available and inexpensive source of subjects.
But she must consider whether peculiarities of the local referral patterns might interfere with
generalizing the results to other populations. On these and other decisions about inclusion
criteria, there is no single course of action that is clearly right or wrong; the important thing
is to make decisions that are sensible, that can be used consistently throughout the study,
and that can be clearly described to others who will be deciding to whom the published
conclusions apply.

TABLE 3.1 DESIGNING SELECTION CRITERIA FOR A CLINICAL TRIAL OF LOW
DOSE TESTOSTERONE VERSUS PLACEBO TO ENHANCE LIBIDO IN MENOPAUSE

DESIGN FEATURE

EXAMPLE

Inclusion criteria
(be specific)

Specifying populations relevant to the
research question and efficient for
study:

Demographic characteristics

Clinical characteristics

Geographic (administrative)
characteristics

Temporal characteristics

Women 50 to 59 years old

Good general health
Has a sexual partner
Is concerned about decreased libido

Patients attending clinic at the
investigator’s hospital

Between January 1 and December
31 of specified year

Exclusion criteria  Specifying subsets of the population
(be parsimonious) that will not be studied because of:

A high likelihood of being lost to
follow-up

An inability to provide good data

Being at high risk of possible
adverse effects

Alcoholic
Plans to move out of state

Disoriented
Has a language barrier*

History of myocardial infarction or
stroke

*Alternatives to excluding those with a language barrier (when these subgroups are sizeable and important to the
research question) would be collecting nonverbal data or using bilingual staff and questionnaires.
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Specifying clinical characteristics for selecting subjects often involves difficult judgments,
not only about which factors are important to the research question, but about how to define
them. How, for example, would an investigator put into practice the criterion that the subjects
be in “good health”? She might decide not to include patients with any self-reported illness, but
this would likely exclude large numbers of subjects who are perfectly suitable for the research
question at hand.

More reasonably, she might exclude only those with diseases that could interfere with
follow-up, such as metastatic cancer. This would be an example of “exclusion criteria,” which
indicate individuals who meet the inclusion criteria and would be suitable for the study were it
not for characteristics that might interfere with the success of follow-up efforts, the quality of
the data, or the acceptability of randomized treatment (Table 3.1). Difficulty with the English
language, psychological problems, alcoholism, and serious illness are examples of exclusion
criteria. Clinical trials differ from observational studies in being more likely to have exclusions
mandated by concern for the safety of an intervention in certain patients; for example, the use
of drugs in pregnant women (Chapter 10). A good general rule that keeps things simple and
preserves the number of potential study subjects is to have as few exclusion criteria as possible.

Clinical Versus Community Populations

If the research question involves patients with a disease, hospitalized or clinic-based patients
are easier to find, but selection factors that determine who comes to the hospital or clinic may
have an important effect. For example, a specialty clinic at a tertiary care medical center at-
tracts patients from afar with serious forms of the disease, giving a distorted impression of the
features and prognosis that are seen in ordinary practice. Sampling from primary care practices
can be a better choice.

Another common option in choosing the sample is to select subjects in the community who
represent a healthy population. These samples are often recruited using mail, e-mail, or adver-
tising via Internet, broadcast, or print media; they are not fully representative of a general popu-
lation because some kinds of people are more likely than others to volunteer or be active users
of Internet or e-mail. True “population-based” samples are difficult and expensive to recruit,
but useful for guiding public health and clinical practice in the community. One of the larg-
est and best examples is the National Health and Nutrition Examination Survey (NHANES), a
representative sample of U.S. residents.

The size and diversity of a sample can be increased by collaborating with colleagues in other
cities, or by using preexisting data sets such as NHANES and Medicare data. Electronically
accessible data sets from public health agencies, healthcare providing organizations, and medical
insurance companies have come into widespread use in clinical research and may be more repre-
sentative of national populations and less time-consuming than other possibilities (Chapter 13).

B SAMPLING

Often the number of people who meet the selection criteria is too large, and there is a need to
select a sample (subset) of the population for study.

Nonprobability Samples

In clinical research the study sample is often made up of people who meet the entry criteria and
are easily accessible to the investigator. This is termed a convenience sample. It has obvious
advantages in cost and logistics, and is a good choice for some research questions.

A consecutive sample can minimize volunteerism and other selection biases by consecutively
selecting subjects who meet the entry criteria. This approach is especially desirable, for example,
when it amounts to taking the entire accessible population over a long enough period to include
seasonal variations or other temporal changes that are important to the research question.
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The validity of drawing inferences from any sample is the premise that, for the purpose of
answering the research question at hand, it sufficiently represents the accessible population.
With convenience samples this requires a subjective judgment.

Probability Samples

Sometimes, particularly with descriptive research questions, there is a need for a scientific
basis for generalizing the findings in the study sample to the population. Probability sampling,
the gold standard for ensuring generalizability, uses a random process to guarantee that each
unit of the population has a specified chance of being included in the sample. It is a scientific
approach that provides a rigorous basis for estimating the fidelity with which phenomena
observed in the sample represent those in the population, and for computing statistical signifi-
cance and confidence intervals. There are several versions of this approach.

e A simple random sample is drawn by enumerating (listing) all the people in the population
from which the sample will be drawn, and selecting a subset at random. The most common
use of this approach in clinical research is when the investigator wishes to select a represen-
tative subset from a population that is larger than she needs. To take a random sample of
the cataract surgery patients at her hospital, for example, the investigator could list all such
patients on the operating room schedules for the period of study, then use a table of random
numbers to select individuals for study (Appendix 3).

* A systematic sample resembles a simple random sample in the first step, enumerating the
population, but differs in that the sample is selected by a preordained periodic process (e.g.,
the Framingham approach of taking the first two out of every three families from a list of
town families ordered by address). Systematic sampling is susceptible to errors caused by
natural periodicities in the population, and it allows the investigator to predict and perhaps
manipulate those who will be in the sample. It offers no logistic advantages over simple
random sampling, and in clinical research it is rarely a better choice.

e A stratified random sample begins by dividing the population into subgroups according to
characteristics such as sex or race, and taking a random sample from each of these “strata.” The
Stratified subsamples can be weighted to draw disproportionately from subgroups that are less
common in the population but of special interest to the investigator. In studying the incidence
of toxemia in pregnancy, for example, the investigator could stratify the population by race
and then sample equal numbers from each stratum. Less common races would then be over-
represented, yielding incidence estimates of comparable precision from each racial group.

e A cluster sample is a random sample of natural groupings (clusters) of individuals in the popula-
tion. Cluster sampling is useful when the population is widely dispersed and it is impractical to
list and sample from all its elements. Consider, for example, the problem of interviewing patients
with lung cancer selected randomly from a statewide database of discharge diagnoses; patients
could be studied at lower cost by choosing a random sample of the hospitals and taking the cases
from these. Community surveys often use a two-stage cluster sample: A random sample of city
blocks is drawn from city blocks enumerated on a map and a field team visits the blocks in the
sample, lists all the addresses in each, and selects a subsample of addresses for study by a second
random process. A disadvantage of cluster sampling is the fact that naturally occurring groups
are often more homogeneous for the variables of interest than the population; each city block,
for example, tends to have people of similar socioeconomic status. This means that the effective
sample size (after adjusting for within-cluster uniformity) will be somewhat smaller than the
number of subjects, and that statistical analysis must take the clustering into account.

Summarizing the Sampling Design Options

The use of descriptive statistics and tests of statistical significance to draw inferences about the
population from observations in the study sample is based on the assumption that a probability
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sample has been used. But in clinical research a random sample of the whole target population
is almost never possible. Convenience sampling, preferably with a consecutive design, is a prac-
tical approach that is often suitable. The decision about whether the proposed sampling design
is satisfactory requires that the investigator make a judgment: for the research question at hand,
will the conclusions drawn from observations in the study sample be similar to the conclusions
that would result from studying a true probability sample of the accessible population? And
beyond that, will the conclusions be appropriate for the target population?

B RECRUITMENT
The Goals of Recruitment

An important factor to consider in choosing the accessible population and sampling approach is
the feasibility of recruiting study participants. There are two main goals: (1) to recruit a sample
that adequately represents the target population, minimizing the prospect of getting the wrong
answer to the research question due to systematic error (bias); and (2) to recruit a sufficient
sample size to minimize the prospect of getting the wrong answer due to random error (chance).

Achieving a Representative Sample

The approach to recruiting a representative sample begins in the design phase with wise deci-
sions about choosing target and accessible populations, and approaches to sampling. It ends
with implementation, guarding against errors in applying the entry criteria to prospective study
participants, and enhancing successful strategies as the study progresses.

A particular concern, especially for descriptive studies, is the problem of nonresponse.' The
proportion of subjects selected for the study who consent to be enrolled (the response rate)
influences the validity of inferring that the enrolled sample represents the population. People
who are difficult to reach and those who refuse to participate once they are contacted tend to be
different from people who do enroll. The level of nonresponse that will compromise the general-
izability of the study depends on the nature of the research question and on the reasons for not
responding. A nonresponse rate of 25%, a good achievement in many settings, can seriously dis-
tort the estimate of the prevalence of a disease when the disease itself is a cause of nonresponse.

The degree to which nonresponse bias may influence the conclusions of a descriptive study
can sometimes be estimated during the study by acquiring additional information on a sample
of nonrespondents. The best way to deal with nonresponse bias, however, is to minimize the
number of nonrespondents. The problem of failure to make contact with individuals who have
been chosen for the sample can be reduced by designing a series of repeated contact attempts
using various methods (mail, e-mail, telephone, home visit). Among those contacted, refusal
to participate can be minimized by improving the efficiency and attractiveness of the study, by
choosing a design that avoids invasive and uncomfortable tests, by using brochures and indi-
vidual discussion to allay anxiety and discomfort, by providing incentives such as reimbursing
the costs of transportation and providing the results of tests, and by circumventing language
barriers with bilingual staff and translated questionnaires.

Recruiting Sufficient Numbers of Subjects

Falling short in the rate of recruitment is one of the commonest problems in clinical research.
In planning a study it is best to assume that the number of subjects who meet the entry criteria
and agree to enter the study will be fewer, sometimes by severalfold, than the number projected

!Concern with nonresponse in the process of recruiting subjects for a study (the topic of this chapter) is chiefly a
concern in descriptive studies that have a primary goal of estimating distributions of variables in particular popula-
tions. Nonresponse in the follow-up process is often a major issue in any study that follows a cohort over time, and
particularly in a clinical trial of an intervention that may alter the response rate (Chapter 10).
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at the outset. The approaches to this problem are to estimate the magnitude of the recruitment
problem empirically with a pretest, to plan the study with an accessible population that is larger
than believed necessary, and to make contingency plans should the need arise for additional
subjects. While recruitment is ongoing it is important to closely monitor progress in meeting the
recruitment goals and tabulate reasons for falling short of the goals. Understanding why poten-
tial subjects are lost to the study at various stages can lead to strategies for reducing these losses.

Sometimes recruitment involves selecting subjects who are already known to the members
of the research team (e.g., in a study of a new treatment in patients attending the investigator’s
clinic). Here the chief concern is to present the opportunity for participation in the study fairly,
making clear the advantages and disadvantages. In discussing participation, the investigator
must recognize the ethical dilemmas that arise when her advice as the patient’s physician might
conflict with her interests as an investigator (Chapter 14).

Often recruitment involves contacting populations that are not known to the members of
the research team. It is helpful if at least one member of the research team has previous experi-
ence with the approaches for contacting the prospective subjects. These include screening in
work settings or public places such as shopping malls; sending out large numbers of mailings to
listings such as driver’s license holders; advertising on the Internet; inviting referrals from clini-
cians; carrying out retrospective record reviews; and examining lists of patients seen in clinic
and hospital settings. Some of these approaches, particularly the latter two, involve concerns
with privacy invasion that must be considered by the institutional review board.

It may be helpful to prepare for recruitment by getting the support of important organiza-
tions. For example, the investigator can meet with hospital administrators to discuss a clinic-
based sample, and with community leaders, the medical society and county health department
to plan a community screening operation or mailing to physicians. Written endorsements can
be included as an appendix in applications for funding. For large studies it may be useful to
create a favorable climate in the community by giving public lectures or by advertising through
radio, TV, newspapers, fliers, websites, and mass mailings.

B SUMMARY

1. Most clinical research is based, philosophically and practically, on the use of a sample to
represent a population.

2. The advantage of sampling is efficiency: It allows the investigator to draw inferences about
a large population by examining a subset at relatively small cost in time and effort. The
disadvantage is the sources of error it introduces: If the sample is not sufficiently represen-
tative for the research question at hand the findings may not generalize well to the target
population, and if it is not large enough the findings may not sufficiently minimize the role
of chance.

3. In designing a sample, the investigator begins by conceptualizing the target population
with a specific set of inclusion criteria that establish demographic and clinical character-
istics of subjects well suited to the research question.

4. She then selects an appropriate accessible population that is geographically and tempo-
rally convenient, and defines a parsimonious set of exclusion criteria that eliminate sub-
jects who are unethical or inappropriate to study.

5. The next step is to design an approach to sampling the population. A convenience
sample may be adequate, especially for initial studies of some questions, and a consecu-
tive sample is often a good choice. Simple random sampling can be used to reduce the
size of the sample if necessary, and other probability sampling strategies (stratified and
cluster) are useful in certain situations.

6. Finally, the investigator must design and implement strategies for recruiting a sample of
subjects that is sufficiently representative of the target population to control systematic
sources of error, and large enough to control random sources of error.



APPENDIX 3

This table provides a simple paper-based way to select a 10% random sample from a table of ran-
dom numbers. Begin by enumerating (listing and numbering) every person in the population to
be sampled. Then decide on a rule for obtaining an appropriate series of numbers; for example, if
your list has 741 elements (which you have numbered 1 to 741), your rule might be to go vertically
down each column in this table using the first three digits of each number (beginning at the upper
left, the numbers are 104, 223, etc.) and to select the first 74 different numbers that fall in the range
of 1 to 741. Finally, pick a starting point by an arbitrary process (closing your eyes and putting
your pencil on some number in the table is one way to do it) and begin applying the rule. The
modern approach, with a computerized series of random numbers, basically works the same way.

TABLE 3.2 SELECTING A RANDOM SAMPLE FROM A TABLE
OF RANDOM NUMBERS

10480 15011 01536 81647 91646 02011
22368 46573 25595 85393 30995 89198
24130 48390 22527 97265 78393 64809
42167 93093 06243 61680 07856 16376
37570 33997 81837 16656 06121 91782
77921 06907 11008 42751 27756 53498
99562 72905 56420 69994 98872 31016
96301 91977 05463 07972 18876 20922
89572 14342 63661 10281 17453 18103
85475 36857 53342 53998 53060 59533
28918 79578 88231 33276 70997 79936
63553 40961 48235 03427 49626 69445
09429 93969 52636 92737 88974 33488
10365 61129 87529 85689 48237 52267
07119 97336 71048 08178 77233 13916
51085 12765 51821 51259 77452 16308
02368 21382 52404 60268 89368 19885
01011 54092 33362 94904 31273 04146
52162 53916 46369 58569 23216 14513
07056 97628 33787 09998 42698 06691
48663 91245 85828 14346 09172 30163
54164 58492 22421 74103 47070 25306
32639 32363 05597 24200 38005 13363
29334 27001 87637 87308 58731 00256
02488 33062 28834 07351 19731 92420
81525 72295 04839 96423 24878 82651
29676 20591 68086 26432 46901 20949
00742 57392 39064 66432 84673 40027
05366 04213 25669 26422 44407 44048
91921 26418 64117 94305 26766 25940
REFERENCE

1. www.framinghamheartstudy.org/about/background.html, accessed 7/23/12.
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CHAPTER

Planning the Measurements:
Precision, Accuracy, and Validity

Stephen B. Hulley, Thomas B. Newman, and Steven R. Cummings

Measurements describe phenomena in terms that can be analyzed statistically, and the
validity of a study depends on how well the variables designed for the study represent the phe-
nomena of interest (Figure 4.1). How well does a handheld glucometer measure blood glucose,
for example, or an insomnia questionnaire detect amount and quality of sleep?

This chapter begins by considering how the choice of measurement scale influences the
information content of the measurement. We then turn to the central goal of minimizing
measurement error: how to design measurements that are relatively precise (free of random
error) and accurate (free of systematic error), thereby enhancing the appropriateness of draw-
ing inferences from these measurements to the phenomena of interest. We address the concept
of validity, a qualitative relative of accuracy, before concluding with some considerations for
clinical and translational research, noting especially the advantages of storing specimens for
later measurements.

B MEASUREMENT SCALES

Table 4.1 presents a simplified classification of measurement scales and the information that
results. The classification is important because some types of variables are more informative
than others, adding power or reducing sample size requirements, and revealing more detailed
distribution patterns.

Infer Infer
TRUTH IN THE TRUTH IN THE FINDINGS IN
UNIVERSE STUDY THE STUDY
Research Study plan Actual
question study
Target Intended Actual
population sample subjects
Design Implement
: Phenomena Intended Actual i
. of interest variables measurements :
e e '
EXTERNAL INTERNAL
VALIDITY VALIDITY

M FIGURE 4.1 Designing measurements that represent the phenomena of interest.
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TABLE 4.1 MEASUREMENT SCALES

TYPE OF CHARACTERISTICS OF EXAMPLE DESCRIPTIVE STATISTICAL
MEASUREMENT VARIABLE STATISTICS POWER
Categorical
Dichotomous Two categories Vital status (alive or  Counts, proportions Low
dead)
Nominal Unordered categories  Race; blood type Same as above Low
Ordinal Ordered categories Degree of pain; In addition to the Intermediate
with intervals that are social class above: medians

not quantifiable

Numeric

Continuous or  Ranked spectrum with Weight; number of  In addition to the High
discrete’ quantifiable intervals  cigarettes/day above: means,
standard deviations

TContinuous variables have an infinite number of values (e.g., weight), whereas discrete numeric variables are
more limited (e.g., number of cigarettes/day). Discrete variables that have a large number of possible values
resemble continuous variables for practical purposes of power and analysis.

Numeric Variables: Continuous and Discrete

Numeric variables can be quantified with a number that expresses how much or how many.
Continuous variables quantify how much on an infinite scale; the number of possible values
of body weight, for example, is limited only by the sensitivity of the machine that is used to
measure it. Continuous variables are rich in information. Discrete numeric variables quantify
how many on a scale with fixed units, usually integers, such as the number of times a woman
has been pregnant. Discrete variables that have a considerable number of possible values can
resemble continuous variables in statistical analyses and be equivalent for the purpose of de-
signing measurements.

Categorical Variables: Dichotomous, Nominal, and Ordinal

Phenomena that are not suitable for quantification are measured by classifying them in catego-
ries. Categorical variables with two possible values (e.g., dead or alive) are termed dichoto-
mous. Categorical variables with more than two categories (polychotomous) can be further
characterized according to the type of information they contain. Among these, nominal vari-
ables have categories that are not ordered; type O blood, for example, is neither more nor less
than type B blood; nominal variables tend to have an absolute qualitative character that makes
them straightforward to measure. The categories of ordinal variables do have an order, such as
severe, moderate, and mild pain. The additional information is an advantage over nominal vari-
ables, but because ordinal variables do not specify a numerical or uniform difference between
one category and the next, the information content is less than that of discrete or continuous
numeric variables.

Choosing a Measurement Scale

A good general rule is to prefer continuous over categorical variables when there is a choice,
because the additional information they contain improves statistical efficiency. In a study
comparing the antihypertensive effects of several treatments, for example, measuring blood
pressure in millimeters of mercury allows the investigator to observe the magnitude of the
change in every subject, whereas measuring it as hypertensive versus normotensive limits the
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assessment. The continuous variable contains more information, and the result is a study with
more power and/or a smaller sample size (Chapter 6).

Continuous variables also allow for more flexibility than categorical variables in fitting the
data to the nature of the variable or the shape of the association, especially when the relation-
ship might have a complex pattern. For example, a study of the relationship of vitamin D to
various cancers would need to measure vitamin D as a continuous variable to be able to detect
a possible U-shaped pattern, the higher mortality that has been observed in subjects with low
or high levels of vitamin D than in those with intermediate levels (1). And a study of predictors
of low birth weight babies should record actual birth weight rather than above or below the
conventional 2,500 g threshold; this leaves the analytic options open, to change the cutoff that
defines low birth weight, or to develop an ordinal scale with several categories of birth weight
(e.g., >2,500 g, 2,000-2,499 g, 1,500-1,999 g, and <1,500 g).

Similarly, when there is the option of designing the number of response categories in an
ordinal scale, as in a question about food preferences, it is often useful to provide a half-dozen
categories that range from “strongly dislike” to “extremely fond of.” The results can later be
collapsed into a dichotomy (dislike and like), but not vice versa.

Many characteristics, particularly symptoms like pain or aspects of lifestyle, are difficult
to describe with categories or numbers. But these phenomena often have important roles in
diagnostic and treatment decisions, and the attempt to measure them is an essential part of the
scientific approach to description and analysis. This is illustrated by the Short Form (SF)-36, a
standardized questionnaire for assessing quality of life that produces discrete numerical ratings
(2). The process of classification and measurement, if done well, can increase the objectivity of
our knowledge, reduce bias, and provide a means of communication.

B PRECISION

The precision of a variable is the degree to which it is reproducible, with nearly the same value
each time it is measured. A beam scale can measure body weight with great precision, whereas
an interview to measure quality of life is more likely to produce values that vary from one
observer or occasion to another. Precision has a very important influence on the power of a
study. The more precise a measurement, the greater the statistical power at a given sample size
to estimate mean values and to test hypotheses (Chapter 6).

Precision (also called reproducibility, reliability, and consistency) is a function of random
error (chance variability); the greater the error, the less precise the measurement. There are
three main sources of random error in making measurements.

e Observer variability is due to the observer, and includes such things as choice of words in
an interview and skill in using a mechanical instrument.

e Instrument variability is due to the instrument, and includes changing environmental fac-
tors (e.g., temperature), aging mechanical components, different reagent lots, and so on.

e Subject variability is due to intrinsic biologic variability in the study subjects unrelated to
variables under study, such as variablity due to time of day of measurements or time since
last food or medication.

Assessing Precision

Precision is assessed as the reproducibility of repeated measurements, either comparing
measurements made by the same person (within-observer reproducibility) or different people
(between-observer reproducibility). Similarly, it can be assessed within or between instruments.
The reproducibility of continuous variables is often expressed as either the within-subject
standard deviation or the coefficient of variation (within-subject standard deviation divided by
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the mean).! For categorical variables, percent agreement, the interclass correlation coefficient,
and the kappa statistic are often used (3-5).

Strategies for Enhancing Precision

There are five approaches to minimizing random error and increasing the precision of measure-
ments (Table 4.2):

1. Standardizing the measurement methods. All study protocols should include specific
instructions for making the measurements (operational definitions). This may include
written directions on how to prepare the environment and the subject, how to carry out and
record the interview, how to calibrate the instrument, and so forth (Appendix 4). This set of
materials, part of the operations manual, is essential for large and complex studies and recom-
mended for smaller ones. Even when there is only a single observer, specific written guidelines
for making each measurement will help her performance to be uniform over the duration of
the study and serve as the basis for describing the methods when the results are published.

TABLE 4.2 STRATEGIES FOR REDUCING RANDOM ERROR IN ORDER
TO INCREASE PRECISION, WITH ILLUSTRATIONS FROM A STUDY
OF ANTIHYPERTENSIVE TREATMENT

STRATEGY TO REDUCE
RANDOM ERROR

SOURCE OF RANDOM
ERROR

EXAMPLE OF RANDOM
ERROR

EXAMPLE OF STRATEGY
TO PREVENT THE ERROR

1. Standardizing Observer Variation in blood Specify that the cuff
the measurement pressure (BP) measure- be deflated at 2 mm
methods in an ment due to variable Hg/second
operations manual rate of cuff deflation

(often too fast)

Subject Variation in BP due Specify that subject
to variable length of sit in a quiet room for
quiet sitting before 5 minutes before BP
measurement measurement

2. Training and Observer Variation in BP due Train observer in

certifying the

to variable observer

standard techniques

observer technique
3. Refining the Instrument and Variation in BP due Purchase new high
instrument observer to malfunctioning quality manometer
manometer
4. Automating the Observer Variation in BP due Use automatic BP
instrument to variable observer measuring device
technique
Subject Variation in BP due to  Use automatic BP

subject’s emotional re-
action to observer

measuring device

5. Repeating the
measurement

Observer, subject, and
instrument

All measurements and
all sources of variation

Use mean of
two or more BP
measurements

' When there are two measurements of a continuous variable per subject, it may be tempting to express their agreement
using a correlation coefficient. However, because the correlation coefficient is extremely sensitive to outliers (3,4), a
better approach is a “Bland-Altman” plot in which the difference between the two measurements is plotted as a func-
tion of their mean. If the absolute value of the difference between the measurements tends to increase linearly with the
mean, the coefficient of variation is a better way to summarize variability than the within-subject standard deviation.
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2. Training and certifying the observers. Training will improve the consistency of measure-
ment techniques, especially when several observers are involved. It is often desirable to
design a formal test of the mastery of the techniques specified in the operations manual and
to certify that observers have achieved the prescribed level of performance (Chapter 17).

3. Refining the instruments. Mechanical and electronic instruments can be engineered to
reduce variability. Similarly, questionnaires and interviews can be written to increase clarity
and avoid potential ambiguities (Chapter 15).

4. Automating the instruments. Variations in the way human observers make measurements

can be eliminated with automatic mechanical devices and self-response questionnaires.

Repetition. The influence of random error from any source is reduced by repeating the

measurement, and using the mean of the two or more readings. Precision will be substan-

tially increased by this strategy, the primary limitations being the added cost and practical
difficulties of repeating the measurements.

For each measurement in the study, the investigator must decide how vigorously to pur-
sue each of these strategies. This decision can be based on the importance of the variable, the
magnitude of the potential problem with precision, and the feasibility and cost of the strategy.
In general, the first two strategies (standardizing and training) should always be used, and the
fifth (repetition) is an option that is guaranteed to improve precision when it is feasible and

affordable.

TABLE 4.3 THE PRECISION AND ACCURACY OF MEASUREMENTS

PRECISION ACCURACY

Definition The degree to which a variable has The degree to which a variable
nearly the same value when measured  approximates the true value
several times

Best way to assess Comparison among repeated measures Comparison with a “gold standard”

Value to study Increase power to detect effects Increase validity of conclusions
Threatened by Random error (chance) contributed by  Systematic error (bias) contributed by
The observer The observer
The subject The subject
The instrument The instrument
B ACCURACY

The accuracy of a variable is the degree to which it represents the true value.

Accuracy is different from precision in the ways shown in Table 4.3, and the two are not
necessarily linked. If serum cholesterol were measured repeatedly using standards that had
inadvertently been diluted twofold, for example, the result would be inaccurate but could still

Good precision Poor precision Good precision Poor precision
Poor accuracy Good accuracy Good accuracy Poor accuracy

M FIGURE 4.2 The difference between precision and accuracy.
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be precise (consistently off by a factor of two). This concept is further illustrated in Figure 4.2.
Accuracy and precision do often go hand in hand, however, in the sense that many of the strate-
gies for increasing precision will also improve accuracy.

Accuracy is a function of systematic error (bias); the greater the error, the less accurate the
variable. The three main classes of measurement error noted in the earlier section on precision
each have counterparts here.

e Observer bias is a distortion, conscious or unconscious, in the perception or reporting of the
measurement by the observer. It may represent systematic errors in the way an instrument is
operated, such as a tendency to round down blood pressure measurements or to use leading
questions in interviewing a subject.

e Instrument bias can result from faulty function of a mechanical instrument. A scale that has
not been calibrated recently may have drifted downward, producing consistently low body
weight readings.

e Subject bias is a distortion of the measurement by the study subject, for example, in report-
ing an event (respondent or recall bias). Patients with breast cancer who believe that alcohol
is a cause of their cancer, for example, may exaggerate the alcohol intake they report.

The accuracy of a measurement is best assessed by comparing it, when possible, to a “gold
standard”—a reference measurement carried out by a technique that is believed to best rep-
resent the true value of the characteristic. The decision as to what measurement approach to
designate as the gold standard can be a difficult judgment that the investigator needs to make,
drawing on previous work in the field.

The degree of accuracy can be expressed, for measurements on a continuous scale, as the mean
difference between the measurement under investigation and the gold standard across study sub-
jects. For measurements on a dichotomous scale, accuracy in comparison to a gold standard can
be described in terms of sensitivity and specificity (Chapter 12). For measurements on categori-
cal scales with more than two response options, the percent correct on each can be calculated.

Strategies for Enhancing Accuracy

The major approaches to increasing accuracy include the first four strategies listed earlier for
precision, and three additional ones (Table 4.4):

1. Standardizing the measurement methods.

Training and certifying the observers.

Refining the instruments.

Automating the instruments.

. Making unobtrusive measurements. It is sometimes possible to design measurements that the
subjects are not aware of, thereby eliminating the possibility that they will consciously bias the
variable. For example, an evaluation of the effect of placing a hand sanitizer and a hand hygiene
poster in a hospital cafeteria utilized observers who blended in with cafeteria customers (6).

6. Calibrating the instrument. The accuracy of many instruments, especially those that are
mechanical or electrical, can be increased by periodic calibration with a gold standard.

7. Blinding. This classic strategy does not ensure the overall accuracy of the measurements,
but it can eliminate differential bias that affects one study group more than another. In a
double-blind clinical trial the subjects and observers do not know whether active medicine
or placebo has been assigned, and any inaccuracy in measuring the outcome will be the
same in the two groups.

Uik e

The decision on how vigorously to pursue each of these seven strategies for each measure-
ment rests, as noted earlier for precision, on the judgment of the investigator. The consid-
erations are the potential impact that the anticipated degree of inaccuracy will have on the
conclusions of the study, and the feasibility and cost of the strategy. The first two strategies
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TABLE 4.4 STRATEGIES FOR REDUCING SYSTEMATIC ERROR IN ORDER
TO INCREASE ACCURACY, WITH ILLUSTRATIONS FROM A STUDY OF
ANTIHYPERTENSIVE TREATMENT

STRATEGY TO REDUCE SOURCE OF EXAMPLE OF SYSTEMATIC EXAMPLE OF STRATEGY TO
SYSTEMATIC ERROR SYSTEMATIC  ERROR PREVENT THE ERROR
ERROR
1. Standardizing the Observer Consistently high diastolic  Specify the operational
measurement methods blood pressure (BP) read-  definition of diastolic
in an operations manual ings due to using the BP as the point at which
point at which sounds sounds cease to be heard
become muffled
Subject Consistently high readings Specify that subject sit in
due to measuring BP right quiet room for 5 minutes
after walking upstairs to before measurement
clinic
2. Training and certifying Observer Consistently high BP read- Trainer checks accuracy
the observer ings due to failure to fol-  of observer’s reading
low procedures specified  with a double-headed
in operations manual stethoscope
3. Refining the instrument Instrument Consistently high BP read- Use extra-wide BP cuff
ings with standard cuff in  in obese patients
subjects with very large
arms
4. Automating the Observer Conscious or unconscious  Use automatic BP measur-
instrument tendency for observer to ing device
read BP lower in group
randomized to active drug
Subject BP increase due to Use automatic BP measur-
proximity of attractive ing device
technician
5. Making unobtrusive Subject Tendency of subject to Measure study drug level
measurements overestimate compliance in urine
with study drug
6. Calibrating the Instrument Consistently high BP read- Calibrate each month
instrument ings due to manometer
being out of adjustment
7. Blinding Observer Conscious or unconscious  Use double-blind placebo
tendency for observer to  to conceal study group
read BP lower in active assignment
treatment group
Subject Tendency of subject who  Use double-blind placebo

knew she was on active
drug to overreport side
effects

to conceal study group
assignment

(standardizing and training) should always be used, calibration is needed for any instrument
that has the potential to change over time, and blinding is essential whenever feasible.

B VALIDITY

Validity resembles accuracy, but we like to think of it as adding a qualitative dimension to
considering how well a measurement represents the phenomena of interest. For example, mea-
surements of creatinine and cystatin C in the blood, two chemicals excreted by the kidneys,
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might be equally accurate (e.g., within 1% of the true level), but cystatin C may be more valid
as a measure of kidney function because creatinine levels are also influenced by the amount
of muscle (7). In Figure 4.2, we can think of validity as describing whether the bull’s-eye is in
the right target.

Validity is often not amenable to assessment with a gold standard, particularly for measure-
ments aimed at subjective and abstract phenomena such as pain or quality of life. Social sci-
entists have created qualitative and quantitative constructs for addressing the validity of these
measurement approaches.

e Content validity examines how well the measurement represents all aspects of the phenom-
ena under study; for example, including questions on social, physical, emotional, and intel-
lectual functioning to assess quality of life.

e Face validity describes whether the measurement seems inherently reasonable, such as mea-
suring pain on a 10-point scale or social class by household income.

e Construct validity is the degree to which a specific measuring device agrees with a theoreti-
cal construct; for example, an IQ test should distinguish between people that theory or other
measures suggest have different levels of intelligence.

e Predictive validity is the ability of the measurement to predict an outcome; for example, how
well a questionnaire designed to assess depression predicts job loss or suicide.

e Criterion-related validity is the degree to which a new measurement correlates with well
accepted existing measures.

The general approach to measuring subjective and abstract phenomena is to begin by
searching the literature and consulting with experts in an effort to find a suitable instrument
(typically a questionnaire) that has already been validated. Using such an instrument has the
advantage of making the results of the new study comparable to earlier work in the area, and
may simplify and strengthen the process of applying for grants and publishing the results. Its
disadvantages, however, are that the validation process may have been suboptimal, and that
an instrument taken off the shelf may be outmoded or not optimal for the research question.

If existing instruments are not suitable for the needs of the study, then the investigator
may decide to develop a new measurement approach and validate it herself. This can be an
interesting challenge and even lead to a worthwhile contribution to the literature, but it gener-
ally requires a lot of time and effort (Chapter 15). It is fair to say that the process is often less
conclusive than the word “validation” connotes.

B OTHER FEATURES OF MEASUREMENT APPROACHES

Measurements should be sensitive enough to detect differences in a characteristic that are im-
portant to the investigator. Just how much sensitivity is needed depends on the research ques-
tion. For example, a study of whether a new medication helps people to quit smoking could
use an outcome measure that is not very sensitive to the number of cigarettes smoked each day.
On the other hand, if the question is the effect of reducing the nicotine content of cigarettes on
the number of cigarettes smoked, the method should be sensitive to differences in daily habits
of just a few cigarettes.

An ideal measurement is specific, representing only the characteristic of interest. The carbon
monoxide level in expired air is a measure of smoking habits that is only moderately specific
because it can also be affected by other exposures such as automobile exhaust. The specificity
of assessing smoking habits can be increased by adding measurements (such as self-report and
serum cotinine level) that are not affected by air pollution.

Measurements should be appropriate to the objectives of the study. A study of stress as an
antecedent to myocardial infarction, for example, would need to consider which kind of stress
(psychological or physical, acute or chronic) was of interest before setting out the operational
definitions for measuring it.
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Measurements should provide an adequate distribution of responses in the study sample.
A measure of functional status is most useful if it produces values that range from high in some
subjects to low in others. A major reason for pretesting is to ensure that the actual responses do
not all cluster around one end of the possible range of responses (Chapter 17).

Whenever possible, measurements should be designed in a way that minimizes subjective
judgments. Objectivity is achieved by reducing the involvement of the observer and by using
automated instruments. One danger in these strategies, however, is the consequent tunnel
vision that limits the scope of the observations and the ability to discover unanticipated phe-
nomena. This can be addressed by including some open-ended questions, and an opportunity
for acquiring subjective and qualitative data, in addition to the main objective and quantitative
measurements.

In designing a study there is a tendency to keep adding items that are not central to the
research question but could be of interest. It is true that additional measurements increase
the likelihood of interesting findings, including some that were not anticipated at the outset.
However, it is important to keep in mind the value of efficiency and parsimony. The full set
of measurements should be designed to collect useful data at an affordable cost in time and
money. Collecting too much information is a common error that can tire subjects, overwhelm
the team making the measurements, and clutter data management and analysis. The result may
be a more expensive study that paradoxically is less successful in answering the main research
questions.

B MEASUREMENTS ON STORED MATERIALS

Clinical research involves measurements on people that range across many domains. Some of
these measurements can only be made during contact with the study subject, but many can be
carried out later on biological specimens banked for chemical or genetic analysis, or on images
from radiographic and other procedures filed electronically (Table 4.5).

One advantage of such storage is the opportunity to reduce the cost of the study by making
measurements only on individuals who turn out during follow-up to have an outcome of inter-
est. A terrific approach to doing this is the nested case—control design (Chapter 8), especially
if paired blinded measurements can be made in a single analytic batch eliminating the batch-
to-batch component of random error. This approach also has the advantage that scientific ad-
vances years after the study is begun may lead to new ideas and measurement techniques that
can then be employed, funded by newly submitted grants.

TABLE 4.5 COMMON TYPES OF MEASUREMENTS THAT CAN BE MADE
ON STORED MATERIALS

TYPE OF MEASUREMENT

EXAMPLES

BANK FOR LATER MEASUREMENT

Medical history

Diagnoses, medications, opera-
tions, symptoms, physical findings

Paper or electronic medical
records

Psychosocial factors

Depression, family history

Voice recordings, videotapes

Anthropometric

Height, weight, body composition

Photographs

Biochemical measures

Serum cholesterol, plasma
fibrinogen

Serum, plasma, urine, pathology
specimens

Genetic/molecular tests

Imaging

Single nucleotide polymorphisms

Bone density, coronary calcium

DNA
X-rays, CT scans, MRIs

Electromechanical

Arrhythmia, congenital heart
disease

Electrocardiogram,
echocardiogram



Chapter 4 ¢ Planning the Measurements: Precision, Accuracy, and Validity 41

The growing interest in translational research (Chapter 2) takes advantage of new measure-
ments that have greatly expanded clinical research, for example, in the areas of genetic and
molecular epidemiology (8, 9) and imaging. Measurements on specimens that contain DNA
(e.g., saliva and blood) can provide information on genotypes that contribute to the occur-
rence of disease or modify a patient’s response to treatment. Measurements on serum can be
used to study molecular causes or consequences of disease; for example, inflammatory markers
provide useful information in the pathophysiology of many diseases. It is important to consult
with experts regarding the proper collection tubes and storage conditions in order to preserve
the quality of the specimens and make them available for the widest spectrum of subsequent
use. It is also important to obtain informed consent from participants that covers the scope of
potential uses of the specimens.

B SUMMARY

1. Variables are either numerical or categorical. Numerical variables are continuous (quanti-
fied on an infinite scale) or discrete (quantified on a finite scale such as integers); categori-
cal variables are nominal (unordered) or ordinal (ordered), and those that have only two
categories are termed dichotomous.

2. Variables that contain more information provide greater power and/or allow smaller sam-
ple sizes, according to the following hierarchy: continuous variables > discrete numeric
variables > ordinal variables > nominal and dichotomous variables.

3. The precision of a measurement (i.e., the reproducibility of replicate measures) is an-
other major determinant of power and sample size. Precision is reduced by random error
(chance) from three sources of variability: the observer, the subject, and the instrument.

4. Strategies for increasing precision that should be part of every study are to operationally
define and standardize methods in an operations manual. Other strategies that are often
useful are training and certifying observers, refining and automating the instruments,
and repetition—using the mean of repeated measurements.

5. The accuracy of a measurement is the degree to which it approximates a gold standard.
Accuracy is reduced by systematic error (bias) from the same three sources: the observer,
subject, and instrument.

6. The strategies for increasing accuracy include all those listed for precision with the excep-
tion of repetition. In addition, accuracy is enhanced by unobtrusive measures, by calibra-
tion, and (in comparisons between groups) by blinding.

7. Validity is the degree to which a measurement represents the phenomena it is intended to
measure; it is commonly used for more abstract and subjective variables, and is assessed by
content validity, face validity, construct validity, predictive validity, and criterion-related
validity.

8. Individual measurements should be sensitive, specific, appropriate, and objective, and
they should produce a range of values. In the aggregate, they should be broad but parsi-
monious, serving the research question at moderate cost in time and money.

9. Investigators should consider storing images and other materials for later measurements
that can take advantage of new technologies as they are developed and the efficiency of
nested case—control designs.
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B OPERATIONAL DEFINITION OF A MEASUREMENT OF GRIP STRENGTH

The operations manual describes the method for conducting and recording the results of all
the measurements made in the study. This example, from the operations manual of the Study
of Osteoporotic Fractures, describes the use of a dynamometer to measure grip strength. To
standardize instructions from examiner to examiner and from subject to subject, the protocol
includes a script of instructions to be read to the participant verbatim.

B PROTOCOL FOR MEASURING GRIP STRENGTH
WITH THE DYNAMOMETER

Grip strength will be measured in both hands. The handle should be adjusted so that the par-
ticipant holds the dynamometer comfortably. Place the dynamometer in the right hand with the
dial facing the palm. The participant’s arm should be flexed 90° at the elbow with the forearm
parallel to the floor.

1. Demonstrate the test to the subject. While demonstrating, use the following description:
“This device measures your arm and upper body strength. We will measure your grip
strength in both arms. I will demonstrate how it is done. Bend your elbow at a 90° angle,
with your forearm parallel to the floor. Don’t let your arm touch the side of your body.
Lower the device and squeeze as hard as you can while I count to three. Once your arm is
tully extended, you can loosen your grip.”

2. Allow one practice trial for each arm, starting with the right if she is right handed. On the
second trial, record the kilograms of force from the dial to the nearest 0.5 kg.

3. Reset the dial. Repeat the procedure for the other arm.

The arm should not contact the body. The gripping action should be a slow, sustained squeeze
rather than an explosive jerk.
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CHAPTER

Getting Ready to Estimate
Sample Size: Hypotheses
and Underlying Principles

Warren S. Browner, Thomas B. Newman, and Stephen B. Hulley

After an investigator has decided whom and what she is going to study and the design to be
used, she must decide how many subjects to sample. Even the most rigorously executed study
may fail to answer its research question if the sample size is too small. On the other hand, a
study with too large a sample will be more difficult and costly than necessary. The goal of
sample size planning is to estimate an appropriate number of subjects for a given study design.

Although a useful guide, sample size calculations give a deceptive impression of statistical
objectivity. They are only as accurate as the data and estimates on which they are based, which
are often just informed guesses. Sample size planning is best thought of as a mathematical way
of making a ballpark estimate. It often reveals that the research design is not feasible or that
different predictor or outcome variables are needed. Therefore, sample size should be estimated
early in the design phase of a study, when major changes are still possible.

Before setting out the specific approaches to calculating sample size for several common
research designs in Chapter 6, we will spend some time considering the underlying principles.
Readers who find some of these principles confusing will enjoy discovering that sample size
planning does not require their total mastery. However, just as a recipe makes more sense if
the cook is somewhat familiar with the ingredients, sample size calculations are easier if the
investigator is acquainted with the basic concepts. Even if you plan to ask a friendly biostat-
istician to calculate your study’s sample size, having some understanding of how the process
works will allow you to participate more actively in considering the assumptions and estimates
involved in the calculation.

B HYPOTHESES

The process begins by restating your research question as a research hypothesis that summa-
rizes the main elements of the study—the sample, and the predictor and outcome variables.
For example, suppose your research question is whether people who do crossword puzzles are
less likely to develop dementia. Your research hypothesis would need to specify the sample (for
example, people living in a retirement community who have normal cognitive function), the
predictor variable (doing crossword puzzles at least once a week on average), and the outcome
variable (an abnormal score on a standard test of cognitive function after two years of follow-up).

Hypotheses per se are not needed in descriptive studies that describe how characteristics
are distributed in a population, such as the prevalence of abnormal cognitive function in the
retirement community. (This does not mean, however, that you won’t need to do a sample size
estimate for a descriptive study, just that the methods for doing so, described in Chapter 6,
are different.) Hypotheses are needed for studies that will use tests of statistical significance
to compare findings among groups, such as whether elderly people who do crossword puzzles
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regularly are less likely to become demented. Because most observational studies and all ex-
periments address research questions that involve making comparisons, most studies need to
specify at least one hypothesis. If any of the following terms appear in the research question,
then the study is not simply descriptive and a research hypothesis should be formulated:
greater than, less than, more likely than, associated with, compared with, related to, similar to,
correlated with, causes, and leads to.

Characteristics of a Good Research Hypothesis

A good hypothesis must be based on a good research question. It should also be simple,
specific, and stated in advance.

Simple Versus Complex
A simple hypothesis contains one predictor and one outcome variable:

Among patients with Type II diabetes, a sedentary lifestyle is associated with an increased
risk of developing proteinuria.

A complex hypothesis contains more than one predictor variable:

Among patients with Type II diabetes, a sedentary lifestyle and alcohol consumption are
associated with an increased risk of developing proteinuria.

Or more than one outcome variable:

Among patients with Type II diabetes, alcohol consumption is associated with increased
risks of developing proteinuria and neuropathy.

Complex hypotheses like these are not readily tested with a single statistical test and are
more easily approached as two or more simple hypotheses. Sometimes, however, a combined
predictor or outcome variable can be used:

Among patients with Type II diabetes, alcohol consumption is associated with an in-
creased risk of developing a microvascular complication (i.e., proteinuria, neuropathy, or
retinopathy).

In this last example the investigator has decided that what matters is whether a participant has
a complication, not what type of complication occurs.

Specific Versus Vague

A specific hypothesis leaves no ambiguity about the subjects and variables or about how the
test of statistical significance will be applied. It uses concise operational definitions that sum-
marize the nature and source of the subjects and how variables will be measured:

Prior use of tricyclic antidepressant medications for at least 6 weeks is more common in
patients hospitalized for myocardial infarction at Longview Hospital than in controls hospi-
talized for pneumonia.

This is a long sentence, but it communicates the nature of the study in a clear way that
minimizes any opportunity for testing something a little different once the study findings have
been examined. It would be incorrect to substitute, during the analysis phase of the study, a dif-
ferent measurement of the predictor, such as the self-reported depression, without considering
the issue of multiple hypothesis testing (a topic we discuss at the end of the chapter). Usually,
to keep the research hypothesis concise, some of these details are made explicit in the study
plan rather than being stated in the research hypothesis. But they should always be clear in the
investigator’s conception of the study, and spelled out in the protocol.
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It is often obvious from the research hypothesis whether the predictor variable and the
outcome variable are dichotomous, continuous, or categorical. If it is not clear, then the type
of variables can be specified:

Among non-obese men 35 to 59 years of age, at least weekly participation in a bowling league
is associated with a increased risk of developing obesity (body mass index > 30 kg/m?*)
during 10 years of follow-up.

Again, if the research hypothesis gets too cumbersome, the definitions can be left out, as long
as they are clarified elsewhere.

In-Advance Versus After-the-Fact

The hypothesis should be stated in writing at the outset of the study. This will keep the research
effort focused on the primary objective. A single prestated hypothesis also creates a stronger
basis for interpreting the study results than several hypotheses that emerge as a result of in-
specting the data. Hypotheses that are formulated after examination of the data are a form of
multiple hypothesis testing that can lead to overinterpreting the importance of the findings.

The Null and Alternative Hypotheses

Warning: If you have never had any formal training in statistics, or you have forgotten what you
did learn, the next few paragraphs may not make sense the first time(s) you read them. Try to
work through the terminology even if it seems cumbersome or silly.

The process begins by restating the research hypothesis to one that proposes no difference
between the groups being compared. This restatement, called the null hypothesis, will become
the formal basis for testing statistical significance when you analyze your data at the end of
the study. By assuming that there really is no association in the population, statistical tests will
help to estimate the probability that an association observed in a study may be due to chance.

For example, suppose your research question is whether drinking unpurified tap water is as-
sociated with an increased risk of developing peptic ulcer disease (perhaps because of a greater
likelihood of H. pylori contamination). Your null hypothesis—that there is no association be-
tween the predictor and outcome variables in the population—would be:

People in Phnom Penh who drink tap water have the same risk of developing peptic ulcer
disease as those who drink bottled water.

The proposition that there is an association (“People in Phnom Penh who drink tap water
have a greater risk of developing peptic ulcer disease than those who drink bottled water.”)
is called the alternative hypothesis. The alternative hypothesis cannot be tested directly; it is
accepted by default if the test of statistical significance rejects the null hypothesis (see later).

Another piece of confusing terminology is needed. The alternative hypothesis can be ei-
ther one-sided or two-sided. A one-sided alternative hypothesis specifies the direction of the
association between the predictor and outcome variables. The hypothesis that drinking tap
water increases the risk of peptic ulcer disease (compared with bottled water) is a one-sided
hypothesis. A two-sided alternative hypothesis states only that there is an association; it does
not specify the direction. For example, “Drinking tap water is associated with a different risk of
peptic ulcer disease—either increased or decreased—than drinking bottled water.”

One-sided hypotheses may be appropriate in selected circumstances, such as when only one
direction for an association is clinically important or biologically meaningful. An example is
the one-sided hypothesis that a new drug for hypertension is more likely to cause rashes than a
placebo; the possibility that the drug causes fewer rashes than the placebo is not usually worth
testing (however, it might be if the drug had anti-inflammatory properties!). A one-sided hy-
pothesis may also be appropriate when there is very strong evidence from prior studies that an
association is unlikely to occur in one of the two directions, such as a study to test whether



46 Section | e Basic Ingredients

cigarette smoking affects the risk of brain cancer. Because smoking has been associated with
an increased risk of many different types of cancers, a one-sided alternative hypothesis (e.g.,
that smoking increases the risk of brain cancer) might suffice. However, investigators should
be aware that many well-supported hypotheses (e.g., that B-carotene therapy will reduce the
risk of lung cancer, or that treatment with drugs that reduce the number of ventricular ectopic
beats will reduce sudden death among patients with ventricular arrhythmias) turn out to be
wrong when tested in randomized trials. Indeed, in these two examples, the results of well-
done trials revealed a statistically significant effect that was opposite in direction from the one
the investigators hoped to find (1-3). Overall, we believe that most alternative hypotheses
should be two-sided.

It is important to keep in mind the difference between the research hypothesis, which is usu-
ally one-sided, and the alternative hypothesis that is used when planning sample size, which is
almost always two-sided. For example, suppose the research hypothesis is that recurrent use of
antibiotics during childhood is associated with an increased risk of inflammatory bowel disease.
That hypothesis specifies the direction of the anticipated effect, so it is one-sided. Why use a
two-sided alternative hypothesis when planning the sample size? The answer is that most of
the time, both sides of the alternative hypothesis (i.e., greater risk or lesser risk) are interesting,
and the investigators would want to publish the results no matter which direction was observed
in the study. Statistical rigor requires the investigator to choose between one- and two-sided
hypotheses before analyzing the data; switching from a two-sided to a one-sided alternative
hypothesis to reduce the P value (see below) is not correct. In addition—and this is probably
the real reason that two-sided alternative hypotheses are much more common—most grant and
manuscript reviewers expect two-sided hypotheses and are critical of a one-sided approach.

B UNDERLYING STATISTICAL PRINCIPLES

A research hypothesis, such as 15 minutes or more of exercise per day is associated with a lower
mean fasting blood glucose level in middle-aged women with diabetes, is either true or false in
the real world. Because an investigator cannot study all middle-aged women with diabetes, she
must test the hypothesis in a sample of that target population. As noted in Figure 1.5, there will
always be a need to draw inferences about phenomena in the population from events observed
in the sample. Unfortunately, by chance alone, sometimes what happens in a sample does not
reflect what would have happened if the entire population had been studied.

In some ways, the investigator’s problem is similar to that faced by a jury judging a defendant
(Table 5.1). The absolute truth about whether the defendant committed the crime cannot usually
be determined. Instead, the jury begins by presuming innocence: The defendant did not commit
the crime. The jury must then decide whether there is sufficient evidence to reject the presumed
innocence of the defendant; the standard is known as beyond a reasonable doubt. A jury can err,
however, by convicting an innocent defendant or by failing to convict a guilty one.

In similar fashion, the investigator starts by presuming the null hypothesis of no association
between the predictor and outcome variables in the population. Based on the data collected in
her sample, she uses statistical tests to determine whether there is sufficient evidence to reject
the null hypothesis in favor of the alternative hypothesis that there is an association in the
population. The standard for these tests is known as the level of statistical significance.

Type | and Type Il Errors

Like a jury, an investigator may reach a wrong conclusion. Sometimes by chance alone a sample
is not representative of the population and the results in the sample do not reflect reality in the
population, leading to an erroneous inference. A type I error (false-positive) occurs if an in-
vestigator rejects a null hypothesis that is actually true in the population; a type II error (false-
negative) occurs if the investigator fails to reject a null hypothesis that is actually false in the
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TABLE 5.1 THE ANALOGY BETWEEN JURY DECISIONS AND STATISTICAL TESTS

JURY DECISION

STATISTICAL TEST

Innocence: The defendant did not
counterfeit money.

Null hypothesis: There is no association between dietary
carotene and the incidence of colon cancer in the
population.

Guilt: The defendant did counterfeit
money.

Alternative hypothesis: There is an association between
dietary carotene and the incidence of colon cancer.

Standard for rejecting innocence: Be-
yond a reasonable doubt.

Standard for rejecting null hypothesis: Level of statistical
significance (o).

Correct judgment: Convict a
counterfeiter.

Correct inference: Conclude that there is an association
between dietary carotene and colon cancer when one
does exist in the population.

Correct judgment: Acquit an innocent

Correct inference: Conclude that there is no association

between carotene and colon cancer when one does not
exist.

person.

Incorrect judgment: Convict an innocent
person.

Incorrect inference (type I error): Conclude that there
is an association between dietary carotene and colon
cancer when there actually is none.

Incorrect judgment: Acquit a
counterfeiter.

Incorrect inference (type Il error): Conclude that there
is no association between dietary carotene and colon
cancer when there actually is one.

population. Although type I and type II errors can never be avoided entirely, the investigator
can reduce their likelihood by increasing the sample size (the larger the sample, the less likely
that it will differ substantially from the population) or by adjusting the design or the measure-
ments in other ways that we will discuss.

In this chapter and the next, we deal only with ways to reduce type I and type II errors
due to chance variation, also known as random error. False-positive and false-negative results
can also occur because of bias, but errors due to bias are not usually referred to as type I and
type II errors. Such errors are troublesome, because they may be difficult to detect and cannot
usually be quantified using statistical methods or avoided by increasing the sample size. (See
Chapters 1, 3, 4, and 7-12 for ways to reduce errors due to bias.)

Effect Size

The likelihood that a study will be able to detect an association between a predictor and an
outcome variable in a sample depends on the actual magnitude of that association in the popu-
lation. If it is large (e.g., a 20 mg/dL difference in fasting glucose), it will be easy to detect in
the sample. Conversely, if the size of the association is small (a difference of 2 mg/dL), it will
be hard to detect in the sample.

Unfortunately, the investigator almost never knows the exact size of the association; one of
the purposes of the study is to estimate it! Instead, the investigator must choose the size of the
association in the population that she wishes to detect in the sample. That quantity is known
as the effect size. Selecting an appropriate effect size is the most difficult aspect of sample size
planning (4). The investigator should try to find data from prior studies in related areas to make
an informed guess about a reasonable effect size. Alternatively, she can choose the smallest ef-
fect size that in her opinion would be clinically meaningful (say, a 10 mg/dL reduction in the
fasting glucose level).

Of course, from the public health point of view, even a reduction of 2 or 3 mg/dL in fasting
glucose levels might be important, especially if it was easy to achieve. The choice of the effect
size is always arbitrary, and considerations of feasibility are often paramount. Indeed, when
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the number of available or affordable subjects is limited, the investigator may have to work
backward (Chapter 6) to determine the effect size she will be able to detect, given the number
of subjects she is able to study.

Many studies have several effect sizes, because they measure several different predictor and
outcome variables. When designing a study, the sample size should be determined using the
desired effect size for the most important hypothesis; the detectable effect sizes for the other
hypotheses can then be estimated. If there are several hypotheses of similar importance, then
the sample size for the study should be based on whichever hypothesis needs the largest sample.

a, B, and Power

After a study is completed, the investigator uses statistical tests to try to reject the null
hypothesis in favor of its alternative, in much the same way that a prosecuting attorney tries to
convince a jury to reject innocence in favor of guilt. Depending on whether the null hypothesis
is true or false in the target population, and assuming that the study is free of bias, four situ-
ations are possible (Table 5.2). In two of these, the findings in the sample and reality in the
population are concordant, and the investigator’s inference will be correct. In the other two
situations, either a type I or type II error has been made, and the inference will be incorrect.

The investigator establishes the maximum chance that she will tolerate of making type I and
type II errors in advance of the study. The maximum probability of committing a type I error
(rejecting the null hypothesis when it is actually true) is called & (alpha). Another name for o
is the level of statistical significance.

If, for example, a study of the effects of exercise on fasting blood glucose levels is designed
with an aof 0.05, then the investigator has set 5% as the maximum chance of incorrectly reject-
ing the null hypothesis if it is true (and inferring that exercise and fasting blood glucose levels
are associated in the population when, in fact, they are not). This is the level of reasonable
doubt that the investigator will be willing to accept when she uses statistical tests to analyze
the data after the study is completed.

The probability of making a type II error (failing to reject the null hypothesis when it is ac-
tually false) is called f (beta). The quantity [1 — ] is called power, the probability of correctly
rejecting the null hypothesis in the sample if the actual effect in the population is equal to (or
greater than) the specified effect size.

If fis set at 0.10, then the investigator has decided that she is willing to accept a 10% chance
of missing an association of the specified effect size if it exists. This represents a power of 0.90;
that is, a 90% chance of finding an association of that size or greater. For example, suppose that
exercise really does lead to an average reduction of 20 mg/dL in fasting glucose levels among
diabetic women in the population. If the investigator replicated the study with the same 90%
power on numerous occasions, we would expect that in 9 of 10 studies she would correctly
reject the null hypothesis at the specified level of alpha (0.05) and conclude that exercise is
associated with fasting glucose level. This does not mean that the investigator would be unable
to detect a smaller effect in the population, say, a 15 mg/dL reduction; it means simply that she
will have less than a 90% likelihood of doing so.

TABLE 5.2 TRUTH IN THE POPULATION VERSUS THE RESULTS IN THE STUDY
SAMPLE: THE FOUR POSSIBILITIES

TRUTH IN THE POPULATION

ASSOCIATION BETWEEN NO ASSOCIATION BETWEEN
RESULTS IN THE STUDY SAMPLE PREDICTOR AND OUTCOME PREDICTOR AND OUTCOME
Reject null hypothesis Correct Type | error

Fail to reject null hypothesis Type Il error Correct
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Ideally, orand S would be set close to zero, minimizing the possibility of false-positive and
false-negative results. Reducing them, however, requires increasing the sample size or one of
the other strategies discussed in Chapter 6. Sample size planning aims at choosing a sufficient
number of subjects to keep e and S at an acceptably low level without making the study un-
necessarily expensive or difficult.

Many studies set e at 0.05 and S at 0.20 (a power of 0.80). These are arbitrary values, and
others are sometimes used: The conventional range for ¢ is between 0.01 and 0.10, and that for
Bis between 0.05 and 0.20. In general, the investigator should use a low & when the research
question makes it particularly important to avoid a type I (false-positive) error—for example,
in testing the efficacy of a potentially dangerous medication. She should use a low £ (and a
small effect size) when it is especially important to avoid a type II (false-negative) error—for
example, in reassuring the public that living near a toxic waste dump is safe.

P Value

Now it’s time to return to the null hypothesis, whose underlying purpose will finally become
clear. The null hypothesis has only one function: to act like a straw man. It is assumed to be
true so that it can be rejected as false with a statistical test. When the data are analyzed, a
statistical test is used to determine the P value, which is the probability of seeing—by chance
alone—an effect as big as or bigger than that seen in the study if the null hypothesis actually
were true. The key insight is to recognize that if the null hypothesis is true, and there really is
no difference in the population, then the only way that the study could have found one in the
sample is by chance.

If that chance is small, then the null hypothesis of no difference can be rejected in favor of
its alternative, that there is a difference. By “small” we mean a P value that is less than ¢, the
predetermined level of statistical significance.

However, a “nonsignificant” result (i.e., one with a P value greater than &) does not mean
that there is no association in the population; it only means that the result observed in the
sample is small compared with what could have occurred by chance alone. For example, an
investigator might find that women who played intercollegiate sports were twice as likely to
undergo total hip replacements later in life as those who did not, but because the number of
hip replacements in the study was modest this apparent effect had a P value of only 0.08. This
means that even if athletic activity and hip replacement were not associated in the popula-
tion, there would be an 8% probability of finding an association at least as large as the one
observed by the investigator by chance alone. If the investigator had set the significance level as
a two-sided & of 0.05, she would have to conclude that the association in the sample was “not
statistically significant.”

It might be tempting for the investigator to change her mind and switch to a one-sided P
value and report it as “P = 0.04.” A better choice would be to report her results with the 95%
confidence interval and comment that “These results, although suggestive of an association,
did not achieve statistical significance (P = 0.08).” This solution preserves the integrity of the
original two-sided hypothesis design, and also acknowledges that statistical significance is not
an all-or-none situation.

Sides of the Alternative Hypothesis

Recall that an alternative hypothesis actually has two sides, either or both of which can be
tested in the sample by using one- or two-sided" statistical tests. When a two-sided statistical
test is used, the P value includes the probabilities of committing a type I error in each of the
two directions, which is about twice as great as the probability in either direction alone. It is

'These are sometimes referred to as one- and two-tailed tests, after the tails (extreme areas) of statistical distributions.



50 Section | e Basic Ingredients

easy to convert from a one-sided P value to a two-sided P value, and vice versa. A one-sided P
value of 0.05, for example, is usually the same as a two-sided P value of 0.10. (Some statistical
tests are asymmetric, which is why we said “usually.”)

In those rare situations in which an investigator is only interested in one of the sides of the
alternative hypothesis (e.g., a noninferiority trial designed to determine whether a new antibiotic
is no less effective than one in current use; see Chapter 11), sample size can be calculated ac-
cordingly. A one-sided hypothesis, however, should never be used just to reduce the sample size.

Type of Statistical Test

The formulas used to calculate sample size are based on mathematical assumptions, which
differ for each statistical test. Before the sample size can be calculated, the investigator must
decide on the statistical approach to analyzing the data. That choice depends mainly on the
type of predictor and outcome variables in the study. Table 6.1 lists some common statistics
used in data analysis, and Chapter 6 provides simplified approaches to estimating sample size
for studies that use these statistics.

H ADDITIONAL POINTS
Variability

It is not simply the size of an effect that is important; its variability also matters. Statistical tests
depend on being able to show a difference between the groups being compared. The greater
the variability (or spread) in the outcome variable among the subjects, the more likely it is that
the values in the groups will overlap, and the more difficult it will be to demonstrate an overall
difference between them. Because measurement error contributes to the overall variability, less
precise measurements require larger sample sizes (5).

Consider a study of the effects of two diets (low fat and low carbohydrate) in achieving
weight loss in 20 obese patients. If all those on the low-fat diet lost about 3 kg and all those on
the low-carbohydrate diet lost little if any weight (an effect size of 3 kg), it is likely that the low-
fat diet really is better (Figure 5.1A). On the other hand, if the average weight loss were 3 kg in
the low-fat group and 0 kg in the low-carbohydrate group, but there was a great deal of overlap
between the two groups (the situation in Figure 5.1B), the greater variability would make it
more difficult to detect a difference between the diets, and a larger sample size would be needed.

When one of the variables used in the sample size estimate is continuous (e.g., body weight
in Figure 5.1), the investigator will need to estimate its variability. (See the section on the t
test in Chapter 6 for details.) In the other situations, variability is already included in the other
parameters entered into the sample size formulas and tables, and need not be specified.

Multiple and Post Hoc Hypotheses

When more than one hypothesis is tested in a study, especially if some of those hypotheses were
formulated after the data were analyzed (post hoc hypotheses), the likelihood that at least one
will achieve statistical significance on the basis of chance alone increases. For example, if 20 in-
dependent hypotheses are tested at an o of 0.05, the likelihood is substantial (64%; [1 — 0.95%°])
that at least one hypothesis will be statistically significant by chance alone. Some statisticians
advocate adjusting the level of statistical significance when more than one hypothesis is tested
in a study. This keeps the overall probability of accepting any one of the alternative hypotheses,
when all the findings are due to chance, at the specified level. For example, genomic studies
that look for an association between thousands of genotypes and a disease need to use a much
smaller o than 0.05, or they risk identifying many false-positive associations.

One approach, named after the mathematician Bonferroni, is to divide the significance level
(say, 0.05) by the number of hypotheses tested. If there were four hypotheses, for example,
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M FIGURE 5.1 A: Weight loss achieved by two diets. All subjects on the low-fat diet lost from 2 to 4 kg, whereas
weight change in those on the low-carbohydrate (CHO) diet varied from -1 to +1 kg. Because there is no overlap
between the two groups, it is reasonable to infer that the low-fat diet is better at achieving weight loss than the
low-carbohydrate diet (as would be confirmed with a t test, which has a P value < 0.0001). B: Weight loss achieved
by two diets. There is substantial overlap in weight change in the two groups. Although the effect size is the same
(3 kg) as in A, there is little evidence that one diet is better than the other (as would be confirmed with a t test,
which has a P value of 0.19).

each would be tested at an o of 0.0125 (i.e., 0.05 + 4). This requires substantially increasing
the sample size over that needed for testing each hypothesis at an o of 0.05. Thus, for any par-
ticular hypothesis, the Bonferroni approach reduces the chance of a type I error at the cost of
either increasing the chance of a type Il error or requiring a greater sample size. If the results
of a study are still statistically significant after the Bonferroni adjustment, that loss of power is
not a problem. However, a result that loses statistical significance after Bonferroni adjustment,
which could represent failing to support an association that was actually present in the popula-
tion (a type II error), is more problematic.

Especially in these cases, the issue of what significance level to use depends more on the prior
probability of each hypothesis than on the number of hypotheses tested, and for this reason our
general view is that the mindless Bonferroni approach to multiple hypothesis testing is often
too stringent. There is an analogy with the use of diagnostic tests that may be helpful (6, 7).
When interpreting the results of a diagnostic test, a clinician considers the likelihood that the
patient being tested has the disease in question. For example, a modestly abnormal test result
in a healthy person (a serum alkaline phosphatase level that is 15% greater than the upper limit
of normal) is probably a false-positive test that is unlikely to have much clinical importance.
Similarly, a P value of 0.05 for an unlikely hypothesis is probably also a false-positive result.
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However, an alkaline phosphatase level that is 10 or 20 times greater than the upper limit
of normal is unlikely to have occurred by chance (although it might be a laboratory error). So
too a very small P value (say, < 0.001) is unlikely to have occurred by chance (although it
could be due to bias). It is hard to dismiss very abnormal test results as being false-positives or
to dismiss very low P values as being due to chance, even if the prior probability of the disease
or the hypothesis was low.>

Moreover, the number of tests that were ordered, or hypotheses that were tested, is not al-
ways relevant. The interpretation of an elevated serum uric acid level in a patient with a painful
and swollen joint should not depend on whether the physician ordered just a single test (the
uric acid level) or obtained the result as part of a panel of 20 tests. Similarly, when interpreting
the P value for testing a research hypothesis that makes good sense, it should not matter that
the investigator also tested several unlikely hypotheses. What matters most is the reasonable-
ness of the research hypothesis being tested: that it has a substantial prior probability of being
correct. (Prior probability, in this “Bayesian” approach, is usually a subjective judgment based
on evidence from other sources.) Hypotheses that are formulated during the design of a study
usually meet this requirement; after all, why else would the investigator put the time and effort
into planning and doing the study?

What about unanticipated associations that appear during the collection and analysis of
a study’s results? This process is sometimes called hypothesis generation or, less favorably,
“data-mining” or a “fishing expedition.” The many informal comparisons that are made during
data analysis are a form of multiple hypothesis testing. A similar problem arises when variables
are redefined during data analysis, or when results are presented for subgroups of the sample.
Significant P values for data-generated hypotheses that were not considered during the design
of the study are all too often due to chance. They should be viewed with skepticism, and con-
sidered a source of potential research questions for future studies.

Sometimes, however, an investigator fails to specify a particular hypothesis in advance, al-
though that hypothesis seems reasonable when it is time for the data to be analyzed. This might
happen, for example, if others discover a new risk factor while the study is going on, or if the
investigator just didn’t happen to think of a particular hypothesis when the study was being
designed. The important issue is not so much whether the hypothesis was formulated before
the study began, but whether there is a reasonable prior probability based on evidence from
other sources that the hypothesis is true (6, 7).

There are some definite advantages to formulating more than one hypothesis when planning
a study. The use of multiple unrelated hypotheses increases the efficiency of the study, making
it possible to answer more questions with a single research effort and to discover more of the
true associations that exist in the population. It may also be a good idea to formulate several
related hypotheses; if the findings are consistent, the study conclusions are made stronger.
Studies in patients with heart failure have found that the use of angiotensin-converting enzyme
inhibitors is beneficial in reducing cardiac admissions, cardiovascular mortality, and total mor-
tality. Had only one of these hypotheses been tested, the inferences from these studies would
have been less definitive. Lunch may not be free, however, when multiple hypotheses are tested.
Suppose that when these related and prestated hypotheses are tested, only one turns out to be
statistically significant. Then the investigator must decide (and try to convince editors and read-
ers) whether the significant results, the nonsignificant results, or both sets of results are correct.

Primary and Secondary Hypotheses

Some studies, especially large randomized trials, specify some hypotheses as being “secondary.”
This usually happens when there is one primary hypothesis around which the study has been

2Again, the exception is some genetic studies, in which millions or even billions of associations may be examined.
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designed, but the investigators are also interested in other research questions that are of lesser
importance. For example, the primary outcome of a trial of zinc supplementation might be hos-
pitalizations or emergency department visits for upper respiratory tract infections; a secondary
outcome might be self-reported days missed from work or school. If the study is being done to
obtain approval for a pharmaceutical agent, the primary outcome is what will matter most to
the regulatory body. Stating a secondary hypothesis in advance does increase the credibility of
the results when that hypothesis is tested.

A good rule, particularly for clinical trials, is to establish in advance as many hypotheses as
make sense, but specify just one as the primary hypothesis, which can be tested statistically
without argument about whether to adjust for multiple hypothesis testing. More important,
having a primary hypothesis helps to focus the study on its main objective and provides a clear
basis for the main sample size calculation.

Many statisticians and epidemiologists are moving away from hypothesis testing, with its
emphasis on P values, to using confidence intervals to report the precision of the study results
(8-10). Indeed, some authors believe the entire process of basing sample size planning on hy-
potheses is misleading, in part because it depends on quantities that are either unknown (effect
size) or arbitrary (& and f) (11). However, the approach we have outlined is a practical one,
and remains standard in clinical research planning.

B SUMMARY

1. Sample size planning is an important part of the design of both analytic and descriptive
studies. The sample size should be estimated early in the process of developing the research
design, so that appropriate modifications can be made.

2. Analytic studies and experiments need a hypothesis that specifies, for the purpose of
subsequent statistical tests, the anticipated association between the main predictor and
outcome variables. Purely descriptive studies, lacking the strategy of comparison, do not
require a hypothesis.

3. Good hypotheses are specific about how the population will be sampled and the variables
measured, simple (there is only one predictor and one outcome variable), and formulated
in advance.

4. The null hypothesis, which proposes that the predictor variable is not associated with the
outcome, is the basis for tests of statistical significance. The alternative hypothesis pro-
poses that they are associated. Statistical tests attempt to reject the null hypothesis of no
association in favor of the alternative hypothesis that there is an association.

5. An alternative hypothesis is either one-sided (only one direction of association will be
tested) or two-sided (both directions will be tested). One-sided hypotheses should only be
used in unusual circumstances, when only one direction of the association is clinically or
biologically meaningful.

6. For analytic studies and experiments, the sample size is an estimate of the number of
subjects required to detect an association of a given effect size and variability at a speci-
fied likelihood of making type I (false-positive) and type II (false-negative) errors. The
maximum likelihood of making a type 1 error is called o; that of making a type 11 error, £
The quantity (1 — /) is power, the chance of observing an association of a given effect size
or greater in a sample if one is actually present in the population.

7. It is often desirable to establish more than one hypothesis in advance, but the investiga-
tor should specify a single primary hypothesis as a focus and for sample size estimation.
Interpretation of findings from testing multiple hypotheses in the sample, including
unanticipated findings that emerge from the data, is based on a judgment about the prior
probability that they represent real phenomena in the population.
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Estimating Sample Size and
Power: Applications and Examples

Warren S. Browner, Thomas B. Newman, and Stephen B. Hulley

C hapter 5 introduced the basic principles underlying sample size calculations. This chapter
presents several cookbook techniques for using those principles to estimate the sample size
needed for a research project. The first section deals with sample size estimates for an analytic
study or experiment, including some special issues that apply to these studies such as multi-
variate analysis. The second section considers studies that are primarily descriptive. Subse-
quent sections deal with studies that have a fixed sample size, strategies for maximizing the
power of a study, and how to estimate the sample size when there appears to be insufficient
information from which to work. The chapter concludes with common errors to avoid.

At the end of the chapter, there are tables and formulas in the appendixes for several basic
methods of estimating sample size. In addition, there is a calculator on our website (www.
epibiostat.ucsf.edu/dcr/), and there are many sites on the Web that can provide instant in-
teractive sample size calculations; try searching for “sample size calculator.” Most statistical
packages can also estimate sample size for common study designs.

B SAMPLE SIZE TECHNIQUES FOR ANALYTIC STUDIES AND EXPERIMENTS

There are several variations on the recipe for estimating sample size in an analytic study or
experiment, but they all have certain steps in common:

1. State the null hypothesis and either a one- or two-sided alternative hypothesis.

2. Select the appropriate statistical test from Table 6.1 based on the type of predictor variable
and outcome variable in those hypotheses.

3. Choose a reasonable effect size (and variability, if necessary).

Set orand . Specify a two-sided ¢runless the alternative hypothesis is clearly one-sided.

5. Use the appropriate table or formula in the appendix, an online calculator, or a statistics
package to estimate the sample size.

*

Even if the exact value for one or more of the ingredients is uncertain, it is important to
estimate the sample size early in the design phase. Waiting until the last minute to prepare the
sample size can lead to a rude awakening: It may be necessary to start over with new ingredi-
ents, which may mean redesigning the entire study. This is why this subject is covered early
in this book.

Not all analytic studies fit neatly into one of the three main categories of sample size cal-
culation described in the following sections: use of the chi-squared test if both predictor and
outcome are dichotomous, use of the t test if one is dichotomous and the other continuous,
and use of the correlation coefficient if both are continuous. A few of the more common excep-
tions are discussed in the section called “Other Considerations and Special Issues” (page 60).
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TABLE 6.1 SIMPLE STATISTICAL TESTS FOR USE IN ESTIMATING SAMPLE SIZE*

OUTCOME VARIABLE

PREDICTOR VARIABLE DICHOTOMOUS CONTINUOUS
Dichotomous Chi-squared test' t test
Continuous t test Correlation coefficient

*See section on “Other Considerations and Special Issues” for what to do about ordinal variables, or if planning to
analyze the data with another type of statistical test.

"The chi-squared test is always two-sided; a one-sided equivalent is the Z statistic.

The t Test

The t test (sometimes called “Student’s ¢ test,” after the pseudonym of its developer) is com-
monly used to determine whether the mean value of a continuous variable in one group differs
significantly from that in another group. For example, the t test would be appropriate to use
when comparing the mean depression scores in patients treated with two different antidepres-
sants, or the mean body mass index among subjects who do and do not have diabetes. The ¢ test
assumes that the distribution (spread) of the variable in each of the two groups approximates
a normal (bell-shaped) curve. However, the t test is remarkably robust, so it can be used for
almost any distribution unless the number of subjects is small (fewer than 30 to 40) or there
are extreme outliers.

Although the t test is usually used for comparing continuous outcomes, it can also be used to
estimate the sample size for a dichotomous outcome (e.g., in a case—control study) if the study
has a continuous predictor variable. In this situation, the t test compares the mean value of the
predictor variable in the cases with that in the controls.

To estimate the sample size for a study in which mean values of a continuous outcome vari-
able will be compared with a t test (see Example 6.1), the investigator must

1. State the null hypothesis and whether the alternative hypothesis is one- or two-sided.

2. Estimate the effect size (E) as the difference in the mean value of the continuous variable

between the study groups.

Estimate variability as the standard deviation (S) of that variable.

4. Calculate the standardized effect size (E/S), defined as the effect size divided by the stan-
dard deviation of the outcome variable.

5. Set and S

b

The effect size and variability can often be estimated from previous studies in the literature
and consultation with experts. Occasionally, a small pilot study will be necessary to estimate
the standard deviation of the variable (also see the section “How to Estimate Sample Size When
There Is Insufficient Information” on page 70). When an outcome variable is the change in a
continuous measurement (e.g., change in weight during a study), the investigator should use
the standard deviation of the change in that variable (not the standard deviation of the variable
itself) in the sample size estimates. The standard deviation of the change in a variable is usu-
ally smaller than the standard deviation of the variable; therefore, the sample size will also be
smaller.

Sometimes, an investigator cannot obtain any meaningful information about the standard de-
viation of a variable. In that situation, it's worthwhile to use a quantity called the standardized
effect size, which is a unitless quantity that makes it possible to estimate a sample size; it also
simplifies comparisons among effect sizes of different variables. The standardized effect size is
simply the effect size divided by the standard deviation of the variable. For example, a 10 mg/
dL difference in serum cholesterol level, which has a standard deviation in the population of
about 40 mg/dL, would equal a standardized effect size of 0.25. The larger the standardized
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EXAMPLE 6.1 Sample Size When Using the t Test

Problem: The research question is whether there is a difference in the efficacy of albuterol
and ipratropium bromide for the treatment of asthma. The investigator plans a random-
ized trial of the effect of these drugs on FEV, (forced expiratory volume in 1 second)
after 2 weeks of treatment. A previous study has reported that the mean FEV, in persons
with treated asthma was 2.0 liters, with a standard deviation of 1.0 liter. The investiga-
tor would like to be able to detect a difference of 10% or more in mean FEV, between
the two treatment groups. How many patients are required in each group (albuterol and
ipratropium) at & (two-sided) = 0.05 and power = 0.80?

The ingredients for the sample size calculation are as follows:

1. Null Hypothesis: Mean FEV, after 2 weeks of treatment is the same in asthmatic
patients treated with albuterol as in those treated with ipratropium.
Alternative Hypothesis (two-sided): Mean FEV, after 2 weeks of treatment is different
in asthmatic patients treated with albuterol from what it is in those treated with
ipratropium.

. Effect size = 0.2 liters (10% x 2.0 liters).

. Standard deviation of FEV, = 1.0 liter.

. Standardized effect size = effect size + standard deviation = 0.2 liters + 1.0 liter = 0.2.

. o (two-sided) = 0.05; f=1 —0.80 = 0.20. (Recall that f= 1 — power.)

uhbhwnN

Looking across from a standardized effect size of 0.20 in the leftmost column of
Table 6A and down from & (two-sided) = 0.05 and f= 0.20, 394 patients are required
per group. This is the number of patients in each group who need to complete the study;
even more will need to be enrolled to account for dropouts. This sample size may not be
feasible, and the investigator might reconsider the study design, or perhaps settle for only
being able to detect a larger effect size. See the section on the t test for paired samples
(Example 6.8) for a potential solution.

effect size, the smaller the required sample size. For most studies, the standardized effect size
will be >0.1. Effect sizes smaller than that are difficult to detect (they require very large sample
sizes) and usually not very important clinically.

Appendix 6A gives the sample size requirements for various combinations of & and /f for
several standardized effect sizes. To use Table 6A, look down its leftmost column for the stan-
dardized effect size. Next, read across the table to the chosen values for zand S for the sample
size required per group. (The numbers in Table 6A assume that the two groups being compared
are of the same size; use the formula below the table, a statistics package, or an interactive Web-
based program if that assumption is not true.)

There is a convenient shortcut for approximating sample size using the t test, when more
than about 30 subjects will be studied and the power is set at 0.80 (= 0.2) and & (two-sided)
is set at 0.05 (1). The formula is

Sample size (per equal-sized group) = 16 + (standardized effect size).

For Example 6.1, the shortcut estimate of the sample size would be 16 + 0.2 = 400 per group.

The Chi-Squared Test

The chi-squared (?) test can be used to compare the proportion of subjects in each of two
groups who have a dichotomous outcome. For example, the proportion of men who develop
coronary heart disease (CHD) while being treated with folate can be compared with the
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proportion who develop CHD while taking a placebo. The chi-squared test is always two-sided;
an equivalent test for one-sided hypotheses is the one-sided Z test.

In an experiment or cohort study, effect size is specified by the difference between P, the
proportion of subjects expected to have the outcome in one group (i.e., the risk of the out-
come), and P,, the proportion expected in the other group. For example, in a cohort study
comparing the risk of developing end-stage renal disease among men and women with hyper-
tension, P, would be the proportion of men who develop end-stage renal disease, and P, would
be the proportion of women who do so. Variability is a function of P, and P,, so it need not be
specified.

By contrast, for the purposes of calculating sample size for a case—control study, P, and P,
have different definitions. They refer to the proportions of cases and controls expected to have
a particular value of a dichotomous predictor (e.g., the proportion of cases of end-stage renal
disease who were men). Thus, in a case—control study, P, represents the proportion of cases
expected to have a particular predictor variable (i.e., the prevalence of that predictor), and P,
represents the proportion of controls expected to have the predictor.

To estimate the sample size for a study that will be analyzed with the chi-squared test or Z
test to compare two proportions (Example 6.2), the investigator must

1. State the null hypothesis and decide whether the alternative hypothesis should be one- or
two-sided.

2. Estimate the effect size and variability in terms of P;, the proportion with the outcome in
one group, and P,, the proportion with the outcome in the other group.

3. Set ¢and 3.

Appendix 6B gives the sample size requirements for several combinations of & and £, and a
range of values of P, and P,. To estimate the sample size, look down the leftmost column of
Tables 6B.1 or 6B.2 for the smaller of P, and P, (if necessary, rounded to the nearest 0.05).
Next, read across for the difference between P, and P,. Based on the chosen values for ozand £,
the table gives the sample size required per group.

EXAMPLE 6.2 Calculating Sample Size When Using the Chi-Squared Test

Problem: The research question is whether subjects who practice Tai Chi have a lower

risk of developing back pain than those who jog for exercise. A review of the literature

suggests that the 2-year risk of back pain is about 0.30 in joggers. The investigator hopes

to be able to show that Tai Chi reduces that risk by at least 0.10. At & (two-sided) = 0.05

and power = 0.80, how many subjects will need to be studied to determine whether the

2-year incidence of developing back pain is 0.20 (or less) in those who do Tai Chi?
Solution: The ingredients for the sample size calculation are as follows:

1. Null Hypothesis: The incidence of back pain is the same in those who jog and those
who practice Tai Chi.

Alternative Hypothesis (two-sided): The incidence of back pain differs in those who
jog and those who practice Tai Chi.

2. P, (incidence in those who jog) = 0.30; P, (incidence in those who practice Tai Chi) =
0.20. The smaller of these values is 0.20, and the difference between them (P, — P,) is
0.10.

3. o (two-sided) = 0.05; f=1 - 0.80 = 0.20.

Looking across from 0.20 in the leftmost column in Table 6B.1 and down from an
expected difference of 0.10, the middle number for & (two-sided) = 0.05 and = 0.20 is
the required sample size of 313 joggers and 313 Tai Chi practitioners to complete the study.
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Often the investigator specifies the effect size in terms of the relative risk (risk ratio) of the out-
come in two groups of subjects. For example, an investigator might study whether women who
use oral contraceptives are at least twice as likely as nonusers to have a myocardial infarction. In a
cohort study (or experiment), it is straightforward to convert back and forth between relative risk
and the two proportions (P, and P,), since the relative risk is just P, divided by P, (or vice versa).

For a case—control study, however, the situation is a little more complex because the relative
risk must be approximated by the odds ratio (OR):

_ [P x (1-P)]
[P, x (1-P))]

OR

The investigator must specify the odds ratio (OR) and P, (the proportion of controls exposed
to the predictor variable). Then P, (the proportion of cases exposed to the predictor variable) is

p = OR X P,
L=
(1-P,) + (OR x P,)

For example, if the investigator expects that 10% of controls will be exposed to the oral con-
traceptives (P, = 0.1) and wishes to detect an odds ratio of 3 associated with the exposure, then

P, = (3x0.1) _03 s

C(1-0D+(3x01) 12

The Correlation Coefficient

Although the correlation coefficient (v) is not used frequently in sample size calculations, it can
be used when the predictor and outcome variables are both continuous. The correlation coef-
ficient is a measure of the strength of the linear association between the two variables. It varies
between —1 and +1. Negative values indicate that as one variable increases, the other decreases
(like blood lead level and IQ in children). The closer the absolute value of r is to 1, the stronger
the association; the closer to 0, the weaker the association. Height and weight in adults, for
example, are highly correlated in some populations, with r =~ 0.9. Such high values, however,
are uncommon; many biologic associations have much smaller correlation coefficients.

Correlation coefficients are common in some fields of clinical research, such as behavioral
medicine, but using them to estimate the sample size has a disadvantage: Correlation coeffi-
cients have little intuitive meaning. When squared (%), a correlation coefficient represents the
proportion of the spread (variance) in an outcome variable that results from its linear associa-
tion with a predictor variable, and vice versa. That's why small values of r, such as <0.3, may
be statistically significant if the sample is large enough without being very meaningful clinically
or scientifically, since they “explain” at most 9% of the variance.

An alternative—and often preferred—way to estimate the sample size for a study in which
the predictor and outcome variables are both continuous is to dichotomize one of the two
variables (say, at its median) and use the t test calculations instead. This has the advantage of
expressing the effect size as a difference between two groups (interpreting correlation coeffi-
cients, which do not convey effect size, is more vague). To estimate sample size for a study that
will be analyzed with a correlation coefficient (Example 6.3), the investigator must

1. State the null hypothesis, and decide whether the alternative hypothesis is one or
two-sided.

2. Estimate the effect size as the absolute value of the smallest correlation coefficient (r) that
the investigator would like to be able to detect. (Variability is a function of r and is already
included in the table and formula.)

3. Set ¢and f.
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EXAMPLE 6.3 Calculating Sample Size When Using the Correlation
Coefficient in a Cross-Sectional Study

Problem: The research question is whether urinary cotinine levels (a measure of the
intensity of current cigarette smoking) are correlated with bone density in smokers.
A previous study found a modest correlation (r = -0.3) between reported smoking
(in cigarettes per day) and bone density (in g/cm?); the investigator anticipates that uri-
nary cotinine levels will be at least as well correlated. How many smokers will need to be
enrolled, at & (two-sided) = 0.05 and #= 0.10?

Solution: The ingredients for the sample size calculation are as follows:

1. Null Hypothesis: There is no correlation between urinary cotinine level and bone den-
sity in smokers.
Alternative Hypothesis: There is a correlation between urinary cotinine level and bone
density in smokers.

. Effect size (r) =|-0.3] =0.3.

3. o (two-sided) = 0.05; #=0.10.

N

Using Table 6C, reading across from r = 0.30 in the leftmost column and down from &
(two-sided) = 0.05 and = 0.10, 113 smokers will be required.

In Appendix 6C, look down the leftmost column of Table 6C for the effect size (r). Next,
read across the table to the chosen values for &z and S, yielding the total sample size required.
Table 6C yields the appropriate sample size when the investigator wishes to reject the null
hypothesis that there is no association between the predictor and outcome variables (e.g., ¥ =0).
If the investigator wishes to determine whether the correlation coefficient in the study differs
from a value other than zero (e.g., r = 0.4), she should see the text below Table 6C for the ap-
propriate methodology.

B OTHER CONSIDERATIONS AND SPECIAL ISSUES
Dropouts

Each sampling unit must be available for analysis; subjects who are enrolled in a study but in
whom outcome status cannot be ascertained (such as dropouts) do not count in the sample
size. If the investigator anticipates that any of her subjects will not be available for follow-up
(as is very often the case), she should estimate the proportion that will be lost and increase the
size of the enrolled sample accordingly. If, for example, the investigator estimates that 20% of
her sample will be lost to follow-up, then the sample size should be increased by a factor of
(1+1[1-0.20D), or 1.25.

Categorical Variables

While there are mathematical reasons why estimating a sample size for ordinal variables using
a test may not be appropriate, in practice ordinal variables can often be treated as continuous
variables, especially if the number of categories is relatively large (six or more) and if averaging
the values of the variable makes sense.

In other situations, the best strategy is to change the research hypothesis slightly by di-
chotomizing the categorical variable. As an example, suppose a researcher is studying whether
speaking English as a second language is associated with the number of times that diabetic pa-
tients visit a podiatrist in a year. The number of visits is unevenly distributed: Many people will
have no visits, some will make one visit, and only a few will make two or more visits. In this
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situation, the investigator could estimate the sample size as if the outcome were dichotomous
(no visits versus one or more visits).

Survival Analysis

When an investigator wishes to compare survival or other time-to-event data, such as which
of two treatments is more effective in prolonging life in women with advanced breast cancer,
survival analysis will be the appropriate technique for analyzing the data (2, 3). Although the
outcome variable, say months of survival, appears to be continuous, the t test is not appropriate
because what is actually being assessed is not time (a continuous variable) but the proportion
of subjects (a dichotomous variable) still alive at each point in time. Similarly, an investigator
might be comparing the rate of developing the outcome (per 100 person-years of follow-up) in
two groups. A reasonable approximation can be made by simply estimating the proportions of
subjects expected to ever have the outcome in the two groups and estimating the sample size
with the chi-squared test. However, if the outcome is expected to occur in most of the subjects,
such as death in a study of advanced breast cancer, a better strategy (because it minimizes the
total sample size) is to estimate the sample size based on the proportions of subjects in each
group who are expected to have the outcome at a point during follow-up when about half of the
total outcomes have occurred. For example, in a study comparing disease-free survival in breast
cancer patients treated with standard versus experimental treatment, in which about 60% of the
subjects in the standard treatment group are expected to have died by 2 years, compared with
40% of those who received an experimental treatment, the sample size can be estimated using
“survival at 2 years” as the dichotomous outcome.

Clustered Samples

Some research designs involve the use of clustered samples, in which subjects are sampled by
groups (Chapter 11). Consider, for example, a study of whether a continuing medical education
intervention for clinicians improves the rate of smoking cessation among their patients. Suppose
that 20 physician practices are randomly assigned to the group that receives the intervention and
20 practices are assigned to a control group. One year later, the investigators plan to review the
charts of a random sample of 50 patients who had been smokers at baseline in each practice to
determine how many have quit smoking. Does the sample size equal 40 (the number of practices)
or 2,000 (the number of patients)? The answer, which lies somewhere in between those two ex-
tremes, depends upon how similar the patients within a practice are (in terms of their likelihood
of smoking cessation) compared with the similarity among all the patients. Estimating this quan-
tity often requires obtaining pilot data, unless another investigator has previously done a similar
study. There are several techniques for estimating the required sample size for a study using clus-
tered samples (4-7), but they are challenging and usually require the assistance of a statistician.

Matching

For a variety of reasons, an investigator may choose to use a matched design (Chapter 9). The
techniques in this chapter, which ignore any matching, nevertheless provide reasonable esti-
mates of the required sample size unless the exposure (in a matched case—control study) or
outcome (in a matched cohort study) is strongly correlated with the matching variable. More
precise estimates, which require the investigator to specify the correlation between exposures
or outcomes in matched pairs, can be made using standard approaches (8), statistical software,
or an interactive Web-based program.

Multivariate Adjustment and Other Special Statistical Analyses

When designing an observational study, an investigator may decide that one or more variables
will confound the association between the predictor and outcome (Chapter 9), and plan to use
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statistical techniques to adjust for these confounders when she analyzes her results. When this
adjustment will be included in testing the primary hypothesis, the estimated sample size needs
to take this into account.

Analytic approaches that adjust for confounding variables often increase the required sample
size (9, 10). The magnitude of this increase depends on several factors, including the preva-
lence of the confounder, the strength of the association between the predictor and the con-
founder, and the strength of the association between the confounder and the outcome. These
effects are complex and no general rule covers all situations.

Statisticians have developed multivariate methods such as linear regression and logistic
regression that allow the investigator to adjust for confounding variables. One widely used
statistical technique, Cox proportional hazards analysis, can adjust both for confounders and
for differences in length of follow-up. If one of these techniques is going to be used to analyze
the data, there are corresponding approaches for estimating the required sample size (3,11-14).
Sample size techniques are also available for other designs, such as studies of potential genetic
risk factors or candidate genes (15-17), economic studies (18-20), dose-response studies (21),
or studies that involve more than two groups (22). Again, the Internet is a useful resource for
these more sophisticated approaches (e.g., search for “sample size” and “logistic regression”).

It is usually easier, at least for novice investigators, to estimate the sample size assuming a
simpler method of analysis, such as the chi-squared test or the ¢ test. It’s also a good way to
check the results obtained when using more sophisticated methods. Suppose, for example, an
investigator is planning a case—control study of whether serum cholesterol level (a continuous
variable) is associated with the occurrence of brain tumors (a dichotomous variable). Even if
the eventual plan is to analyze the data with the logistic regression technique, a ballpark sample
size can be estimated with the ¢ test. It turns out that the simplified approaches usually produce
sample size estimates that are similar to those generated by more sophisticated techniques. An
experienced biostatistician should be consulted, however, if a grant proposal that involves sub-
stantial costs is being submitted for funding: Reviewers will expect you to use a sophisticated
approach even if they realize that the sample size estimates are based on guesses about the risk
of the outcome, the effect size, and so on. Having your sample size estimated by a statistician
also conveys the message that you have access to the collaborators who will be needed to man-
age and analyze the study’s data. Indeed, a biostatistician will contribute in many other ways
to the design and execution of the study. But she will surely appreciate working with a clini-
cal investigator who has thought about the issues and has made at least an initial attempt to
estimate the sample size.

Equivalence and Non-Inferiority Trials

Sometimes the goal of a study is to rule out a substantial association between the predictor and
outcome variables. An equivalence trial tests whether a new drug has pretty much the same
efficacy as an established drug. This situation poses a challenge when planning sample size,
because the desired effect size is zero or very small. A non-inferiority trial is a one-sided ver-
sion of this design that examines whether the new drug is at least not substantially worse than
the established drug (Chapter 11).

Sample size calculations for these designs are complex (23-26) and the advice of an ex-
perienced statistician will be helpful. One acceptable method is to design the study to have
substantial power (say, 0.90 or 0.95) to reject the null hypothesis when the effect size is small
enough that it would not be clinically important (e.g., a difference of 5 mg/dL in mean fast-
ing glucose levels). If the results of such a well-powered study show “no effect” (i.e., the 95%
confidence interval excludes the prespecified difference of 5 mg/dL), then the investigator
can be reasonably sure that the two drugs have similar effects. One problem with equivalence
and non-inferiority trials, however, is that the additional power and the small effect size often
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require a very large sample size; of the two designs, non-inferiority trials have the advantage of
being one-sided, permitting either a smaller sample size or a smaller alpha.

Another problem involves the loss of the usual safeguards that are inherent in the paradigm
of the null hypothesis, which protects a conventional study that compares an active drug with a
placebo, against type I errors (falsely rejecting the null hypothesis). The paradigm ensures that
many problems in the design or execution of a study, such as using imprecise measurements
or excessive loss to follow-up, make it harder to reject the null hypothesis. Investigators in a
conventional study, who are trying to reject a null hypothesis, have a strong incentive to do
the best possible study. For a non-inferiority study, however, in which the goal is to find no
difference, those safeguards do not apply.

B SAMPLE SIZE TECHNIQUES FOR DESCRIPTIVE STUDIES

Estimating the sample size for descriptive studies, including studies of diagnostic tests, is
also based on somewhat different principles. Such studies do not have predictor and outcome
variables, nor do they compare different groups statistically. Therefore, the concepts of power
and the null and alternative hypotheses do not apply. Instead, the investigator calculates de-
scriptive statistics, such as means and proportions. Often, however, descriptive studies (What
is the prevalence of depression among elderly patients in a medical clinic?) are also used to
ask analytic questions (What are the predictors of depression among these patients?). In this
situation, sample size should be estimated for the analytic study as well, to avoid the common
problem of having inadequate power for what turns out to be the question of greater interest.

Descriptive studies commonly report confidence intervals, a range of values about the
sample mean or proportion. A confidence interval is a measure of the precision of a sample esti-
mate. The investigator sets the confidence level, such as 95% or 99%. An interval with a greater
confidence level (say 99%) is wider, and therefore more likely to include the true population
value, than an interval with a lower confidence level (90%).

The width of a confidence interval depends on the sample size. For example, an investigator
might wish to estimate the mean score on the U.S. Medical Licensing Examination in a group of
medical students who were taught using an alternative Web-based curriculum. From a sample
of 50 students, she might estimate that the mean score in the population of all students is 215,
with a 95% confidence interval from 205 to 225. A smaller study, say with 20 students, might
have about the same mean score but would almost certainly have a wider 95% confidence
interval.

When estimating sample size for descriptive studies, the investigator specifies the desired
level and width of the confidence interval. The sample size can then be determined from the
tables or formulas in the appendix.

Continuous Variables

When the variable of interest is continuous, a confidence interval around the mean value
of that variable is often reported. To estimate the sample size for that confidence interval
(Example 6.4), the investigator must

1. Estimate the standard deviation of the variable of interest.
2. Specify the desired precision (total width) of the confidence interval.
3. Select the confidence level for the interval (e.g., 95%, 99%).

To use Appendix 6D, standardize the total width of the interval (divide it by the standard
deviation of the variable), then look down the leftmost column of Table 6D for the expected
standardized width. Next, read across the table to the chosen confidence level for the required
sample size.
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EXAMPLE 6.4 Calculating Sample Size for a Descriptive Study
of a Continuous Variable

Problem: The investigator seeks to determine the mean hemoglobin level among third
graders in an urban area with a 95% confidence interval of + 0.3 g/dL. A previous study
found that the standard deviation of hemoglobin in a similar city was 1 g/dL.

Solution: The ingredients for the sample size calculation are as follows:

. Standard deviation of variable (SD) = 1 g/dL.

2. Total width of interval = 0.6 g/dL (0.3 g/dL above and 0.3 g/dL below). The
standardized width of interval = total width + SD =0.6 + 1 = 0.6.

3. Confidence level = 95%.

-

Reading across from a standardized width of 0.6 in the leftmost column of Table 6D
and down from the 95% confidence level, the required sample size is 43 third graders.

Dichotomous Variables

In a descriptive study of a dichotomous variable, results can be expressed as a confidence inter-
val around the estimated proportion of subjects with one of the values. This includes studies of
the sensitivity or specificity of a diagnostic test, which appear at first glance to be continuous
variables but are actually dichotomous—proportions expressed as percentages (Chapter 12).
To estimate the sample size for that confidence interval, the investigator must

1. Estimate the expected proportion with the variable of interest in the population. (If more
than half of the population is expected to have the characteristic, then plan the sample size
based on the proportion expected not to have the characteristic.)

2. Specify the desired precision (total width) of the confidence interval.

3. Select the confidence level for the interval (e.g., 95%).

In Appendix 6E, look down the leftmost column of Table 6E for the expected proportion
with the variable of interest. Next, read across the table to the chosen width and confidence
level, yielding the required sample size.

Example 6.5 provides a sample size calculation for studying the sensitivity of a diagnostic
test, which yields the required number of subjects with the disease. When studying the specific-
ity of the test, the investigator must estimate the required number of subjects who do not have
the disease. There are also techniques for estimating the sample size for studies of receiver oper-
ating characteristic (ROC) curves (27), likelihood ratios (28), and reliability (29) (Chapter 12).

EXAMPLE 6.5 Calculating Sample Size for a Descriptive Study
of a Dichotomous Variable

Problem: The investigator wishes to determine the sensitivity of a new diagnostic test for
pancreatic cancer. Based on a pilot study, she expects that 80% of patients with pancreatic
cancer will have positive tests. How many such patients will be required to estimate a
95% confidence interval for the test’s sensitivity of 0.80 + 0.05?

Solution: The ingredients for the sample size calculation are as follows:

1. Expected proportion = 0.20. (Because 0.80 is more than half, sample size is estimated
from the proportion expected to have a falsely negative result, that is, 0.20.)
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2. Total width = 0.10 (0.05 below and 0.05 above).
3. Confidence level = 95%.

Reading across from 0.20 in the leftmost column of Table 6E and down from a total
width of 0.10, the middle number (representing a 95% confidence level) yields the re-
quired sample size of 246 patients with pancreatic cancer.

B WHAT TO DO WHEN SAMPLE SIZE IS FIXED

Especially when doing secondary data analysis, the sample size may have been determined
before you design your study. Even when you are designing a study from scratch, it's common
to find that the number of participants who are available or affordable for study is limited.
Indeed, most investigators, if they are being honest, will acknowledge that they often “work
backwards” from a fixed or realistic sample size to determine the effect size they’ll have a rea-
sonable power to detect. That’s part of the reason why it’s silly to treat a sample size estimate
as if it was carved into stone.

When an investigator must work backward from the fixed sample size (Example 6.6), she
estimates the effect size that can be detected at a given power (usually 80%). Less commonly,
she estimates the power to detect a given effect. The investigator can use the sample size tables
in the chapter appendixes, interpolating when necessary, or use the sample size formulas in the
appendixes for estimating the effect size.

A general rule is that a study should have a power of 80% or greater to detect a reasonable
effect size. There is nothing magical about 80%: Sometimes an investigator gets lucky and finds
a statistically significant result even when she had limited power to do so (even a power as low
as 50% provides a 50-50 chance of observing a statistically significant effect in the sample that is
actually present in the population). Thus it may be worthwhile to pursue studies that have less
than 80% power if the cost of doing so is small, such as when doing an analysis of data that have
already been collected. And there are some studies—for example, one showing that a novel
treatment reduces pulmonary arterial pressures by more than 50% in patients with longstand-
ing refractory pulmonary hypertension—in which a sample size of two or three subjects would
suffice to indicate that further study (on safety and effects on clinical outcomes) is warranted.

The investigator should keep in mind, however, that she might face the difficulty of in-
terpreting (and publishing) a study that failed to find an association because of insufficient
power; the broad confidence intervals will reveal the possibility of a substantial effect in the
population from which the small study sample was drawn. It’s also important to understand
that an “under-powered” study that got “lucky” and had a statistically significant result may be
criticized because reviewers are skeptical as to whether the investigator really intended to look
for that particular association, or whether she tested scores of hypotheses and cherry-picked
the one result that had a significant P value.

EXAMPLE 6.6 Calculating the Detectable Effect Size When Sample
Size is Fixed

Problem: An investigator estimates that she will have access to 200 new mothers of twins
during her fellowship. Based on a small pilot study, she estimates that about half of those
women (i.e., 100) might be willing to participate in a study of whether a 6-week medita-
tion program reduces stress, as compared with a control group that receives a pamphlet
describing relaxation. If the standard deviation of the stress score is expected to be

(continued)
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EXAMPLE 6.6 Calculating the Detectable Effect Size When Sample
Size is Fixed (continued)

5 points in both the control and the treatment groups, what size difference will the inves-

tigator be able to detect between the two groups, at & (two-sided) = 0.05 and £ = 0.20?
Solution: In Table 6A, reading down from & (two-sided) = 0.05 and £ = 0.20 (the

rightmost column in the middle triad of numbers), 45 patients per group are required

to detect a standardized effect size of 0.6, which is equal to 3 points (0.6 X 5 points).

The investigator (who will have about 50 patients per group) will be able to detect

a difference of a little less than 3 points between the two groups.

B STRATEGIES FOR MINIMIZING SAMPLE SIZE AND MAXIMIZING POWER

When the estimated sample size is greater than the number of subjects that can be studied real-
istically, the investigator should proceed through several steps. First, the calculations should be
checked, as it is easy to make mistakes. Next, the “ingredients” should be reviewed. Is the effect
size unreasonably small or the variability unreasonably large? Is ¢ or S unreasonably small or
is the confidence level too high or the interval unreasonably narrow?

These technical adjustments can be useful, but it is important to realize that statistical tests
ultimately depend on the information contained in the data. Many changes in the ingredients,
such as reducing power from 90% to 80%, do not improve the quantity or quality of the data
that will be collected. There are, however, several strategies for reducing the required sample
size or for increasing power for a given sample size that actually increase the information
content of the collected data. Many of these strategies involve modifications of the research
hypothesis; the investigator should carefully consider whether the new hypothesis still answers
the research question that she wishes to study.

Use Continuous Variables

When continuous variables are an option, they usually permit smaller sample sizes than di-
chotomous variables. Blood pressure, for example, can be expressed either as millimeters of
mercury (continuous) or as the presence or absence of hypertension (dichotomous). The for-
mer permits a smaller sample size for a given power or a greater power for a given sample size.

In Example 6.7, the continuous outcome addresses the effect of nutrition supplements on
muscle strength among the elderly. The dichotomous outcome is concerned with its effects on
the proportion of subjects who have at least a minimal amount of strength, which may be a
more valid surrogate for potential fall-related morbidity.

EXAMPLE 6.7 Use of Continuous Versus Dichotomous Variables

Problem: Consider a placebo-controlled trial to determine the effect of nutrition supple-
ments on strength in elderly nursing home residents. Previous studies have established
that quadriceps strength (as peak torque in newton-meters) is approximately normally
distributed, with a mean of 33 N-m and a standard deviation of 10 N-m, and that about
10% of the elderly have very weak muscles (strength <20 N-m). Nutrition supplements
for 6 months are thought to be worthwhile if they can increase strength by 5 N-m as
compared with the usual diet. This change in mean strength can be estimated, based on
the distribution of quadriceps strength in the elderly, to correspond to a reduction in the
proportion of the elderly who are very weak to about 5%.

One design might treat strength as a dichotomous variable: very weak versus not very
weak. Another might use all the information contained in the measurement and treat
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strength as a continuous variable. How many subjects would each design require at ¢
(two-sided) = 0.05 and = 0.20?

Solution: The ingredients for the sample size calculation using a dichotomous
outcome variable (very weak versus not very weak) are as follows:

1. Null Hypothesis: The proportion of elderly nursing home residents who are very weak
(peak quadriceps torque <20 N-m) after receiving 6 months of nutrition supplements
is the same as the proportion who are very weak among those on a usual diet.
Alternative Hypothesis: The proportion of elderly nursing home residents who are
very weak (peak quadriceps torque <20 N-m) after receiving 6 months of nutrition
supplements differs from the proportion among those on a usual diet.

2. P, (proportion very weak on usual diet) = 0.10; P, (in supplement group) = 0.05. The
smaller of these values is 0.05, and the difference between them (P, — P,) is 0.05.

3. a (two-sided) = 0.05; = 0.20.

Using Table 6B.1, reading across from 0.05 in the leftmost column and down from an
expected difference of 0.05, the middle number (for & [two-sided] = 0.05 and f= 0.20),
this design would require 473 subjects per group.

The ingredients for the sample size calculation using a continuous outcome variable
(quadriceps strength as peak torque) are as follows:

1. Null Hypothesis: Mean quadriceps strength (as peak torque in N-m) in elderly nursing
home residents after receiving 6 months of nutrition supplements is the same as mean
quadriceps strength in those on a usual diet.

Alternative Hypothesis: Mean quadriceps strength (as peak torque in N-m) in elderly
nursing home residents after receiving 6 months of nutrition supplements differs from
mean quadriceps strength in those on a usual diet.

. Effect size =5 N-m.

. Standard deviation of quadriceps strength = 10 N-m.

. Standardized effect size = effect size + standard deviation = 5 N-m + 10 N-m = 0.5.

. o (two-sided) 0.05; f=0.20.
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Using Table 6A, reading across from a standardized effect size of 0.50, with & (two-
sided) = 0.05 and £ = 0.20, this design would require about 64 subjects in each group.
(In this example, the shortcut sample size estimate from page 57 of 16 + (standardized
effect size)?, or 16 + (0.5)*, gives the same estimate of 64 subjects per group.) The bot-
tom line is that the use of a continuous outcome variable resulted in a substantially
smaller sample size.

Use Paired Measurements

In some experiments or cohort studies with continuous outcome variables, paired
measurements—one at baseline, another at the conclusion of the study—can be made in each
subject. The outcome variable is the change between these two measurements. In this situa-
tion, a t test on the paired measurements can be used to compare the mean value of this change
in the two groups. This technique often permits a smaller sample size because, by comparing
each subject with herself, it removes the baseline between-subject part of the variability of the
outcome variable. For example, the change in weight on a diet has less variability than the final
weight, because final weight is highly correlated with initial weight. Sample size for this type of
t test is estimated in the usual way (Example 6.8), except that the standardized effect size (E/S
in Table 6A) is the anticipated difference in the change in the variable divided by the standard
deviation of that change.
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EXAMPLE 6.8 Use of the t Test with Paired Measurements

Problem: Recall Example 6.1, in which the investigator studying the treatment of asthma
is interested in determining whether albuterol can improve FEV, by 200 mL compared
with ipratropium bromide. Sample size calculations indicated that 394 subjects per group
are needed, more than are likely to be available. Fortunately, a colleague points out that
asthmatic patients have great differences in their FEV, values before treatment. These
between-subject differences account for much of the variability in FEV, after treatment,
therefore obscuring the effect of treatment. She suggests using a (two-sample) paired
t test to compare the changes in FEV, in the two groups. A pilot study finds that the
standard deviation of the change in FEV, is only 250 mL. How many subjects would be
required per group, at & (two-sided) = 0.05 and = 0.20?

Solution: The ingredients for the sample size calculation are as follows:

1. Null Hypothesis: The change in mean FEV, after 2 weeks of treatment is the same in
asthmatic patients treated with albuterol as in those treated with ipratropium bromide.
Alternative Hypothesis: The change in mean FEV, after 2 weeks of treatment is
different in asthmatic patients treated with albuterol from what it is in those treated
with ipratropium bromide.

. Effect size = 200 mL.

. Standard deviation of the outcome variable = 250 mL.

. Standardized effect size = effect size + standard deviation = 200 mL + 250 mL = 0.8.

. o (two-sided) = 0.05; f=1 - 0.80 = 0.20.
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Using Table 6A, this design would require about 26 participants per group, a much
more reasonable sample size than the 394 per group in Example 6.1. In this example,
the shortcut sample size estimate of 16 + (standardized effect size)?, or 16 + (0.8)?, gives
a similar estimate of 25 subjects per group.

A Brief Technical Note

This chapter always refers to two-sample ¢ tests, which are used when comparing the mean values
of continuous variables in two groups of subjects. A two-sample t test can be unpaired, if the vari-
able itself is being compared between two groups (Example 6.1), or paired if the variable is the
change in a pair of measurements, say before and after an intervention (e.g., Example 6.8).

A third type of t test, the one-sample paired t test, compares the mean change in a pair of
measurements within a single group to zero change. This type of analysis is reasonably com-
mon in time series designs (Chapter 11), a before-after approach to examining treatments
that are difficult to randomize (for example, the effect of elective hysterectomy, a decision few
women are willing to leave to a coin toss, on quality of life). However, it is a weaker design
because the absence of a comparison group makes it difficult to know what would have hap-
pened had the subjects been left untreated. When planning a study that will be analyzed with
a one-sample paired ¢ test, the total sample size is just half of the sample size per group listed
in Appendix 6A. For example, for &= 0.05 (two-sided) and = 0.2, to detect a 0.5 standard
deviation difference (E/S = 0.5) would require 64/2 = 32 subjects. Appendix 6F presents ad-
ditional information on the use and misuse of one- and two-sample ¢t tests.

Use More Precise Variables

Because they reduce variability, more precise variables permit a smaller sample size in both
analytic and descriptive studies. Even a modest change in precision can have a substantial ef-
fect on sample size. For example, when using the t test to estimate sample size, a 20% decrease
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in the standard deviation of the outcome variable results in a 36% decrease in the sample size.
Techniques for increasing the precision of a variable, such as making measurements in dupli-
cate, are presented in Chapter 4.

Use Unequal Group Sizes

Because an equal number of subjects in each of two groups usually gives the greatest power
for a given total number of subjects, Tables 6A, 6B.1, and 6B.2 in the appendixes assume equal
sample sizes in the two groups. Sometimes, however, the distribution of subjects is not equal
in the two groups, or it is easier or less expensive to recruit study subjects for one group than
the other. It may turn out, for example, that an investigator wants to estimate sample size for a
study comparing the 30% of the subjects in a cohort who smoke cigarettes with the 70% who
do not. Or, in a case—control study, the number of persons with the disease may be small, but
it may be possible to sample a much larger number of controls. In general, the gain in power
when the size of one group is increased to twice the size of the other is considerable; tripling
and quadrupling one of the groups provide progressively smaller gains. Sample sizes for un-
equal groups can be computed from the formulas found in the text to Appendixes 6A and 6B
or from the sample size calculators in statistical software or on the Web.

Here is a useful approximation (30) for estimating sample size for case—control studies of
dichotomous risk factors and outcomes using c controls per case (Example 6.9). If n represents
the number of cases that would have been required for one control per case (at a given ¢, 3, and
effect size), then the approximate number of cases (n') with cn' controls that will be required is

n=[(c+1)+2]xn

For example, with ¢ = 2 controls per case, then [(2 + 1) + (2 X 2)] X n =3/4 X n, and only
75% as many cases are needed. As ¢ gets larger, n' approaches 50% of n (when ¢ = 10, for ex-
ample, n'=11/20 X n).

Use a More Common Outcome

When planning a study of a dichotomous outcome, the more frequently that outcome occurs,
up to a frequency of about 0.5, the greater the power. So changing the definition of an outcome
is one of the best ways to increase power: If an outcome occurs more often, there is more of a
chance to detect its predictors. Indeed, power depends more on the number of subjects with a
specified outcome than it does on the total number of subjects in the study. Studies with rare
outcomes, like the occurrence of breast cancer in healthy women, require very large sample
sizes to have adequate power.

One of the best ways to have an outcome occur more frequently is to enroll subjects at
greater risk of developing that outcome (such as women with a family history of breast cancer).

EXAMPLE 6.9 Use of Multiple Controls per Case
in a Case-Control Study

Problem: An investigator is studying whether exposure to household insecticide is a risk
factor for aplastic anemia. The original sample size calculation indicated that 25 cases
would be required, using one control per case. Suppose that the investigator has access to
only 18 cases. How should the investigator proceed?

Solution: The investigator should consider using multiple controls per case (after
all, she can find many patients who do not have aplastic anemia). By using three
controls per case, for example, the approximate number of cases that will be required is
[B+1)+(2x3)] x25=17.



70 Section | e Basic Ingredients

EXAMPLE 6.10 Use of a More Common Outcome

Problem: Suppose an investigator is comparing the efficacy of an antiseptic gargle versus
a placebo gargle in preventing upper respiratory infections. Her initial calculations
indicated that her anticipated sample of 200 volunteer college students was inadequate,
in part because she expected that only about 20% of her subjects would have an upper
respiratory infection during the 3-month follow-up period. Suggest a few changes in the
study plan.

Solution: Here are three possible solutions: (1) study a sample of pediatric interns and
residents, who are likely to experience a much greater incidence of upper respiratory
infections than college students; or (2) do the study in the winter, when these infections
are more common; or (3) follow the sample for a longer period of time, say 6 or
12 months. All of these solutions involve modification of the research hypothesis, but
none of them seem sufficiently large to affect the overall research question about the
efficacy of antiseptic gargle.

Others are to extend the follow-up period, so that there is more time to accumulate outcomes,
or to loosen the definition of what constitutes an outcome (e.g., by including ductal carcinoma
in situ). All these techniques (Example 6.10), however, may change the research question, so
they should be used with caution.

B HOW TO ESTIMATE SAMPLE SIZE WHEN THERE IS INSUFFICIENT
INFORMATION

Often the investigator finds that she is missing one or more of the ingredients for the sample
size calculation and becomes frustrated in her attempts to plan the study. This is an especially
frequent problem when the investigator is using an instrument of her design (such as a new
questionnaire comparing quality of life in women with stress versus urge incontinence). How
should she go about deciding what fraction of a standard deviation of the scores on her instru-
ment would be clinically significant?

The first strategy is an extensive search for previous and related findings on the topic and
on similar research questions. Roughly comparable situations and mediocre or dated findings
may be good enough. For example, are there data on quality of life among patients with other
urologic problems, or with related conditions like having a colostomy? If the literature review
is unproductive, she should contact other investigators about their judgment on what to ex-
pect, and whether they are aware of any unpublished results that may be relevant.

If there is still no information available, she may consider doing a small pilot study or ob-
taining a data set for a secondary analysis to obtain the missing ingredients before embarking
on the main study. Indeed, a pilot study is highly recommended for almost all studies that
involve new instruments, measurement methods, or recruitment strategies. It saves time in the
end by enabling investigators to do a much better job planning the main study. Pilot studies
are useful for estimating the standard deviation of a measurement, or the proportion of subjects
with a particular characteristic. However, an alternative is to recognize that for continuous vari-
ables that have a roughly bell-shaped distribution, the standard deviation can be estimated as
one-quarter of the difference between the high and low ends of the range of values that occur
commonly, ignoring extreme values. For example, if most subjects are likely to have a serum
sodium level between 135 and 143 mEq/L, the standard deviation of serum sodium is about
2 mEq/L (1/4 x 8 mEq/L).

Another strategy, when the mean and standard deviation of a continuous or categorical vari-
able are in doubt, is to dichotomize that variable. Categories can be lumped into two groups,
and continuous variables can be split at their mean or median. For example, dividing quality of
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life into “better than the median” or “the median or less” avoids having to estimate its standard
deviation in the sample, although one still has to estimate what proportions of subjects would
be above the overall median in each of the two groups being studied. The chi-squared test can
then be used to make a reasonable, albeit somewhat high, estimate of the sample size.

Often, however, the investigator must choose the detectable effect size based on a value
that she considers to be clinically meaningful. In that situation, the investigator should vet
her choice with colleagues in the field. For example, suppose that an investigator is studying a
new invasive treatment for severe refractory gastroparesis, a condition in which at most 5% of
patients improve spontaneously. If the treatment is shown to be effective, her gastroenterologist
colleagues indicate that they would be willing to treat up to five patients to produce a sustained
benefit in just one of them (because the treatment has substantial side effects and is expensive,
they don’t think the number would be more than five). A number needed to treat (NNT) of
5 corresponds to a risk difference of 20% (NNT = 1/risk difference), so the investigator should
estimate the sample size based on a comparison of P, = 5% versus P, = 25% (i.e., 59 subjects
per group at a power of 0.80 and a two-sided & of 0.05).

If all this fails, the investigator should just make an educated guess about the likely values of
the missing ingredients. The process of thinking through the problem and imagining the find-
ings will often result in a reasonable estimate, and that is what sample size planning is about.
This is usually a better option than just deciding, in the absence of any rationale, to design the
study to have 80% power at a two-sided & of 0.05 to detect a standardized effect size of, say, 0.5
between the two groups (n = 64, per group, by the way). Very few grant reviewers will accept
that sort of entirely arbitrary decision.

B COMMON ERRORS TO AVOID

Many inexperienced investigators (and some experienced ones!) make mistakes when planning
sample size. A few of the more common ones follow:

1. A common error is estimating the sample size late during the design of the study. Do it early
in the process, when fundamental changes can still be made.

2. Dichotomous variables can appear to be continuous when they are expressed as a per-
centage or rate. For example, vital status (alive or dead) might be misinterpreted as con-
tinuous when expressed as percent alive. Similarly, in a survival analysis in which not all
subjects die, a dichotomous outcome can appear to be continuous (e.g., median survival
in months). For all of these, the outcome itself is actually dichotomous (a proportion) and
the appropriate simple approach in planning sample size would be the chi-squared test.

3. The sample size estimates the number of subjects with outcome data, not the number who
need to be enrolled. The investigator should always plan for dropouts and subjects with
missing data.

4. The tables at the end of the chapter assume that the two groups being studied have equal
sample sizes. Often that is not the case; for example, a cohort study of whether use of vi-
tamin supplements reduces the risk of sunburn would probably not enroll equal numbers
of subjects who used, or did not use, vitamins. If the sample sizes are not equal, then the
formulas that follow the tables or calculators on the Web or in statistical software should
be used.

5. When using the t test to estimate the sample size, the standard deviation of the outcome
variable is a key factor. Therefore, if the outcome is change in a continuous variable, the
investigator should use the standard deviation of that change rather than the standard de-
viation of the variable itself.

6. Be aware of clustered data. If there appear to be two “levels” of sample size (e.g., one for
physicians and another for patients), clustering is a likely problem and the tables in the
appendices do not apply.



72

~

Section | e Basic Ingredients

. If you find yourself having difficulty estimating a sample size for your study, be sure
that your research hypothesis meets the criteria discussed earlier in this chapter (simple,
specific, and stated in advance).

SUMMARY

. When estimating sample size for an analytic study, the following steps need to be taken:

(a) state the null and alternative hypotheses, specifying the number of sides;

(b) select a statistical test that could be used to analyze the data, based on the types of pre-
dictor and outcome variables (chi-squared test if both are dichotomous, t test if one is
dichotomous and one continuous, and correlation coefficient if both are continuous);

(c) estimate the effect size (and its variability, if necessary); and

(d) specily appropriate values for zand £, based on the importance of avoiding type I and
type II errors.

. Other considerations in calculating sample size for analytic studies include adjusting for
potential dropouts; strategies for dealing with categorical variables, survival analysis,
clustered samples, multivariate adjustment; and special statistical approaches to equiva-
lence and non-inferiority trials.

The steps for estimating sample size for descriptive studies, which do not have hypoth-
eses, are to (a) estimate the proportion of subjects with a dichotomous outcome or the
standard deviation of a continuous outcome; (b) specify the desired precision (width of
the confidence interval); and (c) specify the confidence level (e.g., 95%).

When sample size is predetermined, the investigator can work backward to estimate the
detectable effect size or, less commonly, the study’s power.

Strategies to minimize sample size include using continuous variables, more precise mea-
surements, paired measurements, and more common outcomes, as well as increasing the
number of controls per case in case—control studies.

When there seems to be not enough information to estimate the sample size, the investiga-
tor should review the literature in related areas and consult with colleagues to help choose
an effect size that is clinically meaningful.

Errors to avoid include estimating sample size too late, misinterpreting proportions ex-
pressed as percentages, not taking missing subjects and data into account, and not ad-
dressing clustered and paired data appropriately.



APPENDIX 6A

Sample Size Required per Group
When Using the t Test to Compare
Means of Continuous Variables

TABLE 6A SAMPLE SIZE PER GROUP FOR COMPARING TWO MEANS

ONE-SIDED «a= 0.005 0.025 0.05

TWO-SIDED o = 0.01 0.05 0.10
E/S* A= 0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20
0.10 3,565 2,978 2,338 2,600 2,103 1,571 2,166 1,714 1,238
0.15 1,586 1,325 1,040 1,157 935 699 963 762 551
0.20 893 746 586 651 527 394 542 429 310
0.25 572 478 376 417 338 253 347 275 199
0.30 398 333 262 290 235 176 242 191 139
0.40 225 188 148 164 133 100 136 108 78
0.50 145 121 96 105 86 64 88 70 51
0.60 101 85 67 74 60 45 61 49 36
0.70 75 63 50 55 44 34 45 36 26
0.80 58 49 39 42 34 26 35 28 21
0.90 46 39 32 34 27 21 28 22 16
1.00 38 32 26 27 23 17 23 18 14

*E/S is the standardized effect size, computed as E (expected effect size) divided by S (SD of the outcome variable).
To estimate the sample size, read across from the standardized effect size, and down from the specified values of
o and g for the required sample size in each group. For a one-sample t test, the total sample size is one-half of the
number listed.

B CALCULATING VARIABILITY

Variability is usually reported as either the standard deviation or the standard error of the mean
(SEM). For the purposes of sample size calculation, the standard deviation of the variable is
most useful. Fortunately, it is easy to convert from one measure to another: The standard devia-
tion is simply the standard error times the square root of N, where N is the number of subjects
that makes up the mean. Suppose a study reported that the weight loss in 25 persons on a
low-fiber diet was 10 = 2 kg (mean + SEM). The standard deviation would be 2 x V25 = 10 kg.

B GENERAL FORMULA FOR OTHER VALUES

The general formula for other values of E, S, &, and £, or for unequal group sizes, is as follows.
Let:

Z, = the standard normal deviate for « (If the alternative hypothesis is two-sided, Z, = 2.58
when o=0.01, Z,=1.96 when = 0.05, and Z,=1.645 when o= 0.10. If the alternative
hypothesis is one-sided, Z, = 1.645 when o= 0.05.)
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Z = the standard normal deviate for (Zz=0.84 when = 0.20, and Zz=1.282 when = 0.10)
¢, = proportion of subjects in group 1
q. = proportion of subjects in group 2
N = total number of subjects required

Then:
N = [(1/q, + 1/qy) S* (Z,+ Zp*] + E~.

Readers who would like to skip the work involved in hand calculations with this formula
can get an instant answer from a calculator on our website (www.epibiostat.ucsf.edu/dcr/).
(Because this formula is based on approximating the t statistic with a Z statistic, it will slightly
underestimate the sample size when N is less than about 30. Table 6A uses the t statistic to
estimate sample size.)


http://www.epibiostat.ucsf.edu/dcr/

APPENDIX 6B
Sample Size Required per Group
When Using the Chi-Squared
Statistic or Z Test to Compare
Proportions of Dichotomous
Variables

TABLE 6B.1 SAMPLE SIZE PER GROUP FOR COMPARING TWO PROPORTIONS

UPPER NUMBER: a=0.05 (ONE-SIDED) OR o= 0.10 (TWO-SIDED); #=0.20
MIDDLE NUMBER: o= 0.025 (ONE-SIDED) OR o= 0.05 (TWO-SIDED); = 0.20
LOWER NUMBER: o= 0.025 (ONE-SIDED) OR o= 0.05 (TWO-SIDED); f=0.10

SMALLER OF DIFFERENCE BETWEEN P, AND P,
Py AND P,* 005 010 015 020 025 030 035 040 045  0.50
0.05 381 129 72 47 35 27 22 18 15 13
473 159 88 59 43 33 26 22 18 16
620 207 113 75 54 41 33 27 23 19
0.10 578 175 91 58 41 31 24 20 16 14
724 219 112 72 51 37 29 24 20 17
958 286 146 92 65 48 37 30 25 21
0.15 751 217 108 67 46 34 26 21 17 15
944 270 133 82 57 41 32 26 21 18
1,252 354 174 106 73 53 42 33 26 22
0.20 900 251 121 74 50 36 28 22 18 15
1,133 313 151 91 62 44 34 27 22 18
1,504 412 197 118 80 57 44 34 27 23
0.25 1,024 278 132 79 53 38 29 23 18 15
1,289 348 165 98 66 47 35 28 22 18
1,714 459 216 127 85 60 46 35 28 23
0.30 1,123 300 141 83 55 39 29 23 18 15
1,415 376 175 103 68 48 36 28 22 18
1,883 496 230 134 88 62 47 36 28 23
0.35 1,197 315 146 85 56 39 29 23 18 15
1,509 395 182 106 69 48 36 28 22 18
2,009 522 239 138 90 62 47 35 27 22
0.40 1,246 325 149 86 56 39 29 22 17 14
1,572 407 186 107 69 48 35 27 21 17
2,093 538 244 139 920 62 46 34 26 21
(continued)
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TABLE 6B.1 SAMPLE SIZE PER GROUP FOR COMPARING
TWO PROPORTIONS (CONTINUED)

UPPER NUMBER: o= 0.05 (ONE-SIDED) OR o= 0.10 (TWO-SIDED); 5= 0.20
MIDDLE NUMBER: o= 0.025 (ONE-SIDED) OR o= 0.05 (TWO-SIDED); 5= 0.20
LOWER NUMBER: o= 0.025 (ONE-SIDED) OR a = 0.05 (TWO-SIDED); f= 0.10

SMALLER OF DIFFERENCE BETWEEN P; AND P,

Py AND P,* 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.45 1,271 328 149 85 55 38 28 21 16 13
1,603 411 186 106 68 47 34 26 20 16

2,135 543 244 138 88 60 44 33 25 19

0.50 1,271 325 146 83 53 36 26 20 15 =
1,603 407 182 103 66 44 32 24 18 —

2,135 538 239 134 85 57 42 30 23 =

0.55 1,246 315 141 79 50 34 24 18 = =
1,572 395 175 98 62 41 29 22 — —

2,093 522 230 127 80 53 37 27 — —

0.60 1,197 300 132 74 46 31 22 = = =
1,509 376 165 91 57 37 26 = = =

2,009 496 216 118 73 48 33 = = =

0.65 1,123 278 121 67 41 27 = = = =
1,415 348 151 82 51 33 = = = =

1,883 459 197 106 65 41 — — — —

0.70 1,024 251 108 58 35 = = = = =
1,289 313 133 72 43 — — — — —

1,714 412 174 92 54 = = = = =

0.75 900 217 91 47 = = = = = =
1,133 270 112 59 = = = = = =

1,504 354 146 75 — — — — — —

0.80 751 175 72 = = = = = = =
944 219 88 = - = = = - -

1,252 286 113 = = = = = = =

0.85 578 129 = = = = = = = =
724 159 = = = = = = = =

958 207 — — — — — — — —

0.90 381 = = = = = = = = =
473 = - - = = - - = =

620 = = = G = = = G =

The one-sided estimates use the Z statistic.

*P, represents the proportion of subjects expected to have the outcome in one group; P, in the other group. (In a
case—control study, P, represents the proportion of cases with the predictor variable; P, the proportion of controls
with the predictor variable.) To estimate the sample size, read across from the smaller of P, and P,, and down the
expected difference between P, and P,. The three numbers represent the sample size required in each group for
the specified values of o and S

Additional detail for P, and P, between 0.01 and 0.10 is given in Table 6B.2.
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TABLE 6B.2 SAMPLE SIZE PER GROUP FOR COMPARING TWO PROPORTIONS,

THE SMALLER OF WHICH IS BETWEEN 0.01 AND 0.10

UPPER NUMBER: o= 0.05 (ONE-SIDED) OR «=0.10 (TWO-SIDED); 5= 0.20
MIDDLE NUMBER: o= 0.025 (ONE-SIDED) OR o= 0.05 (TWO-SIDED); = 0.20
LOWER NUMBER: o= 0.025 (ONE-SIDED) OR o= 0.05 (TWO-SIDED); #= 0.10

SMALLER OF EXPECTED DIFFERENCE BETWEEN P, AND P,
P, AND P, 001 002 003 004 005 006 007 0.08 009 0.10
0.01 2,019 700 396 271 204 162 134 114 98 87
2,512 864 487 332 249 197 163 138 120 106

3,300 1,125 631 428 320 254 209 178 154 135

0.02 3,205 994 526 343 249 193 157 131 113 97
4,018 1,237 651 423 306 238 192 161 137 120

5320 1,625 852 550 397 307 248 207 177 154

0.03 4367 1,283 653 414 294 224 179 148 126 109
5493 1,602 813 512 363 276 220 182 154 133

7,296 2,114 1,067 671 474 359 286 236 199 172

0.04 5505 1,564 777 482 337 254 201 165 139 119
6,935 1,959 969 600 419 314 248 203 170 146

9,230 2,593 1,277 788 548 410 323 264 221 189

0.05 6,616 1,838 898 549 380 283 222 181 151 129
8347 2,308 1,123 686 473 351 275 223 186 159

11,123 3,061 1,482 902 620 460 360 291 242 206

0.06 7,703 2,107 1,016 615 422 312 243 197 163 139
9,726 2,650 1,272 769 526 388 301 243 202 171

12,973 3,518 1,684 1,014 691 508 395 318 263 223

0.07 8765 2,369 1,131 680 463 340 263 212 175 148
11,076 2,983 1,419 850 577 423 327 263 217 183

14,780 3,965 1,880 1,123 760 555 429 343 283 239

0.08 9,803 2,627 1,244 743 502 367 282 227 187 158
12,393 3,308 1,562 930 627 457 352 282 232 195

16,546 4,401 2,072 1,229 827 602 463 369 303 255

0.09 10,816 2,877 1,354 804 541 393 302 241 198 167
13,679 3,626 1,702 1,007 676 491 377 300 246 207

18,270 4,827 2,259 1,333 893 647 495 393 322 270

0.10 11,804 3,121 1,461 863 578 419 320 255 209 175
14,933 3,936 1,838 1,083 724 523 401 318 260 218

19,952 5242 2,441 1,434 957 690 527 417 341 285

The one-sided estimates use the Z statistic.
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B GENERAL FORMULA FOR OTHER VALUES

The general formula for calculating the total sample size (N) required for a study using the
Z statistic, where P, and P, are defined above, is as follows (see Appendix 6A for definitions of
Zyand Zﬂ). Let

¢, = proportion of subjects in group 1
¢, = proportion of subjects in group 2
N = total number of subjects

P=q Py +q P,

Then

_ [z, NP(A-P)(1/q, + 1/q,) + Zz\NP,(1-P))(1/q,) + P,(1-P,)(1/q,)]*
(Pl_Pz)z

N

Readers who would like to skip the work involved in hand calculations with this formula can
get an instant answer from a calculator on our website (www.epibiostat.ucsf.eduw/dcr/). (This
formula does not include the Fleiss-Tytun-Ury continuity correction and therefore underes-
timates the required sample size by up to about 10%. Tables 6B.1 and 6B.2 do include this
continuity correction.)


http://www.epibiostat.ucsf.edu/dcr/

APPENDIX 6C
Total Sample Size Required When
Using the Correlation Coefficient (r)

TABLE 6C SAMPLE SIZE FOR DETERMINING WHETHER A CORRELATION
COEFFICIENT DIFFERS FROM ZERO

ONE-SIDED o= 0.005 0.025 0.05
TWO-SIDED o = 0.01 0.05 0.1
A= 0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20

r*
0.05 7,118 5,947 4,663 5,193 4,200 3,134 4,325 3,424 2,469
0.10 1,773 1,481 1,162 1,294 1,047 782 1,078 854 616
0.15 783 655 514 572 463 346 a77 378 273
0.20 436 365 287 319 259 194 266 211 153
0.25 276 231 182 202 164 123 169 134 98
0.30 189 158 125 139 113 85 116 92 67
0.35 136 114 90 100 82 62 84 67 49
0.40 102 86 68 75 62 47 63 51 37
0.45 79 66 53 58 48 36 49 39 29
0.50 62 52 42 46 38 29 39 31 23
0.60 40 34 27 30 25 19 26 21 16
0.70 27 23 19 20 17 13 17 14 11
0.80 18 15 13 14 12 9 12 10 8

*To estimate the total sample size, read across from r (the expected correlation coefficient) and down from the
specified values of ezand 4.

B GENERAL FORMULA FOR OTHER VALUES
The general formula for other values of r, &, and fis as follows (see Appendix 6A for defini-
tions of Z, and Zp). Let

r = expected correlation coefficient
C=05%In[(1+1)/(1-1)]
N = Total number of subjects required

Then
N=[(Z,+Zp + C]*+3.

Bl ESTIMATING SAMPLE SIZE FOR DIFFERENCE BETWEEN TWO CORRELATIONS
If testing whether a correlation, ry, is different from r, (i.e., the null hypothesis is that r; = r,;
the alternative hypothesis is that r, = r,), let

Ci=05xIn[(0+r)/A-r)]
C,=05xIn [(1+1r)/-r1y]

Then
N=[(Z,+Zp + (C, - C)I*+ 3.
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APPENDIX 6D
Sample Size for a Descriptive
Study of a Continuous Variable

TABLE 6D SAMPLE SIZE FOR COMMON VALUES OF Wis*
CONFIDENCE LEVEL

w/s 90% 95% 99%
0.10 1,083 1,537 2,665
0.15 482 683 1,180
0.20 271 385 664
0.25 174 246 425
0.30 121 171 295
0.35 89 126 217
0.40 68 97 166
0.50 44 62 107
0.60 31 43 74
0.70 23 32 55
0.80 17 25 42
0.90 14 19 33
1.00 11 16 27

*WIS is the standardized width of the confidence interval, computed as W (desired total width) divided by
S (standard deviation of the variable). To estimate the total sample size, read across from the standardized width
and down from the specified confidence level.

B GENERAL FORMULA FOR OTHER VALUES

For other values of W, S, and a confidence level of (1 — @), the total number of subjects required
(N) is

N=4Zz,5*+W?
(see Appendix 6A for the definition of Z,).
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APPENDIX 6E
Sample Size for a Descriptive
Study of a Dichotomous Variable

TABLE 6E SAMPLE SIZE FOR PROPORTIONS

UPPER NUMBER: 90% CONFIDENCE LEVEL
MIDDLE NUMBER: 95% CONFIDENCE LEVEL
LOWER NUMBER: 99% CONFIDENCE LEVEL

TOTAL WIDTH OF CONFIDENCE INTERVAL (W)

EXPECTED
PROPORTION (P)* 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.10 98 44 — — — — —
138 61 — — — — —
239 106 — — — — —
0.15 139 62 35 22 — — —
196 87 49 31 — — —
339 151 85 54 — — —
0.20 174 77 44 28 19 14 —
246 109 61 39 27 20 —
426 189 107 68 47 35 —
0.25 204 91 51 33 23 17 13
288 128 72 46 32 24 18
499 222 125 80 55 41 31
0.30 229 102 57 37 25 19 14
323 143 81 52 36 26 20
559 249 140 89 62 46 35
0.40 261 116 65 42 29 21 16
369 164 92 59 a1 30 23
639 284 160 102 71 52 40
0.50 272 121 68 44 30 22 17
384 171 9 61 43 31 24
666 296 166 107 74 54 42

*To estimate the sample size, read across the expected proportion (P) who have the variable of interest and down
from the desired total width (W) of the confidence interval. The three numbers represent the sample size required
for 90%, 95%, and 99% confidence levels.

B GENERAL FORMULA FOR OTHER VALUES

The general formula for other values of P, W, and a confidence level of (1 — @), where P and W

are defined above, is as follows. Let

Z, = the standard normal deviate for a two-sided ¢, where (1 — @) is the confidence level
(e.g., since or=0.05 for a 95% confidence level, Z, = 1.96; for a 90% confidence level
Z,=1.65, and for a 99% confidence level Z, = 2.58).

Then the total number of subjects required is:

N=4z,/P(1-P)+ W 81



APPENDIX 6F
Use and Misuse of t Tests

Two-sample t tests, the primary focus of this chapter, are used when comparing the mean
values of a variable in two groups of subjects. The two groups can be defined by a predictor
variable—active drug versus placebo in a randomized trial, or presence versus absence of a risk
factor in a cohort study—or they can be defined by an outcome variable, as in a case—control
study. A two-sample t test can be unpaired, if measurements obtained on a single occasion are
being compared between two groups, or paired if the change in measurements made at two
points in time, say before and after an intervention, are being compared between the groups.
A third type of t test, the one-sample paired t test, compares the mean change in measurements
at two points in time within a single group to zero or some other specified change.

Table OF illustrates the misuse of one-sample paired t tests in a study designed for between-
group comparisons—a randomized blinded trial of the effect of a new sleeping pill on quality
of life. In situations like this, some investigators have performed (and published!) findings with
two separate one-sample t tests—one each in the treatment and placebo groups.

In the table, the P values designated with a dagger (7) are from one-sample paired ¢ tests.
The first P (0.05) shows a significant change in quality of life in the treatment group during the
study; the second P value (0.16) shows no significant change in the control group. However,
this analysis does not permit inferences about differences between the groups, and it would be
wrong to conclude that there was a significant effect of the treatment.

The P values designated with a (*) represent the appropriate two-sample t test results. The
first two P values (0.87 and 0.64) are two-sample unpaired t tests that show no statistically sig-
nificant between-group differences in the initial or final measurements for quality of life. The
last P value (0.17) is a two-sample paired ¢ test; it is closer to 0.05 than the P value for the end
of study values (0.64) because the paired mean differences have smaller standard deviations.
However, the improved quality of life in the treatment group (1.3) was not significantly differ-
ent from that in the placebo group (0.9), and the correct conclusion is that the study did not
find the treatment to be effective.

TABLE 6F CORRECT (AND INCORRECT) WAYS TO ANALYZE PAIRED DATA
QUALITY OF LIFE, AS MEAN = SD

TIME OF MEASUREMENT TREATMENT (N = 100) CONTROL (N = 100) P VALUE
Baseline 7.0+45 7.1+x44 0.87*
End of study 8.3x47 8.0+ 4.6 0.64*
P value 0.05" 0.16"

Difference 1.3+2.1 09 +2.0 0.17*

*Comparing treatment with control.

'Comparing baseline with end of study.
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CHAPTER

Designing Cross-Sectional
and Cohort Studies

Stephen B. Hulley, Steven R. Cummings, and Thomas B. Newman

Observational studies have two primary purposes: descriptive, examining the distributions
of predictors and outcomes in a population, and analytic, characterizing associations between
these predictor and outcome variables. In this chapter we present two basic observational
designs, which are categorized according to the time frame for making the measurements.

In a cross-sectional study, the investigator makes all of her measurements on a single
occasion or within a short period of time. She draws a sample from the population and looks
at distributions of variables within that sample, sometimes designating them as predictors and
outcomes based on biologic plausibility and historical information. For example, if she is inter-
ested in studying the relationship between body weight and blood pressure she could measure
these variables at a single clinic visit for each study subject and examine whether subjects with
higher body weights were more likely to have hypertension.

In a cohort study measurements take place over a period of time in a group of participants
who have been identified at the beginning of the study (“the cohort”). Thus, the defining char-
acteristic of cohort studies is that a group assembled at the outset is followed longitudinally.
For example the investigator could measure body weight and blood pressure on a cohort of
study subjects at an initial clinic visit and then follow them for 5 years to determine the rela-
tionship between baseline weight and the incidence of hypertension. In this chapter we discuss
prospective and retrospective cohort designs and multiple-cohort designs. We also address
statistical analysis approaches, and the importance of optimizing cohort retention during
follow-up.

B CROSS-SECTIONAL STUDIES

In a cross-sectional study all the measurements are made at about the same time, with no
follow-up period (Figure 7.1). Cross-sectional designs are well suited to the goal of describing
variables and their distribution patterns. In the National Health and Nutrition Examination
Survey (NHANES), for example, a sample designed to represent the entire U.S. population
aged 1-74 was interviewed and examined in the early 1970s. This cross-sectional study was a
major source of information about the health and habits of the U.S. population in the year it
was carried out, providing estimates of such things as the prevalence of smoking in various de-
mographic groups. Subsequent cross-sectional NHANES surveys have been carried out periodi-
cally, and all NHANES data sets are available for public use (www.cdc.gov/nchs/nhanes.htm).

Cross-sectional studies can be used for examining associations, although the choice of which
variables to label as predictors and which as outcomes depends on the cause-and-effect hypoth-
eses of the investigator rather than on the study design. This choice is easy for constitutional
factors such as age, race, and sex; these cannot be altered by other variables and therefore are
always predictors. For other variables, however, the choice can go either way. For example, in
NHANES III there was a cross-sectional association between childhood obesity and hours spent
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watching television (1). Whether to label obesity or television-watching as the predictor and
the other as the outcome depends on the causal hypothesis of the investigator.

Unlike cohort studies, which have a longitudinal time dimension and can be used to
estimate incidence (the proportion who develop a disease or condition over time), cross-
sectional studies provide information about prevalence, the proportion who have a disease
or condition at one point in time. Prevalence matters to a clinician, who must estimate the
likelihood that the patient sitting in her office has a particular disease; the greater the preva-
lence, the greater the “prior probability” of the disease (the probability before the results of
various diagnostic tests are available; see Chapter 12). That's why more patients with knee
pain have osteoarthritis than palindromic rheumatism. Prevalence is also useful to health
planners who want to know how many people have certain diseases so that they can allocate
enough resources to care for them. When analyzing cross-sectional studies, the prevalence of
the outcome can be compared in those with and without an exposure, yielding the relative
prevalence of the outcome, the cross-sectional equivalent of relative risk (see Appendix 8A
for examples).

Sometimes cross-sectional studies describe the prevalence of ever having done something or
ever having had a disease or condition. In that case, it is important to make sure that follow-up
time is the same in those exposed and unexposed.This is illustrated in Example 7.1, in which
the prevalence of ever having tried smoking was studied in a cross-sectional study of children
with differing levels of exposure to movies in which the actors smoke. Of course, children
who had seen more movies were also older, and therefore had longer to try smoking, so it was
important to adjust for age in multivariate analyses (see Chapter 9).

Strengths and Weaknesses of Cross-Sectional Studies

A major advantage of cross-sectional studies is that there is no waiting around for the outcome
to occur. This makes them fast and inexpensive, and avoids the problem of loss to follow-up.
Another advantage is that a cross-sectional study can be included as the first step in a cohort
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EXAMPLE 7.1 Cross-Sectional Study

Sargent et al. (2) sought to determine whether exposure to movies in which the actors
smoke is associated with smoking initiation. The steps in performing the study were to:

1. Define selection criteria and recruit the population sample. The investigators did a
random-digit-dial survey of 6,522 U.S. children aged 10 to 14 years.

2. Measure the predictor and outcome variables. They quantified smoking in 532 popu-
lar movies and for each subject asked which of a randomly selected subset of 50 mov-
ies they had seen. Subjects were also asked about a variety of covariates such as age,
race, gender, parent smoking and education, sensation-seeking (e.g., “I like to do
dangerous things”), and self-esteem (e.g., “I wish I were someone else”). The outcome
variable was whether the child had ever tried smoking a cigarette.

The prevalence of ever having tried smoking varied from 2% in the lowest quartile of
movie smoking exposure to 22% in the highest quartile. After adjusting for age and other
confounders, these differences were statistically significant; the authors estimated that
38% of smoking initiation was attributable to exposure to movies in which the actors
smoke.

study or clinical trial at little or no added cost. The results define the demographic and clinical
characteristics of the study group at baseline and can sometimes reveal cross-sectional associa-
tions of interest.

However, as previously noted, it's often difficult to establish causal relationships from
cross-sectional data. Cross-sectional studies are also impractical for the study of rare diseases,
unless the sample is drawn from a population of diseased patients rather than the general
population. A case series of this sort is better suited to describing the characteristics of the
disease than to analyzing differences between these patients and healthy people, although
informal comparisons with prior experience can sometimes identify very strong risk factors.
In a case series of the first 1,000 patients with AIDS, for example, 727 were homosexual or
bisexual males and 236 were injection drug users (3). It did not require a formal control
group to conclude that these groups were at increased risk. Furthermore, within a sample of
persons with a disease there may be associations of interest, e.g., the higher risk of Kaposi’s
sarcoma among patients with AIDS who were homosexual than among those who were injec-
tion drug users.

Because cross-sectional studies measure only prevalence, rather than incidence, it is impor-
tant to be cautious when drawing inferences about the causes, prognosis, or natural history of
a disease. A factor that is associated with prevalence of disease may be a cause of the disease
but could also just be associated with duration of the disease. For example, the prevalence of
chronic renal failure is affected not only by its incidence, but also by survival once it has oc-
curred. Given the observation that obesity is associated with greater survival among dialysis pa-
tients (4), a cross-sectional study of the predictors of chronic renal failure might overestimate
the association between obesity and renal failure.

Serial Surveys

Occasionally, investigators perform a series of cross-sectional studies in the same population,
say every 5 years. This design can be used to draw inferences about changing patterns over
time. For example, Zito et al. (5), using annual cross-sectional surveys, reported that the preva-
lence of prescription psychotropic drug use among youth (<20 years old) increased more than
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threefold between 1987 and 1996 in a mid-Atlantic Medicaid population. Serial cross-sectional
surveys have a longitudinal time frame, but they are not the same as a cohort study, because
a new sample is drawn each time. As a result, changes within individuals cannot be assessed,
and findings may be influenced by people entering or leaving the population (and, thus, the
samples) due to births, deaths, and migration.

B COHORT STUDIES
Prospective Cohort Studies

Cohort was the Roman term for a group of soldiers that marched together, and in clinical re-
search a cohort is a group of subjects, specified at the outset and followed over time. In a pro-
spective cohort study, the investigator begins by assembling a sample of subjects (Figure 7.2).
She measures characteristics in each subject that might predict the subsequent outcomes, and
follows these subjects with periodic measurements of the outcomes of interest (Example 7.2).

Strengths and Weaknesses of Prospective Cohort Studies

A major advantage of the cohort design is that, unlike cross-sectional designs, it allows the cal-
culation of incidence—the number of new cases of a condition occuring over time (Table 7.1).
Measuring levels of the predictor before the outcome occurs establishes the time sequence of
the variables, which strengthens the process of inferring the causal basis of an association. The
prospective approach also prevents the predictor measurements from being influenced by the
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M FIGURE 7.2 In a prospective cohort study, the steps are to:

Define selection criteria and recruit a sample from the population (“the cohort”).

Measure the predictor variables and, if appropriate, the baseline level of the outcome variable.
Consider the option to store specimens, images, etc. for later analysis of predictors.

Follow the cohort over time, minimizing loss to follow-up.

Measure the outcome variable(s) during follow-up.
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EXAMPLE 7.2 Prospective Cohort Study

The classic Nurses’ Health Study examines incidence and risk factors for common dis-
eases in women. The steps in performing the study were to:

1. Define selection criteria and assemble the cohort. In 1976, the investigators obtained
lists of registered nurses aged 25 to 42 in the 11 most populous states and mailed
them an invitation to participate in the study; those who agreed became the cohort.

2. Measure predictor variables, including potential confounders. They mailed a ques-
tionnaire about weight, exercise, and other potential risk factors and obtained com-
pleted questionnaires from 121,700 nurses. They sent questionnaires periodically to
ask about additional risk factors and update the status of some risk factors that had
been measured previously.

3. Follow-up the cohort and measure outcomes. The periodic questionnaires also in-
cluded questions about the occurrence of a variety of disease outcomes, which were
validated by the investigators.

The prospective approach allowed investigators to make measurements at baseline
and collect data on subsequent outcomes. The large size of the cohort and long period
of follow-up provided substantial statistical power to study risk factors for cancers and
other diseases.

For example, the investigators examined the hypothesis that gaining weight increases
a woman’s risk of breast cancer after menopause (6). The women reported their weight
at age 18 in an early questionnaire, and follow-up weights in later questionnaires. The
investigators succeeded in following 95% of the women, and 1,517 breast cancers were
confirmed during the next 12 years. Heavier women had a higher risk of breast cancer
after menopause, and those who gained more than 20 kg since age 18 had a twofold
increased risk of developing breast cancer (relative risk = 2.0; 95% confidence interval,
1.4 to 2.8). Adjusting for potential confounding factors did not change the result.

outcome or knowledge of its occurrence and it allows the investigator to measure variables
more completely and accurately than is usually possible retrospectively. This is important
for predictors such as dietary habits that are difficult for a subject to remember accurately.
When fatal diseases are studied retrospectively, predictor variable measurements about the
decedent can only be reconstructed from indirect sources such as medical records or friends
and relatives.

All cohort studies share the general disadvantage of observational studies (relative to clinical
trials) that causal inference is challenging and interpretation often muddied by the influences
of confounding variables (Chapter 9). A particular weakness of the prospective design is its

TABLE 7.1 STATISTICS FOR EXPRESSING DISEASE FREQUENCY
IN OBSERVATIONAL STUDIES

TYPE OF STUDY STATISTIC DEFINITION

Cross-sectional Prevalence Number of people who have a disease or condition
at a given point in time
Number of people at risk

Cohort Incidence rate Number of people who get a disease or condition

Number of people at risk x time period at risk
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expense and inefficiency for studying rare outcomes. Even diseases we think of as relatively
common, such as breast cancer, happen at such a low rate in any given year that large numbers
of people must be followed for long periods of time to observe enough outcomes to produce
meaningful results. Cohort designs are more efficient for dichotomous outcomes that are more
common and immediate, and for continuous outcomes.

Retrospective Cohort Studies

The design of a retrospective cohort study (Figure 7.3) differs from that of a prospective one in
that the assembly of the cohort, baseline measurements, and follow-up have all happened in the
past. This type of study is only possible if adequate data about the predictors are available on a
cohort of subjects that has been assembled for other purposes, such as an electronic clinical or
administrative database (Example 7.3).

Strengths and Weaknesses of Retrospective Cohort Studies

Retrospective cohort studies have many of the strengths of prospective cohort studies, and
they have the advantage of being much less costly and time-consuming. The subjects are al-
ready assembled, baseline measurements have already been made, and the follow-up period has
already taken place. The main disadvantages are the limited control the investigator has over
the approach to sampling and follow-up of the population, and over the nature and the quality
of the baseline measurements. The existing data may be incomplete, inaccurate, or measured
in ways that are not ideal for answering the research question.
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B FIGURE 7.3 In a retrospective cohort study, the cohort selection and follow-up have occured in the past, so
the steps are to:

e |dentify an existing cohort that has some predictor information already recorded.

e Assess loss to follow-up that has occurred.

e Measure the outcome variable(s) that have already occurred.
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EXAMPLE 7.3 Retrospective Cohort Study

Pearce et al. used UK National Health Service Central Registry data to describe the risk of
leukemia and brain tumors associated with head CT scans in childhood (7). The steps in
performing the study were to:

1. Identify a suitable existing cohort. The cohort consisted of 178,604 children and
young adults aged <22 who received head CT scans between 1985 and 2002.

2. Collect predictor variable data. The investigators reviewed the records to collect gen-
der, age, numbers, and types of radiology procedures and estimated radiation dose.

3. Collect outcome data. To avoid inclusion of CT scans related to cancer diagnosis, the
investigators recorded leukemia occurring at least 2 years after the first CT, and brain
tumors at least 5 years after the first CT, through 2008.

Childhood CT scans significantly increased the risk of leukemia and brain cancer, and
the increase was dose-related; cumulative doses of 50-60 mGy tripled the risk of both
leukemia and brain cancer. However, the absolute increase in risk was low, one excess
case of each outcome per 10,000 head scans. The investigators, while noting that the
benefits of the CT scans likely outweighed these risks, urged that radiation doses from
CT scans be kept as low as possible in children, and that alternative procedures that
avoid ionizing radiation be considered whenever appropriate.

Multiple-Cohort Studies and External Controls

Multiple-cohort studies begin with two or more separate samples of subjects: typically, one
group with exposure to a potential risk factor and one or more other groups with no expo-
sure or a lower level of exposure (Figure 7.4). After defining suitable cohorts with different
levels of exposure to the predictor of interest, the investigator measures other predictor
variables, follows up the cohorts, and assesses outcomes as in any other type of cohort study
(Example 7.4).

The use of two different samples of subjects in a double-cohort design should not be con-
fused with the use of two samples in the case—control design (Chapter 8). In a double-cohort

EXAMPLE 7.4 Multiple-Cohort Design

To determine whether substantial neonatal jaundice or dehydration has adverse effects on
neurodevelopment, investigators from UCSF and Kaiser Permanente of Northern California
(8, 9) undertook a triple-cohort study. The steps in performing the study were to:

1. Identify cohorts with different exposures. The investigators used electronic databases
to identify term and near-term newborns who
1. had a maximum total serum bilirubin level of > 25 mg/dL, or
2. were readmitted for dehydration with a serum sodium of > 150 mEq/L or weight

loss of > 12% from birth, or

3. were randomly selected from the birth cohort

2. Collect outcome data. The investigators used electronic databases to search for diagno-
ses of neurological disorders and did full neurodevelopmental examinations at the age
of 5 for consenting participants (blinded to which of the three cohorts the participant
belonged to).

Neither hyperbilirubinemia nor dehydration was associated with adverse outcomes.
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M FIGURE 7.4 In a double-cohort study (which can be conducted either prospectively or retrospectively) the

steps are to:
e Select two or more cohorts from populations with different levels of the exposure (main predictor).

e Measure other predictors.
e Measure outcome variables during follow-up.

study the two groups of subjects are chosen based on the level of a predictor, whereas
in a case—control study the two groups are chosen based on the presence or absence of
an outcome.

In a variation on the multiple-cohort design, the outcome rate in a cohort can be compared
with outcome rates in census or registry data from different populations. For example, in a
classic study of whether uranium miners had an increased incidence of lung cancer, Wagoner
et al. (10) compared the incidence of respiratory cancer in 3,415 uranium miners with that of
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white men who lived in the same states. The increased incidence of lung cancer observed in
the miners helped establish occupational exposure to ionizing radiation as an important cause
of lung cancer.

Strengths and Weaknesses of Multiple-Cohort Designs

The multiple-cohort design may be the only feasible approach for studying rare exposures to
potential occupational and environmental hazards. Using data from a census or registry as the
external control group has the additional advantage of being population-based and economical.
Otherwise, the strengths of this design are similar to those of other cohort studies.

The problem of confounding is accentuated in a multiple-cohort study because the cohorts
are assembled from separate populations that can differ in important ways (besides exposure to
the predictor variable) that influence the outcomes. Although some of these differences, such
as age and race, can be matched or used to adjust the findings statistically, other characteristics
may not be measurable and create problems in the interpretation of observed associations.

B STATISTICAL APPROACH TO COHORT STUDIES

Risks, odds, and rates are estimates of the frequency of a dichotomous outcome in subjects
who have been followed for a period of time. These three measures are closely related, shar-
ing the same numerator—the number of subjects who develop the dichotomous outcome.
Implicit in these three measures is the concept of being at risk, which means that the subject
did not already have the outcome of interest at the beginning of the study. In a prospective
study of the predictors of diabetes, a woman who had diabetes at baseline would not be at
risk, since she already had the outcome of interest. On the other hand, there are episodic
diseases, like heart failure requiring admission to a hospital, in which the outcome of interest
may be the “incident” occurrence of a new episode, even if it occurs in someone who already
has the disease.

Consider a study of 1,000 people who were followed for 2 years to see who developed lung
cancer, and among whom eight new cases occurred each year. Risk, odds, and rate are shown
in Table 7.2.

Of the three measures, risk is the easiest to understand because of its everyday familiarity—
the risk of getting lung cancer in two years was 16 out of a thousand. Odds are harder to grasp
intuitively—the odds of getting lung cancer were 16 to 984; fortunately, for rare outcomes
(as in this case) the odds are quantitatively similar to risk and have no particular advantage. In
studies comparing two groups the odds ratio is also similar to the risk ratio when the outcome is

TABLE 7.2 CALCULATION OF RISK, ODDS, AND RATE FOR A STUDY OF 1,000
PEOPLE FOLLOWED FOR TWO YEARS, WITH EIGHT NEW CASES OF LUNG
CANCER EACH YEAR

STATISTIC FORMULA EXAMPLE
Risk N who develop the outcome 16 T

N at risk 1,000
Odds N who develop the outcome 16 T

N who do not develop the outcome 984
Rate* N who develop the outcome 16 cases
————=0.008 cases / Person-year
Person-time at risk 1,992 person-years

*The denominator for the rate is the number at risk in the first year (1,000), plus the number at risk in the second (992).
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rare, and this fact has unique importance in two situations: It is the basis for logistic regression
calculations, and it is used to approximate relative risk in case—control studies (Appendix 8B).
Rates, which take into account the accumulation of events over the course of time, are ex-
pressed as numbers of events divided by person-time at risk—the total amount of follow-up
for each of the study subjects so long as that individual is alive, remains in the study, and has
not yet had the outcome.

In some cohort studies significant loss to follow-up, unequal follow-up, or deaths or other
events that preclude ascertainment of the outcome may occur. In these cases it is helpful
to compare incidence rates between the groups—the number of outcomes divided by the
person-time at risk. Each subject in the study contributes months or years of person-time
from entry into the cohort until she either develops the outcome of interest or is “censored”
due to loss to follow-up or death. The incidence rate in any group in the study is the number
of outcomes in that group divided by the sum of that group’s person-time at risk. As is true
for the risk ratio (also known as relative risk), the rate ratio can be estimated as the quotient
of rates in people who do and do not have a particular risk factor. The Cox proportional
hazard model provides a method for multivariate analysis of data of this form (sometimes
called “time to event” data); it allows estimation of hazard ratios, which are similar to rate
ratios and have come into widespread use as the measure of association in Cox regression
analyses.

Other Cohort Study Issues

The hallmark of a cohort study is the need to define the cohort of subjects at the beginning of a
period of follow-up. The subjects should be appropriate to the research question and available
for follow-up. They should sufficiently resemble the population to which the results will be
generalized. The number of subjects should provide adequate power.

The quality of the study will depend on the precision and accuracy of the measurements of
predictor and outcome variables (Chapter 4). The ability to draw inferences about cause and
effect will depend on the degree to which the investigator has measured all potential confound-
ers (Chapter 9), and the ability to generalize to subgroups of the population will depend on
the degree to which the investigator has measured all sources of effect modification. Predictor
variables may change during the study; whether and how frequently measurements should be
repeated depends on cost, how much the variable is likely to change, and the importance to the
research question of observing these changes. Outcomes should be assessed using standardized
criteria, and when their assessment could be influenced by awareness of key risk factors, it is
helpful if those making the assessments can be blinded to that predictor.

Follow-up of the entire cohort is important, and prospective studies should take a
number of steps to achieve this goal (Table 7.3). Subjects who plan to move out of reach
during the study or who will be difficult to follow for other reasons should be excluded
at the outset. The investigator should collect information early on that she can use to find
subjects who move or die, including the address, telephone number, and e-mail address of
the subject, her personal physician, and at least two close friends or relatives who do not
live in the same house. Mobile telephone numbers and personal e-mail addresses are par-
ticularly helpful, as they often remain unchanged when subjects, friends, or family move or
change jobs. If feasible, obtaining the social security number will help in determining the
vital status of those lost to follow-up, and obtaining hospital discharge information from
the Social Security Administration for subjects who receive Medicare. Periodic contact with
the subjects once or twice a year helps in keeping track of them, and may improve the time-
liness and accuracy of recording the outcomes of interest. Finding subjects for follow-up
assessments sometimes requires persistent and repeated efforts by mail, e-mail, telephone,
or even house calls.
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TABLE 7.3 STRATEGIES FOR MINIMIZING LOSSES DURING FOLLOW-UP

During enrollment

1. Exclude those likely to be lost:
a. Planning to move
b. Uncertainty about willingness to return
c. lll health or fatal disease unrelated to research question
2. Obtain information to allow future tracking:
a. Address, telephone number (mobile phone numbers are particularly useful), and e-mail ad-
dress of subject
b. Social Security/Medicare number
c¢. Name, address, telephone number, and e-mail address of close friends or relatives who do not
live with the subject
d. Name, address, telephone number, and email address of physician(s)
During follow-up*

1. Periodic contact with subjects to collect information, provide results, and be supportive:
a. By telephone: may require calls during weekends and evenings
b. By mail: repeated mailings by e-mail or with stamped, self-addressed return cards
c. Other: newsletters, token gifts
2. For those who are not reached by phone or mail:
a. Contact friends, relatives, or physicians
b. Request forwarding addresses from postal service
c. Seek address through other public sources, such as telephone directories and the Internet, and
ultimately a credit bureau search
d. For subjects receiving Medicare, collect data about hospital discharges from the Social Security
Administration
e. Determine vital status from state health department or National Death Index
At all times

1. Treat study subjects with appreciation, kindness, and respect, helping them to understand the
research question so they will want to join as partners in making the study successful.

*This assumes that participants in the study have given informed consent to collect the tracking information and
for follow-up contact.

B SUMMARY

1. In a cross-sectional study, the variables are all measured at a single point in time, with
no structural distinction between predictors and outcomes. Cross-sectional studies yield
weaker evidence for causality than cohort studies because the predictor variable is not
shown to precede the outcome.

2. Cross-sectional studies are valuable for providing descriptive information about preva-
lence, and have the advantage of avoiding the time, expense, and dropout problems of a
follow-up design; they are often useful as the first step of a cohort study or experiment, and
can be linked in independently sampled serial surveys to reveal population changes over
time.

3. Cross-sectional studies require a large sample size when studying uncommon diseases and
variables in the general population, but can be useful in a case series of an uncommon disease.

4. In cohort studies, a group of subjects identified at the outset is followed over time to de-
scribe the incidence or natural history of a condition and to discover predictors (risk fac-
tors) for various outcomes. The ability to measure the predictor before the outcome occurs
establishes the sequence of events and controls bias in that measurement.

5. Prospective cohort studies begin at the outset of follow-up and may require large numbers
of subjects followed for long periods of time. The latter disadvantage can sometimes be
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overcome by identifying a retrospective cohort in which measurements of predictor vari-
ables have already occurred.

The multiple-cohort design, which compares the incidence of outcomes in cohorts that
differ in the level of a predictor variable (“the exposure”), is useful for studying the effects
of rare and occupational exposures.

Risks, odds, and rates are three ways to estimate the frequency of a dichotomous outcome
during follow-up; among these, incidence rates, which take into account person-time of
participants who remain alive and event-free in the study, are the basis for modern ap-
proaches to calculating multivariate hazard ratios using Cox proportional hazard models.
Inferences about cause and effect are strengthened by measuring and adjusting for all con-
ceivable potential confounding variables. Bias in the assessment of outcomes is prevented
by standardizing the measurements and blinding those assessing the outcome to the pre-
dictor variable values.

The strengths of a cohort design can be undermined by incomplete follow-up of subjects.
Losses can be minimized by excluding subjects at the outset who may not be available for
follow-up, by collecting baseline information that facilitates tracking, and by staying in
touch with all subjects regularly.
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CHAPTER

Designing Case—Control Studies

Thomas B. Newman, Warren S. Browner, Steven R. Cummings,

and Stephen B. Hulley

In Chapter 7 we introduced cohort studies, in which the sequence of the measurements is
the same as the chronology of cause and effect: predictor variables are measured first, then
outcomes are observed during follow-up. In contrast, in a case—control study the investigator
works backward. She begins by choosing one sample of people with the outcome (the cases)
and another sample of people without that outcome (the controls); she then compares the
levels of predictor variables in the two samples to see which predictors are associated with
the outcome. For example, a case—control study might involve assembling a group of cases
of ocular melanoma and a sample of healthy controls, followed by gathering data from each
group about previous exposure to arc welding to estimate how that exposure affects the risk of
ocular melanoma. The case—control design is relatively inexpensive and uniquely efficient for
studying rare diseases.

This chapter also presents several variations on the simple case—control design noted above.
A nested case—control design compares the incident cases nested in a cohort study with controls
drawn at random from the rest of the cohort; this design controls sampling and measurement
bias and saves money if the predictors are expensive measurements that can be made on stored
specimens or images collected at the outset of the cohort study. An incidence-density case—control
design allows investigators to analyze risk relationships, taking into account changes over time in
risk factor levels and loss to follow-up. And a nested case—cohort design allows a random sample
of the entire cohort to serve as the control for several different sets of cases. The chapter ends
with advice on choosing among the observational study designs discussed in Chapters 7 and 8.

Bl CASE-CONTROL STUDIES

Because most diseases are relatively uncommon, both cohort and cross-sectional studies of gen-
eral population samples are expensive designs, requiring thousands of subjects to identify risk
factors for a rare disease like stomach cancer. As noted in Chapter 7, a case series of patients
with the disease can identify an obvious risk factor (such as injection drug use for AIDS), using
prior knowledge of the prevalence of the risk factor in the general population. For most risk
factors, however, it is necessary to assemble a reference group, so that exposure to the risk fac-
tor in subjects with the disease (cases) can be compared with exposure to the risk factor among
subjects without the disease (controls).

Case—control studies are retrospective (Figure 8.1). The study identifies one group of
subjects with the disease and another without it, then looks backward to find differences in
predictor variables that may explain why the cases got the disease and the controls did not
(Example 8.1).

Case—control studies began as epidemiologic studies to identify risk factors for diseases. For
this reason, and because it makes the discussion easier to follow, we generally refer to “cases” as
those with the disease. However, the case—control design can also be used to look at other uncom-
mon outcomes, such as disability among those who already have a disease. In addition, when
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undesired outcomes are the rule rather than the exception, the cases in a case—control study may
be the rare patients who have had a good outcome, such as recovery from a usually fatal disease.

Case—control studies are the “house red” on the research design wine list: more modest and
a little riskier than the other selections, but much less expensive and sometimes surprisingly
good. The design of a case—control study is challenging because of the increased opportunities
for bias, but there are many examples of well-designed case—control studies that have yielded
important results. These include the links between maternal diethylstilbestrol use and vaginal
cancer in daughters (a classic study that provided a definitive conclusion based on just seven
cases!) (1), and between prone sleeping position and sudden infant death syndrome (2),
a simple result that has saved thousands of lives (3).
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EXAMPLE 8.1 Case-Control Study

Because intramuscular vitamin K is given routinely to newborns in the United States, a
pair of studies reporting a doubling in the risk of childhood cancer among those who had
received intramuscular vitamin K caused quite a stir (4, 5). To investigate this association
further, German investigators (6)

1. Selected the sample of cases. 107 children with leukemia from the German
Childhood Cancer Registry.

2. Selected the sample of controls. 107 children matched by sex and date of birth and
randomly selected from children living in the same town as the case at the time of
diagnosis (from local government residential registration records).

3. Measured the predictor variable. Reviewed medical records to determine which cases
and controls had received intramuscular vitamin K in the newborn period.

The authors found 69 of 107 cases (64%) and 63 of 107 controls (59%) had been treated
with vitamin K, for an odds ratio of 1.3 (95% confidence interval [CI], 0.7 to 2.3). (See
Appendix 8A for the calculation.) Therefore, this study did not confirm the existence of
an association between the receipt of vitamin K as a newborn and subsequent childhood
leukemia. The point estimate and upper limit of the 95% CI leave open the possibility
of a clinically important increase in leukemia in the population from which the samples
were drawn, but several other studies, and an analysis using an additional control group
in the cited study, also failed to confirm the association (7, 8).

Case—control studies cannot yield estimates of the incidence or prevalence of a disease
because the proportion of study subjects who have the disease is determined by how many
cases and how many controls the investigator chooses to sample, rather than by their propor-
tions in the population. Case—control studies do provide descriptive information on the charac-
teristics of the cases and, more important, an estimate of the strength of the association between
each predictor variable and the outcome. These estimates are in the form of odds ratios, which
approximate the relative risk if the risk of the disease in both exposed and unexposed subjects
is relatively low (about 10% or less; see Appendix 8B).

Strengths of Case-Control Studies
Efficiency for Rare Outcomes

One of the major strengths of case—control studies is their rapid, high yield of information
from relatively few subjects. Consider a study of the effect of circumcision on subsequent
carcinoma of the penis. This cancer is very rare in circumcised men but is also rare in uncir-
cumcised men, whose lifetime cumulative incidence is about 0.16% (9). To do a cohort study
with a reasonable chance (80%) of detecting even a very strong risk factor (say a relative risk
of 50) would require following more than 6,000 men for many years, assuming that roughly
equal proportions were circumcised and uncircumcised. A randomized clinical trial of circum-
cision at birth would require the same sample size, but the cases would occur at a median of
67 years after entry into the study—it would take three generations of investigators to follow
the subjects!

Now consider a case—control study of the same question. For the same chance of detecting
the same relative risk, only 16 cases and 16 controls (and not much time or effort from the
investigators) would be required. For diseases that are either rare or have long latent periods
between exposure and disease, case—control studies are not only far more efficient than other
designs, they are often the only feasible option.
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Usefulness for Generating Hypotheses

The retrospective approach of case—control studies, and their ability to examine a large number
of predictor variables, makes them useful for generating hypotheses about the causes of a new
outbreak of disease. For example, a case—control study of an epidemic of deaths from acute
renal failure in Haitian children found an odds ratio of 53 for ingestion of locally manufactured
acetaminophen syrup. Further investigation revealed that the renal failure was due to poison-
ing by diethylene glycol, which was found to contaminate the acetaminophen syrup (10), a
problem that unfortunately has recurred (11).

Weaknesses of Case—Control Studies

Case—control studies have great strengths, but they also have major disadvantages. First, only
one outcome can be studied (the presence or absence of the disease that was the criterion for
drawing the two samples), whereas cohort and cross-sectional studies (and clinical trials) can
study several outcome variables. Second, as mentioned, the information available in case—control
studies is limited: There is no direct way to estimate the incidence or prevalence of the disease,
nor the attributable or excess risk, unless the investigator also knows the exact population and
time period from which the cases arose. But the biggest weakness of case—control studies is their
susceptibility to bias. This bias comes chiefly from two sources: the separate sampling of the
cases and controls, and the retrospective measurement of the predictor variables. These two
problems and the strategies for dealing with them are the topic of the next two sections.

Sampling Bias and How to Control It

The sampling in a case—control study begins with the cases. Ideally, the sample of cases would
include everyone who developed the disease under study, or a random selection from those
cases. An immediate problem comes up, however: How do we know who has developed the
disease and who has not? In cross-sectional and cohort studies the disease is systematically
sought in all the study participants, but in case—control studies the cases must be sampled
from patients in whom the disease has already been diagnosed and who are available for study.
This sample may not be representative of all patients who develop the disease because those
who are undiagnosed, misdiagnosed, unavailable for study, or dead are unlikely to be included
(Figure 8.2).

New cases of the diseases

No medical attention

Seen elsewhere

Seen but misdiagnosed

Death or remission before diagnosis

Cases available for case—control study
B FIGURE 8.2 Some reasons that the cases in a case—control study may not
be representative of all cases of the disease.



Chapter 8 ¢ Designing Case—Control Studies 101

In general, sampling bias matters when the sample of cases is unrepresentative with respect
to the risk factor being studied. Diseases that almost always require hospitalization and are
straightforward to diagnose, such as hip fracture and traumatic amputation, can be sampled
safely from diagnosed and accessible cases, at least in developed countries. On the other hand,
conditions that may not come to medical attention are more difficult to study with case—control
studies because of the selection that precedes diagnosis. For example, women seen in a gyne-
cologic clinic with first-trimester spontaneous abortions would probably differ from the entire
population of women experiencing spontaneous abortions, many of whom do not seek medical
attention. Thus women with a prior history of infertility would be over-represented in a clinic-
based sample, while those with poor access to prenatal care would be under-represented. If
a predictor variable of interest is associated with gynecologic care in the population (such as
past use of an intrauterine device [IUD]), sampling cases from the clinic could be an important
source of bias. If, on the other hand, a predictor is unrelated to gynecologic care (such as blood
type), there would be less likelihood of a clinic-based sample being unrepresentative.

Although it is important to think about these issues, the selection of cases is often limited to
the accessible sources of subjects. The sample of cases may not be entirely representative, but it
may be all that the investigator has to work with. The difficult decisions faced by an investigator
designing a case—control study then relate to the more open-ended task of selecting appropriate
controls. The general goal is to sample controls from the population who would have become a
case in the study if they had developed the disease. Four strategies for sampling controls follow:

 Clinic- or hospital-based controls. One strategy to compensate for the possible selection bias
caused by obtaining cases from a clinic or hospital is to select controls from the same facility
or facilities. For example, in a study of past use of an IUD as a risk factor for spontaneous
abortion, controls could be sampled from a population of women seeking care for other
problems (e.g., vaginitis) at the same gynecologic clinic. Compared with a random sample
of women from the same area, these controls would presumably better represent the popula-
tion of women who, if they had a spontaneous abortion, would have come to the clinic and
become a case.

However, selection of an unrepresentative sample of controls to compensate for an
unrepresentative sample of cases can be problematic. If the risk factor of interest causes
a medical problem for which the controls seek care, the prevalence of the risk factor in
the control group will be falsely high, diminishing or reversing the association between
the risk factor and the outcome. If, for example, many women in the control group
sought attention at the clinic for a medical condition associated with past use of an TUD
(e.g., infertility from older models of IUDs), there would be an excess of former IUD users
among the controls, reducing the size of the association between past IUD use and spon-
taneous abortion in the study.

Because hospital- and clinic-based control subjects often have conditions that are associ-
ated with the risk factor(s) being studied, these types of controls can produce misleading
findings. Thus it is essential to consider whether the convenience of using hospital- or
clinic-based controls is worth the possible threat to the validity of the study.

e Using population-based samples of cases and controls. Because of the rapid increase in
the use of disease registries in geographic populations and within health plans, population-
based case—control studies are now possible for many diseases. Cases obtained from such
registries are generally representative of the general population of patients in the area with
the disease, thus simplifying the choice of a control group: It should be a representative
sample of “non-cases” from the population covered by the registry. In Example 8.1, all
residents of the town were registered with the local government, making selection of such a
sample straightforward.

When registries are available, population-based case—control studies are the most desirable
design. As a disease registry approaches completeness and the population it covers approaches



102 Section Il e Study Designs

stability (no migration in or out), a population-based case—control study approaches a case—
control study that is nested within a cohort study or clinical trial (page 104) assuming that
the controls can be identified and enrolled. Those latter tasks are relatively straightforward
when the population has been enumerated and these records are available to investigators,
as in the vitamin K and leukemia study described in Example 8.1. Lacking such registration
records, a commonly used approach is random digit dialing of (landline) phone numbers with
prefixes in the region covered by the registry. (When controls are selected this way, the cases
who have no landline telephone need to be excluded.) With increasing numbers of house-
holds with mobile phones only, this approach has become problematic (12). Random-digit
dialing including cell phone numbers is possible, but must be done carefully, immediately
ending the call if the recipient is driving and avoiding calls for which the recipient might be
charged (13).

It's important to recognize, however, that bias can be introduced any time subjects need
to be contacted to obtain information because some subjects (say, those who do not speak
English, or who are hard of hearing) may be less likely to be included. A similar problem
can occur any time informed consent is needed.

e Using two or more control groups. Because selection of a control group can be so tricky,
particularly when the cases may not be a representative sample of those with disease, it is
sometimes advisable to use two or more control groups selected in different ways. The Pub-
lic Health Service study of Reye’s syndrome and medications (14), for example, used four
types of controls: emergency room controls (seen in the same emergency room as the case),
inpatient controls (admitted to the same hospital as the case), school controls (attending the
same school or day care center as the case), and community controls (identified by random-
digit dialing). The odds ratios for salicylate use in cases compared with each of these control
groups were all at least 30 and highly statistically significant. The consistent finding of a
strong association using control groups that would have different sampling biases strength-
ens the inference that there is a real association in the population.

Unfortunately, few associations have odds ratios anywhere near that large, and the biases
associated with different strategies for selecting controls may cause the results using different
control groups to conflict with one another, thereby revealing the inherent fragility of the
case—control design for the research question at hand. When this happens, the investigator
should seek additional information (e.g., the chief complaint of clinic-based controls) to try
to determine the magnitude of potential biases from each of the control groups (Chapter 9).
In any case it is better to have inconsistent results and conclude that the answer is not
known than to have just one control group and draw the wrong conclusion.

e Matching. Matching is a simple method of ensuring that cases and controls are comparable
with respect to major factors that are related to the disease but not of interest to the investiga-
tor. So many risk factors and diseases are related to age and sex, for example, that the study
results may be unconvincing unless the cases and controls are comparable with regard to
these two variables. One approach to avoiding this problem is to choose controls that match
the cases on these constitutional predictor variables. However, matching does have substantial
disadvantages, particularly if modifiable predictors such as income or serum cholesterol level
are matched. The reasons for this and the alternatives that are often preferable to matching are
discussed in Chapter 9.

Differential Measurement Bias and How to Control It

The second major weakness of case—control studies is the risk of bias due to measurement
error. This is caused by the retrospective approach to measuring the predictor variables: both
cases and control may be asked to recall exposures that happened years before. Unfortunately,
people’s memories for past exposures are imperfect. If they are similarly imperfect in cases and
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controls, the problem is called nondifferential misclassification of the exposure, which makes
it more difficult to find associations. (In epidemiologic terms, the odds ratio is biased toward 1.)
Of greater concern, however, being diagnosed with a disease may lead cases to remember or
report their exposures differently from controls; this differential misclassification of exposure,
called recall bias, has unpredictable effects on associations measured in a study.

For example, widespread publicity about the relationship between sun exposure and malig-
nant melanoma might lead cases diagnosed with that cancer to recall their history of sun expo-
sure differently from controls. Cockburn et al. (15) found some evidence of this in a clever
study of twins discordant for melanoma: The matched odds ratio for sunbathing as a child was
2.2 (95% CI 1.0 to 4.7) when the twin with melanoma was asked which twin had sunbathed
more as a child, but only 0.8 (0.4 to 1.8) when the co-twin without melanoma was asked the
same question. However, for some other questions, such as which twin tanned or burned more
easily, there was no evidence of recall bias.

Recall bias cannot occur in a cohort study because the subjects are asked about expo-
sures before the disease has been diagnosed. A case—control study of malignant melanoma
nested within a cohort with sun exposure data collected years earlier provided a direct test
of recall bias: The investigators compared self-reported sun exposure in cases and controls
both before and after the case was diagnosed with melanoma (16). The investigators found
some inaccuracies in recollections of exposure in both cases and controls, but little evidence
of recall bias (16). Thus, while it is important to consider the possibility of recall bias, it is
not inevitable (17).

In addition to the strategies set out in Chapter 4 for controlling bias in measurements
(standardizing the operational definitions of variables, choosing objective approaches, supple-
menting key variables with data from several sources, etc.), here are two specific strategies for
avoiding bias in measuring exposures in case—control studies:

e Use data recorded before the outcome occurred. It may be possible, for example, to exam-
ine perinatal medical records in a case—control study of intramuscular vitamin K as a risk
factor for cancer. This excellent strategy is limited to the extent that recorded information
about the risk factor of interest is available and reliable. For example, information about
vitamin K administration was often missing from medical records, and how that missing
information was treated affected results of some studies of vitamin K and subsequent cancer
risk (8).

e Use blinding. The general approach to blinding was discussed in Chapter 4, but there are
some issues that are specific to designing interviews in case—control studies. In theory, both
observers and study subjects could be blinded to the case—control status of each subject and
to the risk factor being studied; thus, four types of blinding are possible (Table 8.1).

TABLE 8.1 APPROACHES TO BLINDING IN A CASE-CONTROL STUDY

PERSON BLINDED BLINDING CASE-CONTROL STATUS BLINDING RISK FACTOR MEASUREMENT
Subject Possible if both cases and con- Include “dummy” risk factors and be
trols have diseases that could suspicious if they differ between cases
plausibly be related to the risk and controls
factor

May not work if the risk factor for the
disease has already been publicized

Observer Possible if cases are not exter- Possible if interviewer is not the
nally distinguishable from investigator, but may be difficult to
controls, but subtle signs and maintain

statements volunteered by the
subjects may make it difficult
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Ideally, neither the study subjects nor the observers should know which subjects are cases
and which are controls. In practice, this is often difficult. The subjects know whether they
are sick or well, so they can be blinded to case—control status only if controls are also ill with
diseases that they believe might be related to the risk factors being studied. Efforts to blind
interviewers are hampered by the obvious nature of some diseases (an interviewer can hardly
help noticing if the subject is jaundiced or has had a laryngectomy), and by the clues that inter-
viewers may discern in the subject’s responses.

Blinding to specific risk factors being studied is usually easier than blinding to case—control
status. Case—control studies are often the first step in investigating an illness, so there may not
be just one risk factor of particular interest. Thus, the study subjects and the interviewer can be
kept in the dark about the study hypotheses by including “dummy” questions about plausible
risk factors not associated with the disease. For example, in a study of honey consumption as
a risk factor for infant botulism, equally detailed questions about yogurt and bananas could
be included in the interview. This type of blinding does not prevent differential bias, but it
allows an estimate of whether it is a problem: If the cases report more exposure to honey but
no increase in the other foods, then differential measurement bias is less likely. This strategy
would not work if the association between eating honey and infant botulism had previously
been widely publicized, or if some of the dummy risk factors turned out to be real ones.

Blinding the observer to the case—control status of the study subject is a particularly good
strategy for laboratory measurements such as blood tests and x-rays. Blinding under these
circumstances is easy and should always be done, simply by having someone other than the
individual who will make the measurement apply a coded identification label to each speci-
men (or patient). The importance of blinding was illustrated by 15 case—control studies com-
paring measurements of bone mass between hip fracture patients and controls; much larger
differences were found in the studies that used unblinded measurements than in the blinded
studies (18).

B NESTED CASE-CONTROL, INCIDENCE-DENSITY NESTED CASE-CONTROL,
AND CASE-COHORT STUDIES

A nested case—control design has a case—control study “nested” within a defined cohort
(Figure 8.3). The cohort may already have been defined by the investigator as part of a formal
cohort study, often including banking of specimens, images, and so on, to be analyzed in the future
after outcomes occur. Alternatively, the investigator can design a nested case—control study de
novo, in a cohort that is not already defined, in which case defining the cohort will be the first step.

The investigator begins by identifying a cohort of subjects at risk for the outcome that is
large enough to yield sufficient numbers of cases to answer the research question, and that
provides the ability to measure the exposure variable, either because specimens have been
banked or medical records (or subjects) with exposure information are available. As described
in Chapter 7, definition of the cohort will include the specific inclusion and exclusion criteria
that define a population at risk. In addition, the date of entry into the cohort must be clear
for each subject. This could be a fixed date (e.g., everyone meeting inclusion criteria who was
enrolled in a health plan on January 1, 2008), or it could be a variable date on which a period
at risk begins (e.g., the date of enrollment in a cohort study or the date of first myocardial
infarction in a study of risk factors for recurrent myocardial infarction).

The investigator next describes the criteria that define the occurrence of the outcome of
interest, which in all cases will be after the date of entry into the cohort and before the end of
the defined follow-up period. If the outcome is rare, follow-up close to complete, and a single
measurement of the exposure at baseline is sufficient, then it is simple. The investigator identi-
fies all the individuals in the cohort who developed the outcome by the end of follow-up (the
cases) and then selects a random sample of the subjects who were also part of the cohort but did
not develop the outcome (the controls). The investigator then measures the predictor variables



Chapter 8 ¢ Designing Case—Control Studies 105

PAST PRESENT
Population
4 \\\ Measure predictors | » All cases
/ Sample ~ 1 |
\
Predictors available \ 8 | [Measure predictors Sample of
to be measured in \ Followthecohort 3 || | controls
stored specimens, 1 0
images, etc. ,' @
3 Rest of
1 = the cohort
\
. L’ Lost to follow-up
\\ ”’, L

M FIGURE 8.3 A nested case—control study can be either prospective or retrospective. For the retrospective version,
the steps are to

Identify a cohort from the population with previously stored specimens, images, and other data.

Measure the outcome variable that distinguishes cases from controls.

Measures predictor variables in specimens, images, and other data stored since the cohort was formed, as well
as other variables, in all the cases and in a sample of the non-cases (controls).

for cases and controls, and compares levels of the risk factor in cases to the levels in the sample
of controls. This is a simple nested case—control study (Example 8.2).

If follow-up is variable or incomplete, or the exposure of interest varies over time, a single

measurement of exposure at entry into the cohort in the cases and a random sample of controls

EXAMPLE 8.2 Simple Nested Case-Control Design

To determine whether higher levels of sex hormones increased the risk of breast cancer,
Cauley (19) and colleagues conducted a nested case—control study. The basic steps in
performing this study were to:

1. Identify a cohort. The investigators used the Study of Osteoporotic Fractures (SOF)
cohort. This was a good choice because serum samples of members of this cohort had
been drawn by the same investigators during the baseline examination and put into fro-
zen storage at —190°C with the expectation that just such a study would be designed.

2. Identify cases at the end of follow-up. Based on responses to follow-up question-
naires and review of death certificates, the investigators identified 97 subjects who had
developed a first occurrence of breast cancer during 3.2 years of follow-up.

3. Select controls. The investigators selected a random sample of 244 women in the
cohort who did not develop breast cancer during that follow-up period.

4. Measure predictors. Levels of sex hormones, including estradiol and testosterone, were
measured in the samples of frozen serum from the baseline examination of cases and
controls. The laboratory was blinded to whether the samples came from cases or controls.

Women who had high levels of either estradiol or testosterone had a threefold increase in
the risk of a subsequent diagnosis of breast cancer compared with women who had very
low levels of these hormones.
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prospective version, the steps are to:
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e Define selection criteria and recruit a cohort from the population.

Define the date of entry for each member of the cohort to align follow-up times.

Store specimens, images, etc for later analysis.

e Follow the cohort to identify cases and the date they were diagnosed.

e Sample one or more controls for each case from “risk sets,” defined as members of the cohort who have
been followed for the same amount of time as the case and have not become a case, died, or been lost to
follow-up at the time the case was diagnosed.

e Measure predictor variables in specimens, images, etc. stored since baseline, as well as other current vari-
ables, on cases and matched controls.

will not be sufficient. In that case it is better to design an incidence-density nested case—control
study and sample the controls from risk sets, defined for each case as it occurs as the members
of the cohort who were followed the same length of time as the case but had not yet become
cases (Figure 8.4). As is the case for any other form of matching of controls to cases, this match-
ing on follow-up time needs to be accounted for in the analysis.

For example, if entry in the cohort was a fixed date (e.g., January 1, 2008), the controls for
a case diagnosed on July 1, 2009, would be sampled from among the subjects who had not yet
developed the outcome as of July 1, 2009. If the date of entry into the cohort was variable, con-
trols for a case diagnosed 18 months after entry would be sampled from among those who had
not yet become a case after 18 months of follow-up. Depending on the research hypothesis of
the investigator, values of the exposure at entry or at some point after entry could be compared
between cases and controls.

This sampling according to risk sets introduces the complexity that the same subject may be
selected as a control for a case that occurs early in follow-up and later become a case himself,
perhaps after his value for his exposure variable changes. In effect, what this design does (with
the help of appropriate statistical analysis) is sequentially consider chunks of person-time at
risk, for each chunk using values of predictor variables to predict occurrence of cases in that
chunk of person-time, with the boundaries of each chunk defined by the occurrence of the
cases. This is called an incidence-density design (Example 8.3).

A nested case—cohort design is similar to the simple nested case—control design except
that, instead of selecting controls who did not develop the outcome of interest, the investiga-
tor selects a random sample of all the members of the cohort, regardless of outcomes. A few
subjects who are part of that random sample may have developed the outcome (the number is
very small when the outcome is uncommon). An advantage of the case—cohort design is that a
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single random sample of the cohort can provide the controls for several case—control studies of

different outcomes. In addition, the random sample of the cohort provides information on the
overall prevalence of risk factors in the cohort.

EXAMPLE 8.3 “Incidence-Density” Nested Case-Control Design

To investigate a possible association between the oral antidiabetes drug pioglitazone
(Actos®) and bladder cancer, investigators from Montreal (20) performed a case—control
study nested within the United Kingdom General Practice Research Database, which con-
tains complete primary care medical records for more than 10 million people enrolled in
more than 600 general practices in the UK. The steps were:

1. Identify the cohort and time period at risk. The investigators included adults with
their first ever prescription for an oral antidiabetes drug between January 1, 1988,
and December 31, 2009, who had been followed in the database for at least 1 year
before that prescription and who were at least 40 years old at the time of that prescrip-
tion. The date of this first antidiabetes drug prescription was the date of entry into
the cohort. Participants were followed until a diagnosis of bladder cancer, death from
any cause, end of registration with the general practice, or end of the study period on
December 31, 2009, whichever came first. Subjects with a previous history of bladder
cancer were excluded.

2. Identify the cases, including dates of occurrence. The investigators identified incident
cases of bladder cancer using “Read codes” (a system for coding diagnoses validated
in the general practice research database [21]). To account for the expectation that
the effect of pioglitazone on cancer risk would not be expected to be immediate,
they excluded cases occurring in the first year after cohort entry. They identified
376 remaining bladder cancer cases.

3. Sample controls from “risk sets” matched to each case. The investigators sampled up
to 20 controls for each case, matched on year of birth, year of cohort entry, sex, and
duration of follow-up, who had not been diagnosed with bladder cancer up to the date
of diagnosis of the case. The total number of matched controls was 6,699 (average
number of controls per case = 17.8)."

4. Define and measure predictors. The primary predictor of interest was receipt of a pre-
scription of either pioglitazone or rosiglitazone, another antidiabetes drug in the same
class as pioglitazone. The prescription needed to be at least 1 year before the date of
diagnosis of the case in the risk set. Four exposure levels were defined: prescription
for pioglitazone only, rosiglitazone only, both, or neither.

The authors (appropriately) used conditional logistic regression to analyze the data; this
accounts for the matched nature of the data and, because of the risk-set sampling, allows
estimation of adjusted rate ratios (22). They found adjusted rate ratios of 1.83 (95% CI
1.10 to 3.05) for exclusive pioglitazone use, 1.14 (95% CI 0.78 to 1.68) for exclusive rosi-
glitazone use, and 0.78 (95% CI 0.18 to 3.29) for use of both. (The wide confidence inter-
val on the last group reflects a much smaller sample size [N = 2 cases and 56 controls]).
They also found evidence of dose-response relationship between pioglitazone use and
bladder cancer: The adjusted rate ratio for cumulative dose of 28 grams or more was 2.54
(1.05-6.14), P for dose-response trend = 0.03.

"We will point out in Chapter 9 that the gain in power from sampling more than four controls per case is slight, but in
this case the additional cost was low because electronic data were already available. Even with 20 controls per case the
nested case—control approach is much more computationally efficient than a retrospective cohort study.
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Strengths

Nested case—control and case—cohort studies are especially useful for costly measurements on
serum and other specimens or images that have been archived at the beginning of the study and
preserved for later analysis. Making expensive measurements on all the cases and a sample of
the controls is much less costly than making the measurements on the entire cohort.

This design preserves all the advantages of cohort studies that result from collecting predic-
tor variables before the outcomes have happened. In addition, it avoids the potential biases of
conventional case—control studies that cannot make measurements on fatal cases and that draw
cases and controls from different populations.

Weaknesses

These designs share certain disadvantages of other observational designs: the possibilities that
observed associations are due to the effect of unmeasured or imprecisely measured confound-
ing variables and that baseline measurements may be affected by silent preclinical disease.

Other Considerations

Nested case—control and case—cohort designs have been used less often than they should
be. An investigator planning large prospective studies should consider preserving biologic
samples (e.g., banks of frozen sera) or storing images or records that are expensive to analyze
for subsequent nested case—control analyses. She should ensure that the conditions of stor-
age will preserve substances of interest for many years. It may also be useful to collect new
samples or information during the follow-up period, which can also be used in the case—control
comparisons.

B CASE-CROSSOVER STUDIES

The case-crossover design is a variant of the case—control design that is useful for studying
the short-term effects of intermittent exposures. As with ordinary case—control studies, these
retrospective studies begin with a group of cases: people who have had the outcome of inter-
est. However, unlike traditional case—control studies, in which the exposures of the cases are
compared with exposures of a group of controls, in case-crossover studies each case serves as
her own control. Exposures of the cases at the time (or right before) the outcome occurred are
compared with exposures of those same cases at one or more other points in time.

For example, McEvoy et al. (23) studied cases who were injured in car crashes and reported
owning or using a mobile phone. Using phone company records, they compared mobile phone
usage in the 10 minutes before the crash with usage when the subjects were driving at the same
time of day 24 hours, 72 hours, and 7 days before the crash. They found that mobile phone
usage was more likely in the 10 minutes before a crash than in the comparison time periods,
with an odds ratio of about 4. The analysis of a case-crossover study is like that of a matched
case—control study, only the control exposures are exposures of the case at different time peri-
ods, rather than exposures of the matched controls. This is illustrated in Appendix 8A, scenario
number 4. Case-crossover designs have been used in large populations to study time-varying
exposures like levels of air pollution; associations have been found with myocardial infarction
(24, 25), emergency room visits for respiratory disease (26), and even infant mortality (27).

B CHOOSING AMONG OBSERVATIONAL DESIGNS

The pros and cons of the main observational designs presented in the last two chapters are
summarized in Table 8.2. We have already described these issues in detail and will make only
one final point here. Among all these designs, none is best and none is worst; each has its place
and purpose, depending on the research question and the circumstances.
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TABLE 8.2 ADVANTAGES AND DISADVANTAGES OF THE MAJOR
OBSERVATIONAL DESIGNS

DESIGN ADVANTAGES DISADVANTAGES*
Cross-sectional
Relatively short duration Does not establish sequence of
A good first step for a cohort study events
or clinical trial Not feasible for rare predictors or
Yields prevalence of multiple predic- rare outcomes
tors and outcomes Does not yield incidence
Cohort Designs
All Establishes sequence of events Often requires large sample sizes

Multiple predictors and outcomes
Number of outcome events grows
over time

Yields incidence, relative risk,
excess risk

Less feasible for rare outcomes

Prospective
cohort

More control over subject selection
and measurements
Avoids bias in measuring predictors

Follow-up can be lengthy
Often expensive

Retrospective
cohort

Follow-up is in the past
Relatively inexpensive

Less control over subject selection
and measurements

Multiple cohort

Useful when distinct cohorts have dif-
ferent or rare exposures

Bias and confounding from sampling
distinct populations

Case-Control

Useful for rare outcomes
Short duration, small sample size
Relatively inexpensive

Bias and confounding from sampling
two populations

Differential measurement bias
Limited to one outcome variable
Sequence of events may be unclear
Does not yield prevalence, incidence,
or excess risk unless nested within a
cohort

Nested
case—control

Hybrid Designs

Advantages of a retrospective
cohort design, and less costly if
measurement of predictors is
expensive

Measurements of risk factors subject
to bias if not previously measured

or based on banked specimens or
images stored previously; usually
requires a preexisting defined cohort

Incidence-
density nested
case—control

Allows investigators to analyze risk
relationships taking into account
changes over time in risk factor levels
and loss to follow-up

Requires measurements of risk
factor levels and incidence of cases
over time during follow-up; usually
requires a preexisting defined cohort

Nested
case-cohort

Same as nested case—control and can
use a single control group for mul-
tiple case—control studies with differ-
ent outcomes

Same as nested case—control

Case-crossover

Cases serve as their own con-
trols, reducing random error and
confounding

Requires that the exposure have
only immediate, short-term effects

*All these observational designs have the disadvantage (compared with randomized trials) of being susceptible to
the influence of confounding variables—see Chapter 9.

109



110

Section Il e Study Designs

B SUMMARY

1.

In a case—control study, the prevalence of a risk factor in a sample of subjects who have
the outcome of interest (the cases) is compared with the prevalence in a sample that does
not (the controls). This design, in which people with and without the disease are sampled
separately, is relatively inexpensive and uniquely efficient for studying rare diseases.

. One problem with case—control studies is their susceptibility to sampling bias. Four

approaches to reducing sampling bias are (a) to sample controls and cases in the same
(admittedly unrepresentative) way; (b) to do a population-based study; (c) to use several
control groups, sampled in different ways; and (d) to match the cases and controls.

The other major problem with case—control studies is their retrospective design, which
makes them susceptible to measurement bias affecting cases and controls differentially.
Such bias can be reduced by using measurements of the predictor made prior to the out-
come and by blinding the subjects and observers.

The best way to avoid both sampling and measurement bias is to design a nested case—
control study in which random samples of cases and controls are drawn from a larger
cohort study at its conclusion. In addition to controlling both of these biases, expensive
baseline measurements on serum, images, and so on, can be made at the end of the study
on a relatively small number of study subjects.

The incidence-density case—control design allows investigators to analyze risk relation-
ships, taking into account changes over time in risk factor levels and in the availability of
follow-up.

The nested case—cohort design uses a random sample of the entire cohort in place of the
non-cases; this can serve as a control group for studying more than one outcome, and
provides direct information on the overall prevalence of risk factors in the cohort.
Case-crossover studies are a variation on the matched case—control design in which obser-
vations at two or more points in time allow each case to serve as her own control.



APPENDIX 8A
Calculating Measures
of Association

1. Cross-sectional study. Reijneveld (28) did a cross-sectional study of maternal smoking as
a risk factor for infant colic. Partial results are shown below:

TABLE 8A.1
OUTCOME VARIABLE
PREDICTOR VARIABLE INFANT COLIC NO INFANT COLIC TOTAL
Mother smokes 15 to 15 (a) 167 (b) 182 (a + b)
50 cigarettes/day
Mother does not 111 (c) 2,477 (d) 2,588 (c + d)
smoke
Total 126 (a + o) 2,644 (b + d) 2,770 (a + b + ¢ + d)

Prevalence of colic with smoking mothers = a/(a + b) = 15/182 = 8.2%.
Prevalence of colic with nonsmoking mothers = c/(c + d) = 111/2,588 = 4.3%.
Prevalence of colic overall = (@ + ¢)/(a + b + ¢ + d) = 126/2,770 = 4.5%.

82%
43% 10

Excess prevalence” = 8.2% — 4.3% = 3.9%

Relative prevalence® =

In other words, colic was almost twice (1.9 times) as common, and occurred almost 4% more
often, among children of smoking mothers.

2. Case-control study. The research question for Example 8.1was whether there is an associa-
tion between intramuscular vitamin K and risk of childhood leukemia. The findings were
that 69/107 leukemia cases and 63/107 controls had received vitamin K. A 2 X 2 table of
these findings is as follows:

TABLE 8A.2

OUTCOME VARIABLE: DIAGNOSIS

PREDICTOR VARIABLE:

MEDICATION HISTORY CHILDHOOD LEUKEMIA CONTROL

Intramuscular vitamin K 69(a) 63(b)

No intramuscular vitamin K 38(c) 44(d)

Total 107 107
ad 69 x44

Relative risk = odds ratio = —

bc  63%x38 L.27

“Relative prevalence and excess prevalence are the cross-sectional analogs of relative risk and excess risk.

111



112 Section Il e Study Designs

Because the disease (leukemia in this instance) is rare, the odds ratio provides a good estimate
of the relative risk. Thus, leukemia was about 1.3 times more likely after receipt of vitamin K,
but this was not statistically significant.’

3. Matched case-control study.

(To illustrate the similarity between analysis of a matched case—control study and a
case-crossover study, we will use the same example for both.) The research question is
whether mobile telephone use increases the risk of car crashes among mobile telephone
owners. A traditional matched case—control study might consider self-reported frequency
of using a mobile telephone while driving as the risk factor. Then the cases would be
people who had been in crashes and they could be compared with controls who had not
been in crashes, matched by age, sex, and mobile telephone prefix to the cases. The cases
and controls would then be asked whether they ever use a mobile telephone while driving.
(To simplify, for this example, we dichotomize the exposure and consider people as either
“users” or “nonusers” of mobile telephones while driving.) We then classify each case/con-
trol pair according to whether both are users, neither is a user, or the case was a user but
not the control, or the control was a user but not the case. If we had 300 pairs, the results
might look like this:

TABLE 8A.3

CASES (WITH CRASH INJURIES)
MATCHED CONTROLS USER NONUSER TOTAL
User 110 40 150
Nonuser 90 60 150
Total 200 100 300

Table 8A.3 shows that there were 90 pairs where the case ever used a mobile phone while driv-
ing, but not the matched control, and 40 pairs where the matched control but not the case was a
“user.” Note that this 2 X 2 table is different from the 2 X 2 table from the unmatched vitamin
K study in question 2, in which each cell in the table is the number of people in that cell. In
the 2 X 2 table for a matched case—control study the number in each cell is the number of pairs
of subjects in that cell; the total N in Table 8A.3 is therefore 600 (300 cases and 300 controls).
The odds ratio for such a table is simply the ratio of the two types of discordant pairs; in the
Table 8.A.3 the OR = 90/40 = 2.25. This implies that users of mobile phones had more than
double the odds of being in a crash.

4. Case-crossover study. Now consider the case-crossover study of the same question. Data
from the study by McEvoy et al. are shown below.

TABLE 8A.4

CRASH TIME PERIOD
SEVEN DAYS BEFORE CRASH DRIVER USING PHONE NOT USING TOTAL
Driver using phone 5 6 1
Not using 27 288 315
Total 32 294 326

The authors actually did a multivariate, matched analysis, as was appropriate for the matched design, but in this case
the simple, unmatched odds ratio was almost the same as the one reported in the study.
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For the case-crossover study, each cell in the table is a number of subjects, not a number of
pairs, but each cell represents two time periods for that one subject: the time period just before
the crash and a comparison time period 7 days before. Therefore, the 5 in the upper left cell
means there were 5 drivers involved in crashes who were using a mobile phone just before they
crashed, and also using a mobile phone during the comparison period 7 days before, while the
27 just below the 5 indicates that there were 27 drivers involved in crashes who were using a
phone just before crashing, but not using a phone during the comparison period 7 days before.
Similarly, there were 6 drivers involved in crashes who were not using their phone at the time
of the crash, but were using them in the comparison time period 7 days before. The odds ratio
is the ratio of the numbers of discordant time periods, in this example 27/6 = 4.5, meaning
that driving during time periods of mobile phone use is associated with 4.5-fold higher odds of
a crash than driving during time periods when not using a mobile phone.



APPENDIX 8B
Why the Odds Ratio Can Be Used
as an Estimate for Relative Risk
in a Case—-Control Study

The data in a case—control study represent two samples: The cases are drawn from a population
of people who have the disease and the controls from a population of people who do not have
the disease. The predictor variable (risk factor) is measured, and the results can be summarized
ina 2 X 2 table like the following one:

Cases Controls
Risk factor present a b
Risk factor absent ¢ d

If this 2 X 2 table represented data from a cohort study, then the incidence of the disease
in those with the risk factor would be a/(a + b) and the relative risk would be simply [a/(a +
b)1/[c/(c + d)]. However, it is not appropriate to compute either incidence or relative risk in
this way in a case—control study because the two samples are not drawn from the population
in the same proportions. Usually, there are roughly equal numbers of cases and controls in the
study samples but many fewer cases than controls in the population. Instead, relative risk in a
case—control study can be approximated by the odds ratio, computed as the cross-product of
the 2 X 2 table, ad/cb.

This extremely useful fact is difficult to grasp intuitively but easy to demonstrate algebra-
ically. Consider the situation for the full population, represented by a’, b’, ¢’, and d'.

Disease No Disease
Risk factor present a’ b’
Risk factor absent c J

Here it is appropriate to calculate the risk of disease among people with the risk factor as a'/
(a'" + D), the risk among those without the risk factor as ¢'/(¢" + d'), and the relative risk as
[a'/(a" + b)]/[c'/(c" + d')]. We have already discussed the fact that a’/(a’” + b") is not equal to
a/(a + b). However, if the disease is relatively uncommon in both those with and without the
risk factor (as most are), then a’ is much smaller than b’, and ¢’ is much smaller than d’. This
means that a'/(a’ + b") is closely approximated by a'/b’ and that ¢'/(¢’ + d') is closely approxi-
mated by ¢'/d". Therefore, the relative risk of the population can be approximated as follows:

@/@ +b) _alb’
N+ d) I

The latter term is the odds ratio of the population (literally, the ratio of the odds of disease in
those with the risk factor, a’/b’, to the odds of disease in those without the risk factor, ¢'/d").
This can be rearranged as the cross-product:

(€)= (&6
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However, a'/c" in the population equals a/c in the sample if the cases are representative of all
cases in the population (i.e., have the same prevalence of the risk factor). Similarly, b'/d" equals
b/d if the controls are representative.

Therefore, the population parameters in this last term can be replaced by the sample param-
eters, and we are left with the fact that the odds ratio observed in the sample, ad/bc, is a close
approximation of the relative risk in the population, [a’/(a" + b")1/[c'/(c" + d")], provided that
the disease is rare.
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CHAPTER

Enhancing Causal Inference
in Observational Studies

Thomas B. Newman, Warren S. Browner, and Stephen B. Hulley

Most observational studies are designed to suggest that a predictor may be a cause of an
outcome, for example, that eating broccoli may reduce the risk of colon cancer. (Exceptions
are studies of diagnostic and prognostic tests, discussed in Chapter 12.) Causal associations
between a predictor and an outcome are important because they can provide insights into the
underlying biology of a disease, identify ways to reduce or prevent its occurrence, and even
suggest potential treatments.

However, not every association that is found in an observational study represents cause—effect.
Indeed, there are four other general explanations for an association between a predictor and an out-
come in an observational study (Table 9.1). Two of these, chance and bias, create spurious associa-
tions between the predictor and the outcome in the study sample that do not exist in the population.
Two others, effect—cause and confounding, create real associations in the population, but these asso-
ciations are not causal in the direction of interest. Establishing that cause—effect is the most likely
explanation for an association requires demonstrating that these other explanations are unlikely.

We typically quantify the causal effect of a predictor variable on an outcome using a mea-
sure of association, such as a risk ratio or odds ratio. For example, suppose that a study reveals
that coffee drinking has a risk ratio of 2.0 for myocardial infarction (MI). One possibility—
presumably the one that the investigator found most interesting—is that drinking coffee
doubles the risk of MI. Before reaching this conclusion, however, the four rival explanations
must be considered and dismissed.

With chance and bias, coffee drinking was associated with a doubled risk of MI in the study,
but that association is not actually present in the population. Thus, chance and bias are expla-
nations for spurious (i.e., not real) associations in a study.

The other two alternatives—effect—cause and confounding—are true biological phenom-
ena, which means that coffee drinkers in the population really do have twice the risk of MI.
However, that increased risk is not due to a cause—effect relationship. In one situation, the
association is due to effect—cause: having an MI causes people to drink more coffee. (This is
just cause and effect in reverse.) The final possibility, confounding, occurs when a third factor,
such as personality type, causes both coffee drinking and MI.

In the remainder of the chapter, we will discuss strategies for estimating and minimizing the
likelihood of these four alternative explanations for finding an association in an observational
study. These strategies can be used while designing a study or when analyzing its results. While
this book emphasizes research design, understanding the analytic options can influence the
choice of design, so both topics will be considered in this chapter.

B SPURIOUS ASSOCIATIONS DUE TO CHANCE

Suppose that in reality there is no association between coffee drinking and MI among members
of a population, 45% of whom drink coffee. If we were to select 20 cases with MI and 20 con-
trols, we would expect that about 9 people in each group (45% of 20) would drink coffee.
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TABLE 9.1 THE FIVE EXPLANATIONS FOR AN OBSERVED DOUBLING OF THE
RISK OF MI ASSOCIATED WITH COFFEE DRINKING

TYPE OF WHAT’S REALLY GOING
EXPLANATION ASSOCIATION ON IN THE POPULATION? CAUSAL MODEL
1. Chance (random  Spurious Coffee drinking and Ml are —
error) not related.
2. Bias (systematic  Spurious Coffee drinking and Ml are —
error) not related.
3. Effect-cause Real Ml is a cause of coffee MI — Coffee drinking
drinking.
4. Confounding Real A third factor causes both Factor X
coffee drinking and MI. / \
Coffee drinking M
5. Cause—effect Real Coffee drinking is a cause Coffee drinking — Ml

of MI.

However, by chance alone, we might enroll 12 coffee drinkers among the 20 MI cases, but only
6 in the 20 controls. If that happened, we would observe a spurious association between coffee
consumption and MI in our study.

Chance is sometimes called random error, because it has no underlying explanation. When
an association due to random error is statistically significant, it's known as a type I error
(Chapter 5).

Strategies for reducing random error are available in both the design and analysis phases
of research (Table 9.2). Design strategies, such as increasing the precision of measurements
and increasing the sample size, are discussed in Chapters 4 and 6, respectively. The analysis
strategy of calculating P values and confidence intervals helps the investigator quantify the
magnitude of the observed association in comparison with what might have occurred by chance

TABLE 9.2 STRENGTHENING THE INFERENCE THAT AN ASSOCIATION IS DUE
TO CAUSE-EFFECT BY REDUCING AND EVALUATING THE LIKELIHOOD OF
SPURIOUS ASSOCIATIONS

TYPE OF SPURIOUS DESIGN PHASE (HOW TO PREVENT

ANALYSIS PHASE (HOW TO EVALUATE

ASSOCIATION

THE RIVAL EXPLANATION)

THE RIVAL EXPLANATION)

Chance (due to
random error)

Increase sample size and other
strategies to increase precision
(Chapters 4 and 6)

Calculate P values and confidence
intervals and interpret them in the
context of prior evidence (Chapter 5)

Bias (due to
systematic error)

Carefully consider the potential
consequences of each difference
between the research question and
the study plan (Figure 9.1); alter the
study plan if necessary

Check consistency with other stud-
ies (especially those using different
designs)

Collect additional data that will allow
assessment of the extent of possible
biases

Analyze additional data to see if
potential biases have actually occurred

Do not use variables affected by
the predictor of interest as inclusion
criteria or matching variables

Do not control for variables affected by
your predictor variable
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alone. For example, a P value of 0.10 indicates that chance alone could cause a difference at
least as large as the investigators observed about 10% of the time. Even more useful than P val-
ues, confidence intervals show the possible values for statistics describing an association that
fall within the range of random error estimated in the study.

B SPURIOUS ASSOCIATIONS DUE TO BIAS

Many kinds of bias—systematic error—have been identified, and dealing with some of them is
a major topic of this book. Along with the specific strategies described in Chapters 3, 4, 7 and
8, we now add a general approach to reducing the likelihood of bias.

Minimizing Bias

As was discussed in Chapter 1, there are almost always differences between the original
research question and the one that is actually answered by the study. Those differences reflect
the compromises that were made for the study to be feasible, as well as mistakes in the design
or execution of the study. Bias occurs when those differences cause the answer provided by the

study to differ from the right answer to the research question. Strategies for minimizing bias
are available in both the design and analysis phases of research (Table 9.2).

e Design phase. Begin by writing the research question next to the study plan, as in Figure 9.1.
Then think through the following three concerns as they pertain to the research question:
1. Do the samples of study subjects (e.g., cases and controls, or exposed and unexposed
subjects) represent the population(s) of interest?
2. Do the measurements of the predictor variables represent the predictors of interest?
3. Do the measurements of the outcome variables represent the outcomes of interest?

For each question answered “No” or “Maybe not,” consider whether the bias applies
similarly to one or both groups studied (e.g., cases and controls, or exposed and unexposed
subjects) and whether the bias is likely to be large enough to affect the answer to the research
question.

To illustrate this with our coffee and MI example, consider a case—control study in which
the control subjects are sampled from patients hospitalized for diseases other than MI. If
many of these patients have chronic illnesses that led them to reduce their coffee intake, the
sample of controls will not represent the target population from which the MI cases arose:
There will be a shortage of coffee drinkers. And if esophageal spasm, which can be exacer-
bated by coffee, is misdiagnosed as MI, a spurious association between coffee and MI could
be found because the measured outcome (diagnosis of MI) did not accurately represent the
outcome of interest (actual MI).

The next step is to think about possible strategies for preventing each potential bias,
such as selecting more than one control group in a case—control study (Chapter 8) or the
strategies for reducing measurement bias described in Chapter 4. In each case, judgments
are required about the likelihood of bias and how easily it could be prevented with changes
in the study plan. If the bias is easily preventable, revise the study plan and ask the three
questions again. If the bias is not easily preventable, decide whether the study is still worth
doing by judging the likelihood of the potential bias and the degree to which it will distort
the association you are trying to estimate.

Potential biases may either be unavoidable or costly to prevent, or it may be uncertain to
what extent they will be a problem. In either case, the investigator should consider designing
the study to collect additional data that will allow an assessment of the seriousness of the
biases. For example, if the investigator is concerned that the cases in a study of pancreatic
cancer may over-report recent exposures to toxic chemicals (perhaps because these indi-
viduals are searching desperately for an explanation for why they have pancreatic cancer),
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M FIGURE 9.1 Minimizing bias by carefully considering differences between the research
question and the study plan.

they could also be asked about exposures (such as coffee drinking!) that previous studies
have shown have no effect on the risk of pancreatic cancer. If the investigator is concerned
that a questionnaire does not accurately capture coffee drinking (perhaps because of poorly
worded questions), she could assign a blinded interviewer to question a subset of the cases
and controls to determine the agreement with their questionnaire responses. Similarly, if
she is concerned that rather than causing MI, coffee increases survival among MI patients
(which could lead to coffee drinkers being over-represented in a sample of MI survivors),
the investigator could identify MI patients who died and interview their surviving spouses
about their previous coffee-drinking habits.

e Analysis phase. Once the data have been collected, the goal shifts from minimizing bias to
assessing its likely severity. The first step is to analyze data that have been collected for that
purpose. For example, an investigator anticipating imperfect memory of coffee-drinking
habits may have included questions about how sure the cases and controls are of their
answers. The association between coffee drinking and MI could then be examined after
stratifying on certainty about coffee intake, to see whether the association is stronger among
those more certain of their exposure history.

The investigator can also look at the results of other studies. If the conclusions are consis-
tent, the association is less likely to be due to bias. This is especially true if the other studies
have used different designs and are therefore unlikely to share the same biases. However, in
many situations the potential biases turn out not to be a major problem. The decision on how
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vigorously to pursue additional information and how best to discuss these issues in reporting
the study are matters of judgment for which it is helpful to seek advice from colleagues.

B REAL ASSOCIATIONS OTHER THAN CAUSE-EFFECT

In addition to chance and bias, the two types of associations that are real but do not represent
cause—effect must be considered (Table 9.3).

Effect—Cause

One possibility is that the cart has come before the horse—the outcome has caused the predic-
tor. Effect—cause is often a problem in cross-sectional and case—control studies: Does a seden-
tary lifestyle cause obesity, or vice versa? Effect—cause can also be a problem in case-crossover
studies. For example, in the study of mobile phone use and motor vehicle accidents described
in Chapter 8 (1), a car crash could cause the driver to make a mobile phone call reporting the
crash, rather than the crash having been caused by an inattentive driver. To address this pos-
sibility, the investigators asked drivers about phone use before and after the crash, and verified
the responses using phone records.

Effect—cause is less commonly a problem in cohort studies of disease causation because
risk factor measurements can be made among subjects who do not yet have the disease. Even
in cohort studies, however, effect—cause is possible if the disease has a long latent period and
those with subclinical disease cannot be identified at baseline. For example, Type II diabetes
is associated with subsequent risk of pancreatic cancer. Some of this association may well be
effect—cause, because pancreatic cancer could affect the pancreatic islet cells that secrete insu-
lin, thus causing diabetes. Consistent with effect—cause, the risk of pancreatic cancer is highest
just after diabetes is diagnosed (2). The association diminishes with the duration of diabetes,
but some association persists even 4 years or more after the onset of diabetes (2-4) suggesting
that at least some of the relationship may be cause—effect.

This example illustrates a general approach to ruling out effect—cause: looking for a dimi-
nution in the association with increasing time between the presumed cause and its effect. A
second approach is to assess the biologic plausibility of effect—cause versus cause—effect. In this
example effect-cause was plausible because pancreatic cancer could damage the pancreas, but
the observation that having diabetes for more than 10 years is associated with an increased risk
of a variety of other cancers as well as pancreatic cancer (4) increases the biologic plausibility
of diabetes causing pancreatic cancer, rather than being only one of its effects.

TABLE 9.3 STRENGTHENING THE INFERENCE THAT AN ASSOCIATION HAS
A CAUSE-EFFECT BASIS: RULING OUT OTHER REAL ASSOCIATIONS

TYPE OF REAL DESIGN PHASE (HOW TO PREVENT ANALYSIS PHASE (HOW TO EVALUATE

ASSOCIATION THE RIVAL EXPLANATION) THE RIVAL EXPLANATION)

Effect-cause (the out- Do a longitudinal study to discover Consider biologic plausibility

come |sfac|:ually (‘;P_\e which came first Compare the strength of the

cause of the predictor) Obtain data on the historic association immediately after the
sequence of the variables exposure to the predictor with
(Ultimate solution: do a e
randomized trial) Consider findings of other studies

with different designs
Confounding (another See Table 9.4 See Table 9.5

variable causes both the
predictor and outcome)
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Confounding

The other rival explanation in Table 9.3 is confounding, which occurs when a third factor is a
real cause of the outcome and the predictor of interest is associated with, but not a cause of, this
third factor. For example, if certain personality traits cause people to drink more coffee and also
to be at higher risk of MI, these personality traits will confound the association between coffee
and ML. If this is the actual explanation, then the association between coffee and MI does not
represent cause—effect, although it is perfectly real: Coffee drinking is an innocent bystander
in terms of causation.

In order to be a confounder, a variable must be associated with the predictor of interest and also
be a cause of the outcome. Confounding can be even more complicated, and sometimes, yet
another factor is involved. For example, work environment could cause people to drink coffee
and to smoke cigarettes, which is a risk factor for MI. Appendix 9A gives a numeric example
of how differences in cigarette smoking could lead to an apparent association between coffee
drinking and ML

What if coffee drinking caused smoking and smoking caused MI? In that case, smoking is
called a mediator of the (causal) association between coffee drinking and MI, not a confounder.
In general, it is best to avoid controlling for factors that lie along the causal path between a
predictor and an outcome.

Aside from bias, confounding is often the only likely alternative explanation to cause—effect
and the most important one to try to rule out. It is also the most challenging; much of the rest
of this chapter is devoted to strategies for coping with confounders. It is worth noting, however,
that all of these strategies involve judgments, and that no amount of epidemiologic or statistical
sophistication can substitute for understanding the underlying biology.

B COPING WITH CONFOUNDERS IN THE DESIGN PHASE

Most strategies for coping with confounding variables require that an investigator measure
them, so it is helpful to begin by listing the variables (like age and sex) that may be associated
with the predictor variable and also cause the outcome. The investigator must then choose
among design and analysis strategies for controlling the influence of these potential confound-
ing variables.

The first two design phase strategies (Table 9.4), specification and matching, involve
changes in the sampling scheme. Cases and controls (in a case—control study) or exposed and
unexposed subjects (in a cohort study) can be sampled in such a way that they have compa-
rable values of the confounding variable. This removes the confounder as an explanation for
any association that is observed between predictor and outcome. A third design phase strategy,
using opportunistic study designs, is only applicable to selected research questions for which
the right conditions exist. However, when applicable, these designs can resemble randomized
trials in their ability to reduce or eliminate confounding not only by measured variables, but
by unmeasured variables as well.

Specification

The simplest strategy is to design inclusion criteria that specify a value of the potential con-
founding variable and exclude everyone with a different value. For example, the investigator
studying coffee and MI could specify that only nonsmokers be included in the study. If an asso-
ciation were then observed between coffee and MI, it obviously could not be due to smoking.

Specification is an effective strategy, but, as with all restrictions in the sampling scheme, it
has disadvantages. First, even if coffee does not cause MIs in nonsmokers, it may cause them in
smokers. This phenomenon—an effect of coffee on MI that is different in smokers from that in
nonsmokers—is called effect modification (also known as an interaction); see Appendix 9A.Thus,
specification limits the generalizability of information available from a study, in this instance
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TABLE 9.4 DESIGN PHASE STRATEGIES FOR COPING WITH CONFOUNDERS

STRATEGY ADVANTAGES DISADVANTAGES

Specification e Easily understood e Limits generalizability and sample size
e Focuses the sample of subjects for
the research question at hand

Matching e Can eliminate influence of strong e May be time-consuming and
constitutional confounders like age expensive; may be less efficient than
and sex increasing the number of subjects

e Can eliminate the influence of e Decision to match must be made at
confounders that are difficult to outset of study and has an irreversible
measure effect on analysis

e Can increase power by balancing e Requires early decision about which
the number of cases and controls in variables are predictors and which are
each stratum confounders

e May be a sampling convenience, e Eliminates the option of studying
making it easier to select the matched variables as predictors or as
controls in a case—control study intervening variables

e Requires matched analysis

e Creates the danger of overmatch-
ing (i.e., matching on a factor that is
not a confounder, thereby reducing
power)

e Only feasible for case-control and
multiple-cohort studies

“Opportunistic” e Can provide great strength of causal ¢ Only possible in select circumstances

study designs inference where predictor variable is randomly
e May be a lower cost and elegant or virtually randomly assigned, or
alternative to a randomized trial instrumental variable exists

compromising our ability to generalize to smokers. A second disadvantage is that if smoking is
highly prevalent among the patients available for the study, the investigator may not be able to
recruit a large enough sample of nonsmokers. These problems can become serious if specifica-
tion is used to control too many confounders or to control them too narrowly. Sample size and
generalizability would be major problems if a study were restricted to lower-income, nonsmok-
ing, 70- to 74-year-old men.

Matching

In a case—control study, matching can be used to prevent confounding by selecting cases and
controls who have the same (matching) values of the confounding variable(s). Matching and
specification both prevent confounding by allowing comparison only of cases and controls who
share similar levels of the confounder. Matching differs from specification, however, in preserv-
ing generalizability, because subjects at all levels of the confounder can be studied.

Matching is usually done individually (pair-wise matching). To control for smoking in a
study of coffee drinking as a predictor of MI, for example, each case (a subject with an MI)
would be individually matched to one or more controls who smoked roughly the same amount
as the case (e.g., 10 to 20 cigarettes/day). The coffee drinking of each case would then be com-
pared with the coffee drinking of the matched control(s).

An alternative approach to pair-wise matching is to match in groups (frequency matching).
For each level of smoking, the cases with that amount of smoking are counted, and an appro-
priate number of controls with the same level of smoking are selected. If the study called for
two controls per case and there were 20 cases who smoked 10 to 20 cigarettes/day, the investi-
gators would select 40 controls who smoked this amount, matched as a group to the 20 cases.
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Matching is most commonly used in case—control studies, but it can also be used with

multiple-cohort designs. For example, to investigate the effects of service in the 1990-1991 Gulf
War on subsequent fertility in male veterans, Maconochie et al. (5) compared men deployed to
the Gulf region during the war with men who were not deployed, but were frequency-matched
by service, age, fitness to be deployed, and so on. They found a slightly higher risk of reported
infertility (OR ~1.5) and a longer time to conception in the Gulf War veterans.

Advantages to Matching (Table 9.4)

Matching is an effective way to prevent confounding by constitutional factors like age,
sex, and race that are strong determinants of outcome, not susceptible to intervention, and
unlikely to be intermediaries on a causal path.

Matching can be used to control confounders that cannot be measured and controlled in
any other way. For example, matching siblings (or, better yet, twins) with one another can
control for a whole range of genetic and familial factors that would be impossible to mea-
sure. Matching for clinical center in a multicenter study can control for unspecified differ-
ences among the populations or staff at geographically dispersed centers.

Matching may increase the precision of comparisons between groups (and therefore the
power of the study to find a real association) by balancing the number of cases and controls
at each level of the confounder. This may be important if the available number of cases is
limited or if the cost of studying the subjects is high. However, the effect of matching on
precision is modest and not always favorable (see “overmatching,” p. 125). In general, the
desire to enhance precision is a less important reason to match than the need to control
confounding.

Finally, matching may be used primarily as a sampling convenience, to narrow down an oth-
erwise impossibly large number of potential controls. For example, in a study of marijuana use
as a risk factor for testicular germ cell tumors, investigators asked cases (men with testicular
tumors) to suggest friends of similar age without tumors to be in the control group (6). This
convenience, however, also runs the risk of overmatching.

Disadvantages to Matching (Table 9.4)

Matching requires additional time and expense to identify a match for each subject. In case—
control studies, for example, the more matching criteria there are, the larger the pool of con-
trols that must be searched to match each case. The possible increase in statistical power from
matching must therefore be weighed against the increase in power that might be obtained by
enrolling more cases.

When matching is used as a sampling strategy, the decision to match must be made at the
beginning of the study. It is therefore irreversible. This precludes further analysis of the
effect of the matched variables on the outcome. It also can create a serious error if the match-
ing variable is not a constitutional variable like age or sex, but an intermediary in the causal
path between the predictor and outcome. For example, if an investigator wishing to inves-
tigate the effects of alcohol intake on risk of MI matched on serum high-density lipoprotein
(HDL) levels, she would miss any beneficial effects of alcohol that are mediated through
an increase in HDL. Although the same error can occur with the analysis phase strategies,
matching builds the error into the study in a way that cannot be undone; with the analysis
phase strategies the error can be avoided by altering the analysis.

Correct analysis of pair-matched data requires special analytic techniques (matched
analyses) that compare each subject only with her match, and not with other subjects who
have differing levels of confounders. This means cases for whom a match cannot be found
cannot be included. In the study of marijuana use and germ cell tumors, 39 of the 187 cases
did not provide a friend control (6). The authors had to exclude these 39 cases from the
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matched analysis. The use of unmatched analytic techniques on matched data can lead to
incorrect results (generally biased toward no effect) because the assumption that the groups
are sampled independently is violated.

e A final disadvantage of matching is the possibility of overmatching, which occurs when
the matching variable is associated with the predictor but turns out not to be a confounder
because it is not associated with the outcome. Overmatching can reduce the power of a
case—control study, because the matched analysis discards matched case—control sets with
the same level of exposure (Appendix 8A.3). In the marijuana and germ cell tumor study, for
example, use of friend controls may have reduced the power by increasing the concordance
in exposures between cases and their matched controls: Friends might tend to have similar
patterns of marijuana use.

Opportunistic Studies

Occasionally, there are opportunities to control for confounding variables in the design
phase, even without measuring them; we call these “opportunistic” designs because they uti-
lize unusual opportunities for controlling confounding. One example, useful when studying
the immediate effects of short-term exposures, is the case-crossover study (Chapter 8)—all
potential confounding variables that are constant over time (e.g., sex, race, social class, genetic
factors) are controlled because each subject is compared only with herself in a different time
period.

Another opportunistic design involves a natural experiment, in which subjects are either
exposed or not exposed to a particular risk factor through a process that, in effect, acts ran-
domly (7). For example, Lofgren et al. (8) studied the effects of discontinuity of in-hospital care
by taking advantage of the fact that patients admitted after 5:00 PM to their institution were
alternately assigned to senior residents who either maintained care of the patients or trans-
ferred them to another team the following morning. They found that patients whose care was
transferred had 38% more laboratory tests ordered (P = 0.01) and 2-day longer median length
of stay (P = 0.06) than those kept on the same team. Similarly, Bell and Redelmeier (9) studied
the effects of nursing staffing by comparing outcomes for patients with selected diagnoses who
were admitted on weekends to those admitted on weekdays. They found higher mortality from
all three conditions they predicted would be affected by reduced weekend staffing ratios, but
no increase in mortality for patients hospitalized for other conditions.

As genetic differences in susceptibility to an exposure are elucidated, a strategy called
Mendelian randomization (10) becomes an option. This strategy works because, for common
genetic polymorphisms, the allele a person receives is determined at random within families,
and not linked to most confounding variables. For example, some farmers who dip sheep in
insecticides (to kill ticks, lice, etc.) have health complaints, such as headache and fatigue, that
might be due to that occupational insecticide exposure. Investigators (11) took advantage of
a polymorphism in the paraoxonase-1 gene, which leads to enzymes with differing ability to
hydrolyze the organophosphate insecticide (diazinonoxon) used in sheep dip. They found that
exposed farmers with health complaints were more likely to have alleles associated with reduced
paraoxonase-1 activity than similarly exposed but asymptomatic farmers. This finding provided
strong evidence of a causal relationship between exposure to sheep dip and health problems.

Natural experiments and Mendelian randomization are examples of a more general approach
to enhancing causal inference in observational studies, the use of instrumental variables. These
are variables associated with the predictor of interest, but not independently associated with the
outcome. Whether someone is admitted on a weekend, for example, is associated with staffing
levels, but was thought not to be otherwise associated with mortality risk (for the diagnoses
studied), so admission on a weekend can be considered an instrumental variable. Similarly,
activity of the paraoxonase-1 enzyme is associated with possible toxicity due to dipping sheep,
but not otherwise associated with ill health. Other examples of instrumental variables are draft
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lottery numbers to investigate delayed effects on mortality of military service during the Vietnam
War era (12); and whether long-term survival for early-stage kidney cancer depends on how
far someone lives from a urologist who does partial nephrectomies versus one who only does
radical nephrectomies (13).

B COPING WITH CONFOUNDERS IN THE ANALYSIS PHASE

The Design phase strategies specification and matching require deciding at the outset of the
study which variables are confounders, and the investigators cannot subsequently estimate
the effects of those confounders on an outcome. By contrast, analysis phase strategies keep
the investigator’s options open, so that she can change her mind about which variables to
control for at the time of analysis.

Sometimes there are several predictor variables, each of which may act as a confounder to
the others. For example, although coffee drinking, smoking, male sex, and personality type are
associated with MI, they are also associated with each other. The goal is to determine which of
these predictor variables are independently associated with MI and which are associated with
MI only because they are associated with other (causal) risk factors. In this section, we discuss
analytic methods for assessing the independent contribution of predictor variables in observa-
tional studies. These methods are summarized in Table 9.5."

Stratification

Like specification and matching, stratification ensures that only cases and controls (or exposed
and unexposed subjects) with similar levels of a potential confounding variable are compared.
It involves segregating the subjects into strata (subgroups) according to the level of a potential
confounder and then examining the relation between the predictor and outcome separately in
each stratum. Stratification is illustrated in Appendix 9A. By considering smokers and nonsmokers
separately (“stratifying on smoking”), the confounding effects of smoking can be removed.

Appendix 9A also illustrates effect modification, in which stratification reveals that the asso-
ciation between predictor and outcome varies with (is modified by) the level of a third factor.
Effect modification introduces additional complexity, because a single measure of association
no longer can summarize the relationship between predictor and outcome. By chance alone,
the estimates of association in different strata will rarely be precisely the same, and it is only
when the estimates vary markedly that the findings suggest effect modification. Clinically sig-
nificant effect modification is uncommon, and before concluding that it is present it is neces-
sary to assess its statistical significance, and, especially if many subgroups have been examined
(increasing the likelihood of at least one being statistically significant due to chance), to see if it
can be replicated in another population. Biologic plausibility, or the lack thereof, may also con-
tribute to the interpretation. The issue of effect modification also arises for subgroup analyses
of clinical trials (Chapter 11), and for meta-analyses when homogeneity (similarity) of studies
is being considered (Chapter 13).

Stratification has the advantage of flexibility: by performing several stratified analyses, the
investigator can decide which variables appear to be confounders and ignore the remainder.
This can be done by combining knowledge about the likely directions of causal relationships
with analyses determining whether the results of stratified analyses substantially differ from
those of unstratified analyses (see Appendix 9A). Stratification also has the advantage of being
reversible: No choices need be made at the beginning of the study that might later be regretted.

!Similar questions arise in studies of diagnostic tests (Chapter 12), but in those situations the goal is not to determine a
causal effect, but to determine whether the test being studied adds substantial predictive power to information already
available at the time it was done.
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TABLE 9.5 ANALYSIS PHASE STRATEGIES FOR COPING WITH CONFOUNDERS

STRATEGY ADVANTAGES DISADVANTAGES
Stratification e Easily understood e Number of strata limited by sample
e Flexible and reversible; can choose size needed for each stratum
which variables to stratify upon after e Few covariables can be considered
data collection e Few strata per covariable leads to

incomplete control of confounding
e Relevant covariables must have been

measured
Statistical e Multiple confounders can be con- e Model may not fit:
adjustment trolled simultaneously ¢ Incomplete control of
e Information in continuous variables confounding (if model does not fit
can be fully used confounder-outcome relationship)
e Flexible and reversible ¢ Inaccurate estimates of strength

of effect (if model does not fit
predictor-outcome relationship)

e Results may be hard to under-
stand. (Many people do not readily
comprehend the meaning of a
regression coefficient.)

e Relevant covariables must have been

measured
Propensity e Multiple confounders can be e Results may be hard to understand
scores controlled simultaneously ¢ Relevant covariables must have been
¢ Information in continuous variables measured
can be fully used e Can only be done for exposed and
e Enhances power to control for con- unexposed subjects with overlapping
founding when more people receive propensity scores, reducing sample
the treatment than get the outcome size

¢ If a stratified or matched analysis
is used, does not require model
assumptions

e Flexible and reversible

e Lack of overlap of propensity scores
can highlight subgroups in whom
control of confounding is difficult or
impossible

The principal disadvantage of stratified analysis is the limited number of variables that can
be controlled simultaneously. For example, possible confounders in the coffee and MI study
might include age, personality type, systolic blood pressure, serum cholesterol, and cigarette
smoking. To stratify on these five variables with only three strata for each would require
3 = 243 strata! With this many strata there will be some strata with no cases or no controls,
and these strata cannot be used.

To maintain a sufficient number of subjects in each stratum, a variable is often divided into
broader strata. When the strata are too broad, however, the confounder may not be adequately
controlled. For example, if the preceding study stratified age using only two strata (e.g., <50
and =50 years), some residual confounding would still be possible if within each age stratum
the subjects drinking the most coffee were older and therefore at higher risk of ML

Adjustment

Several statistical techniques are available to adjust for confounders. These techniques model
the nature of the associations among the variables to isolate the effects of predictor variables and
confounders. For example, a study of the effect of lead levels on the intelligence quotient (IQ)
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in children might examine parental education as a potential confounder. Statistical adjustment
might model the relation between parents’ years of schooling and the child’s IQ as a straight
line, in which each year of parent education is associated with a fixed increase in child IQ. The
1Qs of children with different lead levels could then be adjusted to remove the effect of parental
education using the approach described in Appendix 9B.

Often, an investigator wants to adjust simultaneously for several potential confounders—
such as age, sex, race, and education. This requires using multivariate adjustment techniques,
such as multivariable linear or logistic regression, or Cox proportional hazards analysis. These
techniques have another advantage: They enable the use of all the information in continuous
variables. It is easy, for example, to adjust for a parent’s education level in 1-year intervals,
rather than stratifying into just a few categories. In addition, interaction terms can be used to
model effect modification among the variables.

There are, however, disadvantages of multivariate adjustment. Most important, the
model may not fit. Computerized statistical packages have made these models so acces-
sible that the investigator may not stop to consider whether their use is appropriate for the
predictor and outcome variables in the study.’ Taking the example in Appendix 9B, the
investigator should examine whether the relation between the parents’ years of schooling
and the child’s IQ is actually linear. If the pattern is very different (e.g., the slope of the line
becomes steeper with increasing education) then attempts to adjust IQ for parental educa-
tion using a linear model will be imperfect and the estimate of the independent effect of
lead will be incorrect.

Second, the resulting statistics are often difficult to understand. This is particularly a prob-
lem if transformations of variables (e.g., parental education squared) or interaction terms are
used. Investigators should spend the necessary time with a statistician (or take the necessary
courses) to make sure they can explain the meaning of coefficients or other highly derived sta-
tistics they plan to report. As a safety precaution, it is a good idea always to start with simple,
stratified analyses, and to seek help understanding what is going on if more complicated analy-
ses yield substantially different results.

Propensity Scores

Propensity scores can be particularly useful for observational studies of treatment efficacy to
control confounding by indication—the problem that patients for whom a treatment is indi-
cated (and prescribed) are often at higher risk, or otherwise different, from those who do not
get the treatment. Recall that in order to be a confounder, a variable must be associated with
both the predictor and outcome. Instead of adjusting for all factors that predict outcome, use
of propensity scores involves creating a multivariate model to predict receipt of the treatment.
Each subject can then be assigned a predicted probability of treatment—a “propensity score.”
This single score can be used as the only confounding variable in a stratified or mutlivariable
analysis.

Alternatively, subjects who did and did not receive the treatment can be matched by pro-
pensity score, and outcomes compared between matched pairs. Unlike use of matching as a
design-phase (sampling) strategy, propensity matching resembles other analysis phase strate-
gies in being reversible. However, matched propensity analyses fail for subjects who cannot be
matched because their propensity scores are close to 0 or 1. While this reduces sample size, it
may be an advantage because in these unmatchable subjects the propensity score analysis has
identified a lack of comparability between groups and inability to control for confounding that
might not have been apparent with other methods of multivariable analysis.

3One of our biostatistician colleagues has quipped that trying to design a user-friendly, intuitive statistical software
package is like trying to design a car so that a child can reach the pedals.
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EXAMPLE 9.1 Propensity Analysis

Gum et al. (14) prospectively studied 6,174 consecutive adults undergoing stress
echocardiography, 2,310 of whom (37%) were taking aspirin and 276 of whom died in
the 3.1-year follow-up period. In unadjusted analyses, aspirin use was not associated
with mortality (4.5% in both groups). However, when 1,351 patients who had received
aspirin were matched to 1,351 patients with the same propensity to receive aspirin but
who did not, mortality was 47% lower in those treated (P = 0.002).

Analyses using propensity scores have several advantages. The number of potential con-
founding variables that can be modeled as predictors of an intervention is usually greater
than the number of variables that can be modeled as predictors of an outcome, because the
number of people treated is generally much greater than the number who develop the outcome
(2,310 compared with 276 in the Example 9.1). Another reason that more confounders can be
included is that there is no danger of “overfitting” the propensity model—interaction terms,
quadratic terms, and multiple indicator variables can all be included (15). Finally, investigators
are usually more confident in identifying the determinants of treatment than the determinants
of outcome, because the treatment decisions were made by clinicians based on a limited num-
ber of patient characteristics.

Of course, like other multivariate techniques, use of propensity scores still requires that
potential confounding variables be identified and measured. A limitation of this technique
is that it does not provide information about the relationship between any of the confound-
ing variables and outcome—the only result is for the predictor (usually, a treatment) that
was modeled. However, because this is an analysis phase strategy, it does not preclude
doing more traditional multivariate analyses as well, and both types of analysis are usually
done.

B OTHER PITFALLS IN QUANTIFYING CAUSAL EFFECTS
Conditioning on a Shared Effect

The bias caused by conditioning on a shared effect is kind of tricky, and it is sometimes skipped
in introductory textbooks because most explanations of it use abstract diagrams and notation.
By contrast, we will first give a few examples of how it might occur, and then try to explain
what the name means.

Consider a study of people who have lost at least 15 pounds in the previous year. An investi-
gator finds that the subjects who have been dieting have a lower risk of cancer than those who
have not been dieting. Do you think dieting prevented cancer in these subjects?

If you stop and think, you'll probably answer no, because cancer also causes weight loss.
You can imagine that if someone loses weight for no apparent reason it is much more likely to
signify a cancer than if someone loses weight while dieting. Among people who have lost weight,
if the weight loss was not caused by dieting, it is more likely to have been caused by something
more ominous. The investigators created an inverse association between dieting and cancer by
conditioning on (restricting attention to) a shared effect (weight loss, which is caused by both
dieting and cancer).

Here’s another example. Among low birth weight babies, those whose mothers smoked
during pregnancy have lower infant mortality than those whose mothers did not smoke (16).
Should we encourage more mothers to smoke during pregnancy? Definitely not! The reason
for this observation is that smoking causes low birth weight, but so do other things, especially
prematurity. So among low birth weight babies, if the low birth weight was not caused by smok-
ing, it is more likely to have been caused by prematurity. The investigators created an inverse
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association between smoking and prematurity (and its associated mortality risk) by condition-
ing on (restricting attention to) a shared effect (low birth weight, which is caused by both
smoking and prematurity).

Now the phrase “conditioning on a shared effect” makes sense. Conditioning is an epide-
miologic term that means looking at associations between predictor and outcome variables
“conditioned on” (i.e., at specified levels of) some attribute. A shared effect refers to an attri-
bute (like losing weight, or being a low birth weight baby) that has several causes. Bias due to
conditioning on a shared effect can occur if the investigator treats something caused by the risk
factor being studied as an inclusion criterion, a matching variable, or a possible confounding
variable.

Underestimation of Causal Effects

To this point, our emphasis has been on evaluating the likelihood of alternative explanations for
an association, in order to avoid concluding that an association is real and causal when it is not.
However, another type of error is also possible—underestimation of causal effects. Chance, bias,
and confounding can also be reasons why a real association might be missed or underestimated.

We discussed chance as a reason for missing an association in Chapter 5, when we reviewed
type II errors and the need to make sure the sample size will provide adequate power to find
real associations. After a study has been completed, however, the power calculation is no longer
a good way to quantify uncertainty due to random error. At this stage a study’s hypothetical
power to detect an effect of a specified size is less relevant than the actual findings, expressed
as the observed estimate of association (e.g., risk ratio) and its 95% confidence interval (17).

Bias can also distort estimates of association toward no effect. In Chapter 8, the need for
blinding in ascertaining risk factor status among cases and controls was to avoid differential
measurement bias, for example, differences between the cases and controls in the way ques-
tions were asked or answers interpreted that might lead observers to get the answers they
desire. Because observers might desire results in either direction, differential measurement bias
can bias results to either overestimate or underestimate causal effects. Non-differential bias, on
the other hand, will generally lead to underestimation of associations.

Confounding can also lead to attenuation of real associations. For example, suppose coffee
drinking actually protected against MI, but was more common in smokers. If smoking were not
controlled for, the beneficial effects of coffee might be missed—coffee drinkers might appear
to have the same risk of MI as those who did not drink coffee, when their higher prevalence
of smoking should have caused their risk to be higher. This type of confounding, in which
the effects of a beneficial factor are hidden by its association with a cause of the outcome, is
sometimes called suppression (18). It is a common problem for observational studies of treat-
ments, because treatments are often most indicated in those at higher risk of a bad outcome.
The result, noted earlier, is that a beneficial treatment can appear to be useless (as aspirin did
in Example 9.1) or even harmful until the confounding by indication is controlled.

B CHOOSING A STRATEGY

What general guidelines can be offered for deciding whether to cope with confounders dur-
ing the design or analysis phases, and how best to do it? The use of specification to control
confounding is most appropriate for situations in which the investigator is chiefly interested in
specific subgroups of the population; this is really just a special form of the general process of
establishing criteria for selecting the study subjects (Chapter 3). However, for studies in which
causal inference is the goal, there’s the additional caution to avoid inclusion criteria that could
be caused by predictor variables you wish to study (i.e., conditioning on a shared effect).

An important decision to make in the design phase of the study is whether to match. Match-
ing is most appropriate for case—control studies and fixed constitutional factors such as age,
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race, and sex. Matching may also be helpful when the sample size is small compared with the
number of strata necessary to control for known confounders, and when the confounders are
more easily matched than measured. However, because matching can permanently compromise
the investigator’s ability to observe real associations, it should be used sparingly, particularly
for variables that may be in the causal chain. In many situations the analysis phase strategies
(stratification, adjustment, and propensity scores) are just as good for controlling confound-
ing, and have the advantage of being reversible—they allow the investigator to add or subtract
covariates to explore different causal models.

Although not available for all research questions, it is always worth considering the possibil-
ity of an opportunistic study design. If you don’t stop and consider (and ask your colleagues
about) these studies, you might miss a great opportunity to do one.

The final decision to stratify, adjust, or use propensity scores need not be made until after
the data are collected; in many cases the investigator may wish to do all of the above. However,
it is important during study design to consider which factors may later be used for adjustment,
in order to know which variables to measure. In addition, because different analysis phase
strategies for controlling confounding do not always yield the same results, it is best to specify
a primary analysis plan in advance. This may help investigators resist the temptation of select-
ing the strategy that provides the most desired results.

Evidence Favoring Causality

The approach to enhancing causal inference has largely been a negative one thus far—how to
rule out the four rival explanations in Table 9.1. A complementary strategy is to seek character-
istics of associations that provide positive evidence for causality, of which the most important
are the consistency and strength of the association, the presence of a dose-response relation,
and biologic plausibility.

When the results are consistent in studies of various designs, it is less likely that chance or
bias is the cause of an association. Real associations that represent effect—cause or confound-
ing, however, will also be consistently observed. For example, if cigarette smokers drink more
coffee and have more MIs in the population, studies will consistently observe an association
between coffee drinking and ML

The strength of the association is also important. For one thing, stronger associations give
more significant P values, making chance a less likely explanation. Stronger associations also
provide better evidence for causality by reducing the likelihood of confounding. Associations
due to confounding are indirect (i.e., via the confounder) and therefore are generally weaker
than direct cause—effect associations. This is illustrated in Appendix 9A: The strong associations
between coffee and smoking (odds ratio = 16) and between smoking and MI (odds ratio = 4) led
to a much weaker association between coffee and MI (odds ratio = 2.25).

A dose-response relation provides positive evidence for causality. The association between
cigarette smoking and lung cancer is an example: Moderate smokers have higher rates of cancer
than do nonsmokers, and heavy smokers have even higher rates. Whenever possible, predictor
variables should be measured continuously or in several categories, so that any dose-response
relation that is present can be observed. Once again, however, a dose-response relation can be
observed with effect—cause associations or with confounding.

Finally, biologic plausibility is an important consideration for drawing causal inference—if
a causal mechanism that makes sense biologically can be proposed, evidence for causality is
enhanced, whereas associations that do not make sense given our current understanding of
biology are less likely to represent cause—effect. For example, in the study of marijuana use as
a risk factor for germ cell tumors, use of marijuana less than once a day was associated with
lower risk than no use (6). It is hard to explain this biologically.

It is important not to overemphasize biologic plausibility, however. Investigators seem to be
able to come up with a plausible mechanism for virtually any association and some associations
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originally dismissed as biologically implausible, such as a bacterial etiology for peptic ulcer
disease, have turned out to be real.

B SUMMARY

1. The design of observational studies should anticipate the need to interpret associations.
The inference that the association represents a cause—effect relationship (often the goal
of the study) is strengthened by strategies that reduce the likelihood of the four rival
explanations—chance, bias, effect—cause, and confounding.

2. The role of chance (random error) can be minimized by designing a study with adequate
sample size and precision to assure low type I and type II error rates. Once the study is
completed, the effect of random error can be judged from the width of the 95% confidence
interval and the consistency of the results with previous evidence.

3. Bias (systematic error) arises from differences between the population and phenomena
addressed by the research question and the actual subjects and measurements in the study.
Bias can be minimized by basing design decisions on a judgment as to whether these dif-
ferences will lead to a wrong answer to the research question.

4. Effect—cause is made less likely by designing a study that permits assessment of temporal
sequence, and by considering biologic plausibility.

5. Confounding, which may be present when a third variable is associated with the predictor
of interest and is a cause of the outcome, is made less likely by the following strategies,
most of which require potential confounders to be anticipated and measured:

a. Specification or matching in the design phase, which alters the sampling strategy to
ensure that only groups with similar levels of the confounder are compared. These strat-
egies should be used judiciously because they can irreversibly limit the information
available from the study.

b. Analysis phase strategies that accomplish the same goal and preserve options for inves-
tigating causal paths:

e Stratification, which in addition to controlling for confounding can reveal effect
modification (“interaction”), a different magnitude of predictor-outcome associa-
tion at different levels of a third variable.

e Adjustment, which can permit the impact of many predictor variables to be con-
trolled simultaneously.

e Propensity scores, which enhance the power for addressing confounding by indica-
tion in observational studies of treatment efficacy.

6. Investigators should be on the lookout for opportunistic observational designs, including
natural experiments, Mendelian randomization, and other instrumental variable designs,
that offer a strength of causal inference that can approach that of a randomized clinical
trial.

7. Investigators should avoid conditioning on shared effects in the design phase by not
selecting subjects based on covariates that might be caused by the predictor, and in the
analysis phase by not controlling for these covariates.

8. Causal inference can be enhanced by positive evidence, notably the consistency and
strength of the association, the presence of a dose-response relation, and biologic
plausibility.



APPENDIX 9A

Hypothetical Example of
Confounding and Effect
Modification

The entries in these tables are numbers of subjects in this hypothetical case—control study

Panel 1. If we look at the entire group of study subjects, there appears to be an association
between coffee drinking and MI:

Smokers and Nonsmokers Combined

M No Mi
Coffee 920 60
No coffee 60 90

Odds ratios (OR) for MI associated with coffee _ 90 X 90

= =225
in smokers and nonsmokers combined 60 X 60

Panel 2. However, this could be due to confounding, as shown by the tables stratified on smok-
ing which show that coffee drinking is not associated with MI in either smokers or

nonsmokers:
Smokers Nonsmokers
Mi No MI Mi No Ml
Coffee 80 40 Coffee 10 20
No coffee 20 10 No coffee 40 80

Odds ratios for MI associated with coffee:

1 1
80> 10 =1 OR in nonsmokers = 1080 =1
20 X 40 40 % 20
Smoking is a confounder because it is strongly associated with coffee drinking
(below, left panel) and with MI (below, right panel): These tables were obtained by
rearranging numbers in Panel 2.

OR in smokers =

Ml and No Ml Combined Coffee and No Coffee Combined
Coffee No Coffee Ml No MlI

Smokers 120 30 Smokers 100 50
Nonsmokers 30 120 Nonsmokers 50 100

Odds ratio for coffee drinking Odds ratio for MI associated with

120 x 120 100 x 100
associated with smoking = ——— =16 smoking = ——— =4
30 x 30 50 %X 50
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Panel 3. The association between coffee drinking and MI in Panel 1 could also represent effect
modification, if stratification on smoking revealed that the association between coffee
drinking and MI differs in smokers and nonsmokers. In the table below, the OR of
2.25 for the association between coffee drinking and MI in smokers and nonsmokers
combined is due entirely to a strong association in smokers. When effect modifica-
tion is present, the odds ratios in different strata are different, and must be reported

separately:
Smokers Nonsmokers
M No MI M No Mi
Coffee 50 15 Coffee 40 45
No coffee 10 33 No coffee 50 57

Odds ratios for MI associated with coffee:

M =11 OR in nonsmokers = M =1
15 x 10 45 % 50

OR in smokers =

Bottom Line: The overall association between coffee drinking and MI in Panel 1 could be hiding
the presence of confounding by smoking, which would be revealed by stratification on smoking
(Panel 2). Or it could be hiding the presence of effect modification by smoking, which would
also be revealed by stratification on smoking (Panel 3). It could also represent cause-effect,
which would be supported (though not proven) if stratification on smoking did not alter the
association between coffee drinking and MI. Finally (and most realistically), if could be a result
of some mixture of all of the above.



APPENDIX 9B
A Simplified Example
of Adjustment

Suppose that a study finds two major predictors of the intelligence quotient (IQ) of children:
the parental education level and the child’s blood lead level. Consider the following hypotheti-
cal data on children with normal and high lead levels:

Average Years of Average IQ

Parental Education of Child
High lead level 10.0 95
Normal lead level 12.0 110

Note that the parental education level is also associated with the child’s blood lead level. The
question is, “Is the difference in IQ between children with normal and high lead levels more
than can be accounted for on the basis of the difference in parental education?” To answer
this question we look at how much difference in IQ the difference in parental education levels
would be expected to produce. We do this by plotting parental educational level versus IQ in
the children with normal lead levels (Figure 9.2).*

The diagonal dashed line in Figure 9.2 shows the relationship between the child’s IQ and
parental education in children with normal lead levels; there is an increase in the child’s IQ of 5
points for each 2 years of parental education. Therefore, we can adjust the IQ of the normal lead
group to account for the difference in mean parental education by sliding down the line from

120 -
Mean 1Q, ,,/’
"5 Normal lead Piad
Mean 1Q, Normal lead, \ ,f/
110 adjusted for parental education /‘A A
o - 1Q difference due to
- \ ,/’ y Parental education
T 105 — 1
© ol 1Q diff
_- ifference
100+ 7 due to lead
o5 o '
Mean IQ, —7 B
High lead
90 1 1 1 1 1
6 8 10 12 14 16

Years of parental education

M FIGURE 9.2 Hypothetical graph of child’s IQ as a linear function (dashed line) of years of
parental education.

*This description of analysis of covariance (ANCOVA) is simplified. Actually, parental education is plotted against the
child’s IQ in both the normal and high lead groups, and the single slope that fits both plots the best is used. The model
for this form of adjustment therefore assumes linear relationships between education and IQ in both groups, and that
the slopes of the lines in the two groups are the same.
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point A to point A'. (Because the group with normal lead levels had 2 more years of parental
education on the average, we adjust their IQs downward by 5 points to make them comparable
in mean parental education to the high lead group.) This still leaves a 10-point difference in
IQ between points A and B, suggesting that lead has an independent effect on 1Q of this mag-
nitude. Therefore, of the 15-point difference in IQ of children with low and high lead levels,
5 points can be accounted for by their parents’ different education levels and the remaining 10
are attributable to the lead exposure.
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CHAPTER

Designing a Randomized
Blinded Trial

Steven R. Cummings, Deborah Grady, and Stephen B. Hulley

In a clinical trial, the investigator applies an intervention and observes the effect on one or
more outcomes. The major advantage of a trial over an observational study is the ability to
demonstrate causality. Randomly assigning the intervention minimizes the influence of con-
founding variables, and blinding its administration minimizes the possibility that the apparent
effects of the intervention are due to differential use of other treatments in the intervention and
control groups or to biased ascertainment or adjudication of the outcome.

However, a clinical trial is generally expensive and time-consuming, addresses a narrow
question, and sometimes exposes participants to potential harm. For these reasons, trials are
best reserved for relatively mature research questions, when observational studies and other
lines of evidence suggest that an intervention might be effective and safe but stronger evidence
is required before it can be approved or recommended. Not every research question is ame-
nable to the clinical trial design—it is not feasible to study whether drug treatment of high-
LDL cholesterol in children will prevent heart attacks many decades later and it is not ethical
to randomize people to smoke real or sham cigarettes to determine the effect on lung cancer.
But clinical trial evidence on the efficacy and safety of clinical interventions should be obtained
whenever possible.

This chapter focuses on designing the classic randomized blinded trial: choosing the inter-
vention and control conditions, defining outcomes and adverse effects, selecting participants,
measuring baseline and outcome variables, and evaluating approaches to randomizing and
blinding. In the next chapter we will cover alternative trial designs, and implementation and
analysis issues.

B SELECTING THE INTERVENTION AND CONTROL CONDITIONS

The classic randomized trial is a parallel, between-group design that includes a group that
receives an intervention to be tested, and a control group that receives either no active treat-
ment (preferably a placebo) or a comparison treatment. The investigator applies the inter-
vention and control, follows both groups over time, and compares the outcome between the
intervention and control groups (Figure 10.1).

Choice of Intervention

The choice of intervention is the critical first step in designing a clinical trial. Investigators
should consider several issues as they design the intervention, including the dosage, duration,
and frequency of the intervention that best balances efficacy and safety. It is also important to
consider the feasibility of blinding, whether to treat with one or a combination of interven-
tions, acceptability to participants, and generalizability to the way the treatment will be used
in practice. If important decisions are uncertain, such as which dose best balances efficacy and
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Measure adherence
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M FIGURE 10.1 In a randomized blinded trial, the steps are to

Select a sample of subjects from a population suitable to receive the intervention.

Measure the predictor variables and, if appropriate, the baseline level of the outcome variable.

Consider the option of storing serum, images, and so on, for later analysis.

Randomly assign the blinded intervention and control condition (e.g., placebo).

e Follow the cohort over time, minimizing loss to follow-up and assessing compliance with the intervention and
control.

e Measure the outcome variables.

safety, it is generally best to postpone major or costly trials until preliminary studies have been
completed to help resolve the issue.

The best balance between efficacy and safety depends on the intervention and the condition
being studied. On the one hand, efficacy is generally the paramount consideration in designing
interventions to treat illnesses that cause severe symptoms or death. Therefore, it may be best to
choose the highest tolerable dose for treatment of metastatic cancer. On the other hand, safety
should be the primary criterion for designing interventions to treat symptomatic conditions
that rarely result in disease progression or death. Preventive therapy for healthy people should
meet stringent tests of safety: If it is effective, the treatment will prevent the condition in a few
persons, but everyone treated will be at risk of the adverse effects of the therapy. In this case, it
is generally best to choose the dose that maximizes efficacy with a very low risk of side effects.
If the best dose is not certain based on prior animal and human research findings, there may be
a need for additional trials that compare the effects of multiple doses on intermediate markers
or clinical outcomes (see phase II trials, Chapter 11).

Sometimes an investigator may decide to compare several doses or levels of intensity with
a single control group. For example, at the time the Multiple Outcomes of Raloxifene Evalua-
tion Trial was designed, it was not clear which dose of raloxifene (60 or 120 mg) was best, so
the trial tested two doses for preventing vertebral fractures (1). This is sometimes a reasonable
strategy, but it has costs: a larger and more expensive trial, and the complexity of dealing with
multiple hypotheses (Chapter 5).

For some treatments the dose is adjusted to optimize the effect for each individual patient.
In these instances, it may be best to design an intervention so that the dose of active drug is
titrated to achieve a clinical outcome such as reduction in the hepatitis C viral load. To main-
tain blinding, corresponding changes should be made (by someone not otherwise involved
in the trial) in the “dose” of placebo for a randomly selected or matched participant in the
placebo group.
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Trials to test single interventions are generally much easier to plan and implement than
those testing combinations of treatments. However, many medical conditions, such as HIV
infection or congestive heart failure, are treated with combinations of drugs or therapies. The
most important disadvantage of testing combinations of treatments is that the result cannot
provide clear conclusions about any one element of the interventions. In one of the Women’s
Health Initiative trials, for example, postmenopausal women were treated with estrogen plus
progestin therapy or placebo. The intervention increased the risk of several outcomes, includ-
ing breast cancer; however, it was unclear whether the effect was due to the estrogen or the
progestin (2). In general, it is preferable to design trials that have only one major difference
between any two study groups.

The investigator should consider how receptive participants will be to the proposed inter-
vention, and whether it can be blinded. Another consideration is how well the intervention can
be incorporated in practice. Simple interventions are generally better than complicated ones
(patients are more likely to take a pill once a day than subcutaneous injections two or three
times a day). Complicated interventions with qualitative aspects, such as multifaceted counsel-
ing about changing behavior, may not be feasible to incorporate in general practice because
they are difficult to replicate, time-consuming, and costly. Such interventions are less likely to
have public health impact, even if a trial proves that they are effective.

Choice of Control

The best control group receives no active treatment in a way that can be blinded, which for
medications generally requires a placebo that is indistinguishable from active treatment. This
strategy compensates for any placebo effect of the active intervention (i.e., through suggestion
or expectation) so that any outcome difference between study groups can be ascribed to a
specific effect of the intervention.

The cleanest comparison between the intervention and control groups occurs when
there are no co-interventions—medications, therapies, or behaviors (other than the study
intervention) that alter the risk of developing the outcome of interest. For example, in a
randomized trial evaluating a yoga intervention compared to usual care to prevent diabetes,
study staff may urge participants to exercise and to lose weight. These are potentially effec-
tive co-interventions that may reduce the risk of developing diabetes. If participants in both
groups use effective co-interventions, the rate of outcomes will be decreased, power will
be reduced, and the sample size will need to be larger or the trial longer. If use of effective
co-interventions differs between the intervention and control groups, the outcome will be
biased. In the absence of effective blinding, the protocol must include plans to obtain data
to allow statistical adjustment for differences between the groups in the rate of use of such
co-interventions during the trial. However, measuring co-interventions may be difficult,
and adjusting for such postrandomization differences should be viewed as a secondary or
explanatory analysis because it violates the intention-to-treat principle (Chapter 11).

Often it is not possible to withhold treatments other than the study intervention. For
example, in a trial of a new drug to reduce the risk of myocardial infarction in persons with
known coronary heart disease (CHD), the investigators cannot ethically prohibit or discourage
participants from taking medical treatments that are indicated for persons with known CHD,
such as aspirin, statins, and beta-blockers. One solution is to give standard care drugs to all
participants in the trial; although this approach reduces the overall event rate and therefore
increases the required sample size, it tests the most relevant clinical question: whether the new
intervention improves the outcome when given in addition to standard care.

When the treatment to be studied is a new drug that is believed to be a good alternative to
standard care, one option is to design a non-inferiority or equivalence trial in which the new
treatment is compared with the one that is already proven to be effective (see Chapter 11).
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B CHOOSING OUTCOME MEASUREMENTS

The definition of the specific outcomes of the trial influences many other design components,
as well as the cost and feasibility of the trial. Trials should usually include several outcomes
to increase the richness of the results and possibilities for secondary analyses. However, one
of these should be designated as the primary outcome that reflects the main question, allows
calculation of the sample size, and sets the priority for efforts to implement the study.

Clinical outcomes provide the best evidence about whether and how to use treatments or
preventive interventions. However, for outcomes that are uncommon, such as the occurrence
of cancer, trials must generally be large, long, and expensive. As noted in Chapter 6, outcomes
measured as continuous variables, such as quality of life, can generally be studied with fewer
participants and than dichotomous outcomes. However the most important clinical outcome is
sometimes unavoidably dichotomous, such as recurrence of cancer.

Intermediate markers, such as bone density, are measurements that are related to the
clinical outcome. Trials that use intermediate outcomes can further our understanding of
pathophysiology and provide information for choosing the best dose or frequency of treatment
in trials with clinical outcomes. The clinical relevance of trials with intermediate outcomes
depends on how accurately changes in these markers, especially changes that occur due to
treatment, represent changes in the risk of clinical outcomes. Intermediate markers can be
considered surrogate markers for the clinical outcome to the extent that treatment-induced
changes in the marker consistently predict how treatment changes the clinical outcome (3).
Generally, a good surrogate marker measures changes in an intermediate factor in the main
pathway that determines the clinical outcome.

HIV viral load is a good surrogate marker because treatments that reduce the viral load
consistently reduce morbidity and mortality in patients with HIV infection. In contrast, bone
mineral density (BMD) is a poor surrogate marker (3). It reflects the amount of mineral in a
section of bone, but treatments that improve BMD sometimes have little or no effect on fracture
risk, and the magnitude of increase in BMD is not consistently related to how much the treat-
ment reduces fracture risk (4). The best evidence that a biological marker is a good surrogate
comes from randomized trials of the clinical outcome (fractures) that also measure change in
the potential surrogate marker (BMD) in all participants. If the marker is a good surrogate, then
statistical adjustment for changes in the marker will account for much of the effect of treatment
on the outcome (3).

Number of Outcome Variables

It is often desirable to have several outcome variables that measure different aspects of the
phenomena of interest. In the Heart and Estrogen/Progestin Replacement Study (HERS), coro-
nary heart disease events were chosen as the primary endpoint. Coronary revascularization,
hospitalization for unstable angina or congestive heart failure, stroke, transient ischemic attack,
venous thromboembolic events, and all-cause mortality were also ascertained and adjudicated
to provide a more detailed description of the cardiovascular effects of hormone therapy (5).
However, a single primary outcome (CHD events) was designated for the purpose of planning
the sample size and duration of the study and to avoid the problems of interpreting tests of
multiple hypotheses (Chapter 5).

Composite Outcomes

Some trials define outcomes that are composed of a number of different events or measures.
For example, many trials of interventions to reduce the risk of coronary heart disease include
several specific coronary events in the outcome, such as myocardial infarction, coronary death,
and coronary revascularization procedures. This may be reasonable if each of these outcomes
is clinically important, the treatment works by similar mechanisms for each condition, and the
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intervention is expected to reduce the risk of each event. In addition, a composite outcome
generally provides greater power than a single outcome because there will be more events.
However, composite outcomes that include events that are not as clinically meaningful or
occur much more commonly than others in the composite can result in misleading findings.
For example, if hospitalization for evaluation of chest pain is added to the composite coronary
outcome, this event will dominate the composite if such hospitalizations occur much more
commonly than myocardial infarction, coronary death, or revascularization. An intervention
that alters the composite may then be reported to reduce the risk of “coronary events,” when
in reality it only reduces the risk of hospitalization for chest pain.

Composite outcomes must be carefully designed. If treatment produces only a small effect
on one outcome, especially if that outcome is relatively common, it may add little statistical
power or even increase the sample size required to detect an effect. For example, if stroke is
added to a composite “cardiovascular outcome,” the intervention might reduce the risk of
coronary events, have no impact, or even increase the risk of stroke and therefore be found to
have no effect on the composite cardiovascular outcome.

Adverse Effects

The investigator should include outcome measures that will detect the occurrence of adverse
effects that may result from the intervention. Revealing whether the beneficial effects of an
intervention outweigh the adverse ones is a major goal of most clinical trials, even those that
test apparently innocuous treatments like a health education program. Adverse effects may
range from relatively minor symptoms, such as a mild transient rash, to serious and fatal
complications. The rate of occurrence, effect of treatment, and sample size requirements for
detecting adverse effects is generally different from those required for detecting benefits. Unfor-
tunately, rare side effects will usually be impossible to detect even in large trials and are only
discovered (if at all) by large observational studies or case reports after an intervention is in
widespread clinical use.

In the early stages of testing a new treatment when potential adverse effects are unclear,
investigators should ask broad, open-ended questions about all types of potential adverse
effects. In large trials, assessment and coding of all potential adverse events can be very expen-
sive and time-consuming, often with a low yield of important results. Investigators should
consider strategies for minimizing this burden while preserving an adequate assessment of
potential harms of the intervention. For example, in very large trials, common and minor
events, such as upper respiratory infections and gastrointestinal upset, might be recorded in a
subset of the participants. It may not be necessary to record adverse effects that are not serious
if previous studies have found no differences in the incidence of minor symptoms. In addi-
tion to these open-ended questions, specific queries should be designed to discover important
adverse events that are expected because of previous research or clinical experience. For exam-
ple, because myositis is a reported side effect of treatment with statins, the signs and symptoms
of myositis should be queried in any trial of a new statin.

Adverse effects that are reported as symptoms or clinical terms must be coded and cat-
egorized for analysis. MedDRA (www.ich.org/products/meddra.html) and SNOMED (https://
www.nlm.nih.gov/research/umls/) are commonly used dictionaries of terms that are grouped
in several ways, as symptoms, specific diagnoses, and according to organ system. For example,
an adverse event recorded as “fever and cough” and an adverse event recorded as “bronchi-
tis,” will be grouped with other conditions, like pneumonia, as a “respiratory infection” and,
at a higher level, as an adverse effect in the respiratory system. These classification schemes
provide a good general summary of adverse effects and are reasonably accurate for diseases
that are specifically diagnosed, such as fractures. However, they may miss important adverse
events that are described by several terms if these terms are not grouped together. For exam-
ple, in a trial of denosumab for prevention of osteoporotic fractures, MedDRA coded cases
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of cellulitis separately from cases of erysipelas (two names for the same type of infection).
When combined, 12 serious cases of cellulitis occurred with denosumab versus 1 with placebo
(P <0.001) (6).

Adverse effects are also generally classified by severity. Serious adverse events (SAEs)
are defined as death or life-threatening events, events requiring or extending hospitalization,
disability or permanent damage, birth defects, and other important medical events that may
require medical or surgical intervention to prevent one of the other outcomes (www.fda.gov/
Safety/MedWatch/HowToReport/ucm053087.htm). Serious adverse events generally must be
promptly reported to institutional review boards and to the sponsor of the trial.

When data from a trial is used to apply for regulatory approval of a new drug, the trial design
must satisfy regulatory expectations for reporting adverse events (http://www.fda.gov/Drugs/
InformationOnDrugs/ucm135151.htm). Certain disease areas, such as cancer, have estab-
lished methods for classifying adverse events (http:/ctep.cancer.gov/protocolDevelopment/
electronic_applications/ctc.htm).

B SELECTING THE PARTICIPANTS

Chapter 3 discussed how to specify entry criteria defining a target population that is appro-
priate to the research question and an accessible population that is practical to study, how to
design an efficient and scientific approach to selecting participants, and how to recruit them.
Here we cover issues that are especially relevant to clinical trials.

Define Entry Criteria

In a clinical trial, inclusion and exclusion criteria have the goal of identifying a population in
which it is feasible, ethical, and relevant to study the impact of the intervention on outcomes.
Inclusion criteria should produce a sufficient number of participants who have a high enough
rate of the primary outcome to achieve adequate power to find an important effect of the inter-
vention on the outcome. On the other hand, criteria should also maximize the generalizability
of findings from the trial and the ease of recruitment. For example, if the outcome of interest
is an uncommon event, such as breast cancer, it is usually necessary to recruit high-risk par-
ticipants in order to reduce the sample size and follow-up time to feasible levels. On the other
hand, narrowing the inclusion criteria to high-risk women limits the generalizability of the
results and makes it more difficult to recruit enough participants into the trial.

To plan the right sample size, the investigator must have reliable estimates of the rate of the
primary outcome in people who might be enrolled. These estimates can be based on data from
vital statistics, longitudinal observational studies, or rates observed in the untreated group in
trials with inclusion criteria similar to those in the planned trial. For example, expected rates of
pancreatic cancer in adults can be estimated from cancer registry data. The investigator should
keep in mind, however, that screening and healthy volunteer effects generally mean that event
rates among those who qualify and agree to enter clinical trials are lower than in the general
population; it may be preferable to obtain rates of pancreatic cancer from the placebo group of
other trials with similar inclusion criteria.

Including persons with a high risk of the outcome can decrease the number of participants
needed for the trial. If risk factors for the outcome have been established, then the selection
criteria can be designed to include participants who have a minimum estimated risk of the out-
come of interest. The Raloxifene Use for The Heart trial, designed to test the effect of raloxifene
for prevention of cardiovascular disease (CVD) and breast cancer, enrolled women who were
at increased risk of CVD based on a combination of risk factors (7). Another way to increase
the rate of events is to limit enrollment to people who already have the disease. The Heart and
Estrogen/Progestin Replacement Study included 2,763 women who already had coronary heart
disease (CHD) to test whether estrogen plus progestin reduced the risk of new CHD events (5).
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This approach was much less costly than the Women’s Health Initiative trial of the same research
question in women without CHD, which required about 17,000 participants (8).

Although probability samples of general populations confer advantages in observational
studies, this type of sampling is generally not feasible or necessary for randomized trials. Inclu-
sion of participants with diverse characteristics will increase the confidence that the results of a
trial apply broadly. However, unless there are biological or genetic differences between popula-
tions that influence the effect of a treatment, it is generally true that results of a trial done in a
convenience sample (e.g., women with CHD who respond to advertisements) will be similar to
results obtained in probability samples of eligible people (all women with CHD). Occasionally,
the efficacy of treatment depends on characteristics of the subjects; this is termed effect modifi-
cation or interaction (see Chapter 11) For example, some osteoporosis treatments substantially
reduce the risk of fracture in women with very low bone density (T-scores below —2.5) with
little or no effect in women with higher bone density (P = 0.02 for interaction) (9, 10). In this
case, including only women with very low bone density in a trial may increase the effect size
and reduce the sample size for a trial of similar treatments.

Stratification of participants by a characteristic, such as racial group, allows investigators to
enroll a desired number of participants with a characteristic that may have an influence on the
effect of the treatment or its generalizability. Recruitment to a stratum can be closed when the
goal for participants with that characteristic has been reached. However, since most trials are
not designed with sufficient sample size to test for heterogeneity in the effects of the interven-
tion among such subgroups, this strategy may be of limited practical value.

Exclusion criteria should be parsimonious because unnecessary exclusions may make it
more difficult to recruit the necessary number of participants, diminish the generalizability of
the results, and increase the complexity and cost of recruitment. There are five main reasons
for excluding people from a clinical trial (Table 10.1).

TABLE 10.1 REASONS FOR EXCLUDING PEOPLE FROM A CLINICAL TRIAL

EXAMPLE: A TRIAL OF RALOXIFENE (A SELECTIVE
ESTROGEN RECEPTOR MODULATOR) VERSUS
REASON PLACEBO TO PREVENT HEART DISEASE

1. A study treatment may be harmful.

e Unacceptable risk of harm if assigned to Prior venous thromboembolic event (raloxifene
active treatment increases risk of venous thromboembolic
events)
e Unacceptable risk of harm if assigned to Recent estrogen receptor—positive breast
control cancer (treatment with a selective estrogen
receptor modulator is effective, and a standard
of care)

2. Active treatment is unlikely to be effective.

e At low risk for the outcome Teenaged women with very low risk for
coronary heart disease
e Has a type of disease that is not likely to Patient with valvular heart disease, which
respond to treatment is not likely to respond to the hypothesized
anti-atherogenic effects of raloxifene
e Taking a treatment that is likely to Taking estrogen therapy (which competes with
interfere with the intervention raloxifene)
3. Unlikely to adhere to the intervention. Poor adherence during the run-in period
(Chapter 11).
4. Unlikely to complete follow-up. Plans to move before trial ends and won't be

available for final outcome measures
Short life expectancy because of a serious illness

5. Practical problems with participating in the Impaired mental state that prevents accurate
protocol. answers to questions
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Potential participants should be excluded if the treatment or control is unsafe. The active
treatment may be unsafe in people who are susceptible to known or suspected adverse effects
of the active treatment. For example, myocardial infarction is a rare adverse effect of treat-
ment with sildenafil (Viagra), so trials of this drug to treat painful vasospasm in patients with
Raynaud’s disease should exclude patients who have CHD (11). Conversely, being assigned to
the inactive group or to placebo may be unsafe for some participants. For example, in women
with vertebral fractures, bisphosphonates are known to reduce the risk of subsequent frac-
tures, making it unacceptable to enter them in a placebo-controlled trial of a new treatment
for osteoporosis unless bisphosphonates are provided for all participants. Persons in whom the
active treatment is unlikely to be effective should be excluded, as well as those who are unlikely
to be adherent to the intervention or unlikely to complete follow-up. Occasionally, practical
problems such as impaired mental status that makes it difficult to follow instructions justify
exclusion. Investigators should carefully weigh potential exclusion criteria that apply to many
people (e.g., diabetes or upper age limits) as these may have a large impact on the feasibility
and costs of recruitment and the generalizability of results.

Design an Adequate Sample Size and Plan the Recruitment Accordingly

Trials with too few participants to detect important effects are wasteful, unethical, and may
produce misleading conclusions (12). Estimating the sample size is therefore one of the most
important early parts of planning a trial (Chapter 6), and should take into account the fact that
outcome rates in clinical trials are commonly lower than estimated due to healthy volunteer
biases. In addition, recruitment for a trial is often more difficult than recruitment for an obser-
vational study because participants have to be willing to be randomized, often to a placebo or
“experimental” drug. For these reasons, the investigator should plan for a generous sample
from a large accessible population, and enough time and money to enroll the desired sample
size when (as often happens) the barriers to doing so turn out to be greater than expected.

B MEASURING BASELINE VARIABLES

To facilitate contacting participants who are lost to follow-up, it is important to record the
names, phone numbers, addresses, and e-mail addresses of two or three friends or relatives
who will always know how to reach the participant. If permissible, it is also valuable to record
Social Security numbers or other national ID numbers. These can be used to determine the
vital status of participants (through the National Death Index) or to detect key outcomes using
health records (e.g., health insurance systems). However, this “protected health information”
must be kept confidential and should not accompany data that are sent to a coordinating center
or sponsoring institution.

Describe the Participants

Investigators should collect information on risk factors or potential risk factors for the outcome
and on participant characteristics that may affect the efficacy of the intervention. These mea-
surements also provide a means for checking on the comparability of the randomized study
groups at baseline and provide information to assess the generalizability of the findings. The
goal is to make sure that differences in baseline characteristics do not exceed what might be
expected from the play of chance, suggesting a technical error or bias in carrying out the ran-
domization. In small trials that are prone to sizeable maldistributions of baseline characteristics
across randomized groups by chance alone, measurement of important predictors of the out-
come permits statistical adjustment of the randomized comparison to reduce the influence of
these chance maldistributions. Measuring predictors of the outcome also allows the investiga-
tor to examine whether the intervention has different effects in subgroups classified by baseline
variables (effect modification, see Chapter 11).
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Measure Baseline Value of the Outcome Variable

If outcomes include change in a variable, the outcome variable must be measured at the begin-
ning of the study in the same way that it will be measured at the end. In studies that have a
continuous outcome variable (effects of cognitive behavioral therapy on depression scores) the
best measure is generally a change in the outcome over the course of the study. This approach
usually minimizes the variability in the outcome between study participants and offers more
power than simply comparing values at the end of the trial. In studies that have a dichotomous
outcome (incidence of CHD, for example) it may be important to demonstrate by history and
electrocardiogram that the disease is not present at the outset. It may also be useful to measure
secondary outcome variables, and outcomes of planned ancillary studies, at baseline.

Be Parsimonious

Having pointed out multiple uses for baseline measurements, we should stress that the design
of a clinical trial does not require that any be measured, because randomization minimizes
the problem of confounding by factors that are present at the outset. Making a lot of measure-
ments adds expense and complexity. In a randomized trial that has a limited budget, time and
money are usually better spent on things that are vital to the integrity of the trial, such as the
adequacy of the sample size, the success of randomization and blinding, and the completeness
of adherence and follow-up. Yusuf et al. have promoted the use of large trials with very few
measurements (13).

Bank Specimens

Storing images, sera, DNA, etc. at baseline will allow subsequent measurement of changes
caused by the treatment, markers that predict the outcome, and factors such as genotype that
might identify people who respond well or poorly to the treatment. Stored specimens can also
be a rich resource to study other research questions not directly related to the main outcome.

B RANDOMIZING AND BLINDING

The fourth step in Figure 10.1 is to randomly assign the participants to two groups. In the sim-
plest design, one group receives an active treatment intervention and the other receives a pla-
cebo. Random assignment assures that age, sex, and other prognostic baseline characteristics
that could confound an observed association (even those that are unknown or unmeasured)
will be distributed equally, except for chance variation, among the randomized groups at base-
line. Blinding is important to maintain comparability of the study groups during the trial and
to assure unbiased outcome ascertainment.

Randomization

Because randomization is the cornerstone of a clinical trial, it is important that it be done
correctly. The two most important features are that the procedure truly allocates treatments
randomly and that the assignments are tamperproof so that neither intentional nor uninten-
tional factors can influence the randomization.

It is important that the participant complete the baseline data collection, be found eligible
for inclusion, and give consent to enter the study before randomization. He is then randomly
assigned by computerized algorithm or by applying a set of random numbers. Once a list of the
random order of assignment to study groups is generated, it must be applied to participants in
strict sequence as they enter the trial.

It is essential to design the random assignment procedure so that members of the research
team cannot influence the allocation. For example, for trials done at one site, random treatment
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assignments can be placed in advance in a set of sealed envelopes by someone who will not
be involved in opening the envelopes. Each envelope must be numbered (so that all can be
accounted for at the end of the study), opaque (to prevent transillumination by a strong light),
and otherwise tamperproof. When a participant is randomized, his name and the number of
the next unopened envelope are first recorded in the presence of a second staff member and both
staff sign the envelope; then the envelope is opened and the treatment group contained therein
assigned to the participant and recorded on a log.

Multicenter trials typically use a separate tamperproof randomization facility that the trial
staff contact when an eligible participant is ready to be randomized. The staff member provides
the name and study ID of the new participant. This information is recorded and the treatment
group is then randomly assigned based on a computer program that provides a treatment assign-
ment number linked to the interventions. Treatment can also be randomly assigned by computer
programs at a single research site as long as these programs are tamperproof. Rigorous precau-
tions to prevent tampering with randomization are needed because investigators sometimes find
themselves under pressure to influence the randomization process (e.g., for an individual who
seems particularly suitable for an active treatment group in a placebo-controlled trial).

Consider Special Randomization Techniques

The preferred approach is typically simple randomization of individual participants to each
intervention group. Trials of small to moderate size will have a small gain in power if spe-
cial randomization procedures are used to balance the number of participants in each group
(blocked randomization) and the distribution of baseline variables known to predict the out-
come (stratified blocked randomization).

Blocked randomization is a commonly used technique to ensure that the number of par-
ticipants is equally distributed among the study groups. Randomization is done in “blocks”
of predetermined size. For example, if the block size is six, randomization proceeds normally
within each block of six until three persons are randomized to one of the groups, after which
participants are automatically assigned to the other group until the block of six is completed.
This means that in a study of 30 participants exactly 15 will be assigned to each group, and in a
study of 33 participants, the disproportion could be no greater than 18:15. Blocked randomiza-
tion with a fixed block size is less suitable for nonblinded studies because the treatment assign-
ment of the participants at the end of each block could be anticipated and manipulated. This
problem can be minimized by varying the size of the blocks randomly (ranging, for example,
from blocks of four to eight) according to a schedule that is not known to the investigator.

Stratified blocked randomization ensures that an important predictor of the outcome is
more evenly distributed between the study groups than chance alone would dictate. In a trial
of the effect of a drug to prevent fractures, having a prior vertebral fracture is such a strong
predictor of outcome that it may be best to ensure that similar numbers of people who have
vertebral fractures are assigned to each group. This can be achieved by carrying out blocked
randomization separately by “strata”—those with and without vertebral fractures. Stratified
blocked randomization can slightly enhance the power of a small trial by reducing the variation
in outcome due to chance disproportions in important baseline predictors. It is of little benefit
in large trials (more than 1,000 participants) because random assignment ensures nearly even
distribution of baseline variables.

An important limitation of stratified blocked randomization is the small number of baseline
variables, not more than two or three, that can be balanced by this technique. A technique for
addressing this limitation is adaptive randomization, which uses a “biased coin” to alter the
probability of assigning each new participant so that, for example, someone with a high risk
score based on any number of baseline prognostic variables would be slightly more likely to
join the study group that is at lower overall risk based on all participants randomized to that
point. Disadvantages of this technique include the difficulty of explaining the likelihood of
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assignment to study groups to potential participants during informed consent and the com-
plexity of implementation, with an interactive computerized system that recomputes the biased
coin probabilities with each randomization.

Usually, the best decision is to assign equal numbers to each study group, as this maximizes
power for any given total sample size., However,the attenuation in power of even a 2:1 dispro-
portion is quite modest (14)), and unequal allocation of participants to treatment and control
groups may sometimes be appropriate (15):

e Increasing the ratio of active to control treatment can make the trial more attractive to
potential participants, such as those with HIV infection who would like the greater chance
of receiving active treatment if they enroll;

e Decreasing the ratio of active to control participants can make the trial affordable when the
intervention is very expensive (as in the Women’s Health Initiative low-fat diet trial (16)).

e Increasing the proportion assigned to the group serving as a control for several active treat-
ment groups will increase the power of each comparison by increasing the precision of the
control group estimate (as in the Coronary Drug Project trial (17)).

Randomization of matched pairs is a strategy for balancing baseline confounding variables
that requires selecting pairs of participants who are matched on important characteristics like
age and sex, then randomly assigning one member of each pair to each study group. A drawback
of randomizing matched pairs is that it complicates recruitment and randomization, requiring
that an eligible participant wait for randomization until a suitable match has been identified.
In addition, matching is generally not necessary in large trials in which random assignment
balances the groups on baseline variables. However, an attractive version of this design can be
used when the circumstances permit a contrast of treatment and control effects in two parts of
the same individual. In the Diabetic Retinopathy Study, for example, each participant had one
eye randomly assigned to photocoagulation treatment while the other served as a control (18).

Blinding

Whenever possible, the investigator should design the interventions in such a fashion that the
study participants, staff who have contact with them, persons making measurements, and those
who ascertain and adjudicate outcomes do not know the study group assignment. When it is
not possible to blind all of these individuals, it is highly desirable to blind as many as possible
(always, for example, blinding personnel making outcome measurements). In a randomized
trial, blinding is as important as randomization. Randomization minimizes the influence
of confounding variables at the time of randomization, but it has no impact on differences
that develop between the groups during follow-up (Table 10.2). Blinding minimizes post-
randomization sources of bias, such as co-interventions and biased outcome ascertainment and
adjudication.

The use of blinding to prevent bias caused by co-interventions—medications, therapies,
or behaviors other than the study intervention that change the risk of developing the out-
come of interest—has been discussed (p. 139). The second important purpose of blinding is
to minimize biased ascertainment and adjudication of outcomes. In an unblinded trial, the
investigator may be tempted to look more carefully for outcomes in the untreated group or to
diagnose the outcome more frequently. For example, in an unblinded trial of statin therapy, the
investigators may be more likely to ask participants in the active treatment group about muscle
pain or tenderness and to order tests to make the diagnosis of myositis. Blinding of subjects is
particularly important when outcomes are based on self-reported symptoms.

After a possible outcome event has been ascertained, it may require adjudication. For
example, if the outcome of the trial is myocardial infarction, investigators typically collect data
on symptoms, EKG findings, and cardiac enzymes. Experts blinded to treatment group then
use these data and specific definitions to adjudicate whether or not a myocardial infarction has
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TABLE 10.2 IN A RANDOMIZED BLINDED TRIAL, RANDOMIZATION MINIMIZES
CONFOUNDING AT BASELINE AND BLINDING MINIMIZES CO-INTERVENTIONS
AND BIASED OUTCOME ASCERTAINMENT AND ADJUDICATION

EXPLANATION FOR STRATEGY TO RULE OUT RIVAL
ASSOCIATION EXPLANATION
1. Chance Same as in observational studies
(Table 9.2)
2. Bias Same as in observational studies
(Table 9.2)
3. Effect—Cause (Not a possible explanation in a trial)
Prerandomization confounding Randomization
variables

4. Confounding

Postrandomization confounding Blinding
variables (co-interventions)

5. Cause—Effect

occurred. Results of the Canadian Cooperative Multiple Sclerosis trial illustrate the importance
of blinding for unbiased outcome adjudication (19). Persons with multiple sclerosis were ran-
domly assigned to combined plasma exchange, cyclophosphamide and prednisone, or to sham
plasma exchange and placebo medications. At the end of the trial, the severity of multiple
sclerosis was assessed using a structured examination by neurologists blinded to treatment
assignment and again by neurologists who were unblinded. Therapy was not effective based on
the assessment of the blinded neurologists, but was statistically significantly effective based on
the assessment of the unblinded neurologists. The unblinded neurologists were not purpose-
tully trying to bias the outcome of the trial, but there is a strong human desire to see patients
improve after treatment, especially if the treatment is painful or potentially harmful. Blinding
minimizes such biased outcome adjudication.

Blinded assessment of outcome may be less important if the outcome of the trial is a “hard”
outcome such as death, or automated measurements about which there is little or no oppor-
tunity for biased assessment. Most other outcomes, such as cause of death, disease diagnosis,
physical measurements, questionnaire scales, and self-reported conditions, are susceptible to
biased ascertainment and adjudication.

After a trial is over, it may be a good idea to assess whether the participants and investigators
were unblinded by asking them to guess which treatment the participant was assigned to. If
a higher-than-expected proportion guesses correctly, the published discussion of the findings
should include an assessment of the potential biases that partial unblinding may have caused.

What to Do When Blinding Is Impossible

In some cases blinding is difficult or impossible, either for technical or ethical reasons. For
example, it is difficult to blind participants if they are assigned to an educational, dietary, or
exercise intervention. Surgical interventions often cannot be blinded because it may be uneth-
ical to perform sham surgery in the control group. However, surgery is always associated with
some risk, so it is very important to determine if the procedure is truly effective. For example,
arecent randomized trial found that arthroscopic debridement of the cartilage of the knee was
no more effective than arthroscopy with sham debridement for relieving osteoarthritic knee
pain (20). In this case, the risk to participants in the control group might be outweighed if the
results of the trial prevented thousands of patients from undergoing an ineffective procedure.
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If the intervention cannot be blinded, the investigator should at least limit potential co-

interventions as much as possible, and assure that individuals who ascertain and adjudicate
the outcomes are blinded. For example, an investigator testing the effect of yoga for relief of
menopausal hot flashes could instruct both yoga and control participants to refrain from start-
ing new medications, relaxation activities, or other treatments for hot flushes until the trial has
ended. Also, study staff who collect information on the severity of hot flashes could be different
from those who provide the yoga training.

1.

10.

SUMMARY

A randomized blinded trial, properly designed and carried out, can provide the most defin-
itive causal inference as a basis for practice guidelines based on evidence-based medicine.

. The choice and dose of intervention is a difficult decision that balances judgments about

efficacy and safety; other considerations include relevance to clinical practice, suitability
for blinding, and whether to use a combination of drugs.

. When possible, the comparison group should be a placebo control that allows partici-

pants, investigators, and study staff to be blinded.

. Clinically relevant outcomes such as pain, quality of life, occurrence of cancer, and

death are the most meaningful outcomes of trials. Intermediary outcomes, such as HIV
viral load, are valid surrogate markers for clinical outcomes to the degree that treatment-
induced changes in the marker predict changes in the clinical outcome.

. Measuring more than one outcome variable is usually helpful, but combining them into

composite outcomes requires careful consideration; a single primary outcome should be
specified to test the main hypothesis.

. All clinical trials should include measures of potential adverse effects of the intervention,

both targeted and (in moderation) open-ended measures with procedures to assure that
serious adverse events (SAEs) are promptly reported to IRBs and sponsors.

. The criteria for selecting study participants should identify those who are likely to experience

the most benefit and the least harm from treatment, and to adhere to treatment and follow-
up protocols. Choosing participants at high risk of the outcome can decrease sample size,
but may make recruitment more difficult and decrease the generalizability of the findings.

. Baseline variables should be measured parsimoniously to describe participant charac-

teristics, measure risk factors for and baseline values of the outcome, and enable later
examination of disparate intervention effects in various subgroups (effect modification).
Consider storing baseline serum, genetic material, images, etc. for later analyses.

. Randomization, which minimizes the influence of baseline confounding variables, should

be tamperproof; matched pair randomization is an excellent design when feasible, and in
small trials stratified blocked randomization can reduce chance maldistributions of key
predictors.

Blinding the intervention is as important as randomization and serves to control co-
interventions and biased outcome ascertainment and adjudication.
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CHAPTER

Alternative Clinical Trial Designs
and Implementation Issues

Deborah Grady, Steven R. Cummings, and Stephen B. Hulley

In the last chapter, we discussed the classic randomized, blinded, parallel group trial: how to select
and blind the intervention and control conditions, randomly assign the interventions, choose out-
comes, deal with adverse events, select participants, and measure baseline and outcome variables.

In this chapter, we describe alternative randomized and non-randomized between-group
trial designs, as well as within-group designs, cross-over studies, and pilot studies. We then
address the conduct of clinical trials, including adherence to the intervention and follow-up,
and ascertaining and adjudicating outcomes. We conclude with a discussion of statistical issues
such as interim monitoring for stopping the trial early, intention to treat and per-protocol
analyses, and the use of subgroup analysis to discover effect modification.

B ALTERNATIVE RANDOMIZED DESIGNS

There are a number of variations on the classic parallel group randomized trial that may be
useful when the circumstances are right.

Factorial Design

The factorial design aims to answer two (or more) separate research questions in a single trial
(Figure 11.1). A good example is the Women’s Health Study, which was designed to test the
effect of low-dose aspirin and of vitamin E on the risk for cardiovascular events among healthy
women (1). The participants were randomly assigned to four groups, and two hypotheses were
tested by comparing two halves of the study cohort. First, the rate of cardiovascular events in
women on aspirin was compared with women on aspirin placebo (disregarding the fact that
half of each of these groups received vitamin E); then the rate of cardiovascular events in those
on vitamin E was compared with all those on vitamin E placebo (now disregarding the fact
that half of each of these groups received aspirin). The investigators have two complete trials
for the price of one.

A limitation is the possibility of effect modification (interaction): if the effect of aspirin on
risk for cardiovascular disease is different in women treated with vitamin E than in those not
treated with vitamin E, effect modification is present and the effect of aspirin would have to be
calculated separately in these two groups. This would reduce the power of these comparisons,
because only half of the participants would be included in each analysis. Factorial designs can
actually be used to study effect modification, but trials designed for this purpose are more com-
plicated and difficult to implement, larger sample sizes are required, and the results can be hard
to interpret. Other limitations of the factorial design are that the same study population must
be appropriate for each intervention, multiple treatments may interfere with recruitment and
adherence, and analyses are more complex. That said, the factorial design can be very efficient.
For example, the Women’s Health Initiative randomized trial was able to test the effect of three
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B FIGURE 11.1 In a factorial randomized trial, the steps are to:

Select a sample of participants from a population suitable for receiving the intervention.

Measure the predictor variables and (if appropriate) the baseline level of the outcome variable.

Consider the option of storing serum, images, and so on, for later analysis.

Randomly assign two (or more) active interventions and their controls to four (or more) groups.

e Follow the cohorts over time, minimizing loss to follow-up and assessing adherence to the intervention and con-
trol conditions.

e Measure the outcome variables.

¢ Analyze the results, first comparing the two intervention A groups (combined) to the combined placebo A groups

and then comparing the two intervention B groups (combined) to the combined placebo B groups.

interventions (postmenopausal hormone therapy, low-fat diet, and calcium plus vitamin D) on
a number of outcomes (2).

Cluster Randomization

Cluster randomization requires that the investigator randomly assign naturally occurring
groups or clusters of participants to the interventions, rather than individuals. A good example
is a trial that enrolled players on 120 college baseball teams, randomly allocated half of the
teams to an intervention to encourage cessation of spit-tobacco use, and observed a signifi-
cantly lower rate of spit-tobacco use among players on the teams that received the intervention
compared to control teams (3). Applying the intervention to groups of people may be more
feasible and cost effective than treating individuals one at a time, and it may better address re-
search questions about the effects of public health programs in the population. Some interven-
tions, such as a low-fat diet, are difficult to implement in only one member of a family. When
participants in a natural group are randomized individually, those who receive the intervention
are likely to discuss or share the intervention with family members, colleagues, team members,
or acquaintances who have been assigned to the control group.

In the cluster randomization design, the units of randomization and analysis are groups,
not individuals. Therefore, the effective sample size is smaller than the number of individual
participants and power is diminished. The effective sample size depends on the correlation of
the effect of the intervention among participants in the clusters and is somewhere between the



Chapter 11 e Alternative Clinical Trial Designs and Implementation Issues 153

number of clusters and the number of participants (4). Other drawbacks are that sample size
estimation and data analysis are more complicated in cluster randomization designs than for
individual randomization (4).

Active Control Trials: Equivalence and Non-Inferiority

An active control trial is one in which the control group receives an active treatment. This
design may be optimal when there is a known effective treatment or “standard of care” for a
condition. This type of trial is sometimes called a comparative effectiveness trial because two
treatments are compared.

In some cases, the aim of an active control trial is to show that a new treatment is superior
to an established treatment. In this situation, the design and methods are similar to a placebo-
controlled trial. In most cases, however, investigators want to establish that a new therapy that
has some advantages over an established therapy (easier to use, less invasive, safer) has similar
efficacy. In this case, an equivalence or non-inferiority trial is more appropriate.

The statistical methods for equivalence or non-inferiority trials are different than for trials
designed to show that one treatment is better than another. In a trial designed to show that
a treatment is superior, the standard analysis uses tests of statistical significance to accept or
reject the null hypothesis that there is no difference between groups. In a trial designed to
show that a new treatment is equivalent to the standard treatment, on the other hand, the
ideal goal would be to accept the null hypothesis of no difference. But proving that there is no
difference between treatments (not even a tiny one) would require an infinite sample size. So
the practical solution is to design the sample size and analysis plan using a confidence interval
(CI) approach—considering where the CI for the effect of the new treatment compared to the
standard treatment lies with respect to a prespecified delta (“A”), the unacceptable difference in
efficacy between the two treatments (5, 6). Equivalence or non-inferiority is considered estab-
lished at the level of significance specified by the CI if the CI around the difference in efficacy
of the new compared to the established treatment does not include A (Figure 11.2). This is a

Non-inferiority
margin (4)

—

Superior
o——
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Lower bounds of the 95% confidence intervals for treatment differences in rate of
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M FIGURE 11.2 Possible outcomes in a non-inferiority trial comparing a new drug
to warfarin as treatment to reduce stroke risk among patients with atrial fibrillation,
with the non-inferiority margin (delta) set at +2%. The one-sided 95% confidence
intervals around the difference in stroke rate between warfarin and the new drug
are shown illustrating the outcomes of superiority, inferiority, and non-inferiority.
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two-tailed consideration in the case of an equivalence trial (i.e., the new treatment is neither
worse nor better than the standard treatment). However, it is uncommon for investigators to
be interested in whether a new treatment is both no better and no worse than an established
treatment. Most often, investigators are especially interested in showing that a new treatment
with other advantages is not inferior to the standard treatment. The one-tailed nature of the
non-inferiority trial design also has the advantage of permitting either a smaller sample size or
a smaller alpha,; the latter is usually preferred (e.g., 0.025 rather than 0.05), to be conservative.

One of the most difficult issues in designing a non-inferiority trial is establishing the
non-inferiority margin (A)—the loss of efficacy of the new treatment that would be unaccept-
able (7). This decision is based on both statistical and clinical considerations of the potential
efficacy and advantages of the new treatment, and requires expert judgment (8) (see Appendix
11A for an example of how this is done). Non-inferiority trials generally need to be larger than
placebo-controlled trials because the acceptable difference between the new and established
treatment is usually smaller than the expected difference between a new treatment and placebo.

It is important to note that non-inferiority may not mean that both the established and new
treatments are effective—they could be equivalently ineffective or harmful. To ensure that a
new treatment evaluated in a non-inferiority trial is more effective than placebo, there should
be strong prior evidence supporting the efficacy of the established treatment. This also means
that the design of the non-inferiority trial should be as similar as possible to trials that have
established the efficacy of the standard treatment, including selection criteria, dose of the estab-
lished treatment, adherence to the standard treatment, length of follow-up, loss to follow-up,
and so on (6, 7). Any problem that reduces the efficacy of the standard treatment (enrolling
participants unlikely to benefit, non-adherence to treatment, loss to follow-up) will make it
more likely that the new therapy will be found to be non-inferior—simply because the efficacy
of the standard treatment has been reduced. A new, less effective treatment may appear to be
non-inferior when, in reality, the findings represent a poorly done study.

In summary, non-inferiority and equivalence trials are particularly worthwhile if a new
treatment has important advantages such as lower cost, ease of use, or safety. It is difficult to
justify large trials to test a new “me-too” drug with none of these advantages. Importantly, non-
inferiority and equivalence trials can produce the misleading conclusion that two treatments
are equivalent if the trial is poorly conducted.

Adaptive Designs

Clinical trials are generally conducted according to a protocol that does not change during
the conduct of the study. However, for some types of treatments and conditions, it is possible
to monitor results from the trial as it progresses and change the design of the trial based on
interim analyses of the results (9). For example, consider a trial of several doses of a new treat-
ment for non-ulcer dyspepsia. The initial design may plan to enroll 50 participants to a placebo
group and 50 to each of three doses for 12 weeks of treatment over an enrollment period last-
ing 1 year. Review of the results after the first 10 participants in each group have completed
4 weeks of treatment might reveal that there is a trend toward relief of dyspepsia only in the
highest dose group. It may be more efficient to stop assigning participants to the two lower
doses and continue randomizing only to the highest dose and the placebo. Other facets of a trial
that could be changed based on interim results include increasing or decreasing the sample size
or duration of the trial if interim results indicate that the effect size or rate of outcomes differ
from the original assumptions.

Adaptive designs are feasible only for treatments that produce outcomes that are measured
and analyzed early enough in the course of the trial to make design changes in the later stages
of the trial possible. To prevent bias, rules for how the design may be changed should be estab-
lished before the trial begins, and the interim analyses and consideration of change in design
should be done by an independent data and safety monitoring board that reviews unblinded
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data. Multiple interim analyses will increase the probability of finding a favorable result that is
due to chance variation, and the increased chance of a type I error must be considered in the
analysis of the results.

In addition to being more complex to conduct and analyze, adaptive designs require that
informed consent include the range of possible changes in the study design, and it is difficult to
estimate the cost of an adaptive trial and the specific resources needed to complete it. Despite
these precautions and limitations, adaptive designs are efficient and may be valuable, especially
during the development of a new treatment; they can allow earlier identification of the best
dose and duration of treatment, and ensure that a high proportion of participants receive the
optimal treatment.

B NONRANDOMIZED DESIGNS

Nonrandomized Between-Group Designs

Trials that compare groups that have not been randomized are far less effective than random-
ized trials in controlling for confounding variables. For example in a trial of the effects of
coronary artery bypass surgery compared to percutaneous angioplasty, if clinicians are allowed
to decide which patients undergo the procedures rather than using random allocation, patients
chosen for surgery are likely to be different than those chosen for angioplasty. Analytic meth-
ods can adjust for baseline factors that are unequal in the two study groups, but this strategy
does not deal with the problem of unmeasured confounding. When the findings of randomized
and nonrandomized studies of the same research question are compared, the apparent benefits
of intervention are often greater in the nonrandomized studies, even after adjusting statistically
for differences in baseline variables (10). The problem of confounding in nonrandomized clini-
cal studies can be serious and not fully removed by statistical adjustment (11).

Sometimes participants are allocated to study groups by a pseudorandom mechanism. For
example, every participant with an even hospital record number may be assigned to the treat-
ment group. Such designs may offer logistic advantages, but the predictability of the study
group assignment permits the investigator or the study staff to tamper with it by manipulating
the sequence or eligibility of new participants.

Participants are sometimes assigned to study groups by the investigator according to certain
specific criteria. For example, patients with diabetes may be allocated to receive either insulin
four times a day or long-acting insulin once a day according to their willingness to accept four
daily injections. The problem with this design is that those willing to take four injections
per day might differ from those who are unwilling (for example, being more compliant with
other health advice), and this might be the cause of any observed difference in the outcomes
of the two treatment programs.

Nonrandomized designs are sometimes chosen in the mistaken belief that they are more
ethical than randomization because they allow the participant or clinician to choose the inter-
vention. In fact, studies are only ethical if they have a reasonable likelihood of producing the
correct answer to the research question, and randomized studies are more likely to lead to a
conclusive and correct result than nonrandomized designs. Moreover, the ethical basis for any
trial is the uncertainty as to whether the intervention will be beneficial or harmful. This uncer-
tainty, termed equipoise, means that an evidence-based choice of interventions is not possible
and this justifies random assignment.

Within-Group Designs

Designs that do not include a separate control group can be useful options for some types of
questions. In a time series design, measurements are made before and after each participant
receives the intervention (Figure 11.3). Therefore, each participant serves as his own control
to evaluate the effect of treatment. This means that individual characteristics such as age, sex,
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B FIGURE 11.3 In a time series trial, the steps are to:

Select a sample of participants from a population suitable for receiving the intervention.

Measure the predictor variables and (if appropriate) the baseline level of the outcome variable.

Consider the option of storing serum, images, and so on for later analysis.

Apply the intervention to the whole cohort.

Follow the cohort over time, minimizing loss to follow-up and assessing adherence to the intervention.

Measure the outcome variables.

Remove the intervention, continue the follow-up and measure the outcome variable again, then re-initiate the
intervention, and so on.

and genetic factors are not merely balanced (as they are in between-group studies), but actually
eliminated as confounding variables.

The major disadvantage of within-group designs is the lack of a concurrent control group.
The apparent efficacy of the intervention might be due to learning effects (participants do
better on follow-up cognitive function tests because they learned from the baseline test),
regression to the mean (participants who were selected for the trial because they had high
blood pressure at baseline are found to have lower blood pressure at follow-up simply due to
random variation in blood pressure), or secular trends (upper respiratory infections are less
frequent at follow-up because the flu season ended before follow-up was completed). Within-
group designs sometimes use a strategy of repeatedly starting and stopping the treatment. If
repeated onset and offset of the intervention produces corresponding patterns in the outcome,
this is strong support that these changes are due to the treatment. This approach is only useful
when the outcome variable responds rapidly and reversibly to the intervention. The design has
a clinical application in “N-of-one” trials in which an individual patient can alternate between
active and inactive versions of a drug (using identical-appearing placebo prepared by the local
pharmacy) to detect his particular response to the treatment (12).

Crossover Designs

The crossover design has features of both within- and between-group designs (Figure 11.4).
Half of the participants are randomly assigned to start with the control period and then switch
to active treatment; the other half begins with the active treatment and then switches to control.
This approach permits between-group, as well as within-group, analyses. The advantages are
substantial: it minimizes the potential for confounding because each participant serves as his
own control and the paired analysis increases the statistical power of the trial so that it needs
fewer participants. However, the disadvantages are also substantial: a doubling of the duration
of the study, the added expense required to measure the outcome at the beginning and end
of each crossover period, and the added complexity of analysis and interpretation created by
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M FIGURE 11.4 In a crossover randomized trial, the steps are to:

e Select a sample of participants from a population suitable for receiving the intervention.

e Measure the predictor variables and (if appropriate) the baseline level of the outcome variable.

e Randomly assign the blinded intervention and control condition.

e Follow the cohorts over time, minimizing loss to follow-up and assessing compliance with the interventions and
control conditions.

e Measure the outcome variables.

e Discontinue the intervention and control condition and provide a washout period to reduce carryover effect, if
appropriate.

e Apply intervention to former control group and control condition to former intervention group and measure
outcomes after following cohorts over time.

potential carryover effects. A carryover effect is the residual influence of the intervention on
the outcome during the period after it has been stopped—blood pressure not returning to base-
line levels for months after a course of diuretic treatment, for example. To reduce the carryover
effect, the investigator can introduce an untreated “washout” period between treatments with
the hope that the outcome variable will return to baseline before starting the next interven-
tion, but it is difficult to know whether all carryover effects have been eliminated. In general,
crossover studies are a good choice when the number of study participants is limited and the
outcome responds rapidly and reversibly to an intervention.

A variation on the crossover design may be appropriate when the intervention to be studied
cannot be blinded and the intervention is believed by participants to be much more desirable
than the control (such as a new noninvasive procedure). In this situation, where it may be very
difficult to find eligible participants who are willing to be randomized, an excellent approach
may be randomization to immediate intervention versus a wait-list (delayed) control. Another
situation in which a wait-list control may be appropriate is when a community, school, gov-
ernment, or similar entity has decided that all members of a group should receive an interven-
tion, despite limited evidence of efficacy. In this situation, randomization to not receive the
intervention may be considered unethical, while randomization to delayed intervention may
be acceptable.

The wait-list design provides an opportunity for a randomized comparison between the
immediate intervention and wait-list control groups. In addition, the two intervention pe-
riods (immediate intervention in one group and delayed intervention in the other) can be
pooled to increase power for a within-group comparison before and after the intervention.
For example, in a trial in which women with symptomatic fibroids are randomized to a new
treatment that is less invasive than hysterectomy (uterine artery embolization) versus wait-list,



158 Section Il e Study Designs

the wait-list control would receive no treatment during the initial period; then be offered
uterine artery embolization at the beginning of the next period. Subsequently, within-group
measurements of changes in fibroid symptom score can be pooled among all of the participants
who received the intervention.

This design has the advantage of making enrollment much more feasible in a trial where the
intervention is highly desirable, and of allowing a randomized comparison in situations where
all eligible participants will eventually receive an intervention. However, the outcome must
occur in a short period of time (or the wait period becomes prohibitively long). In addition,
providing the intervention to the control group at the end of the trial prolongs the length of
follow-up and can be expensive.

Trials for Regulatory Approval of New Interventions

Many trials are done to test the effectiveness and safety of new treatments that might be consid-
ered for approval for marketing by the U.S. Food and Drug Administration (FDA) or another
regulatory body. Trials are also done to determine whether drugs that have FDA approval for
one condition might be approved for the treatment or prevention of other conditions. The
design and conduct of these trials is generally the same as for other trials, but regulatory re-
quirements must be considered.

The FDA publishes general and specific guidelines on how such trials should be conducted
(search for “FDA” on the Web). It would be wise for investigators and staff conducting trials
with the goal of obtaining FDA approval of a new medication or device to seek specific train-
ing on general guidelines, called Good Clinical Practice (Chapter 17). In addition, the FDA
provides specific guidelines for studies of certain outcomes. For example, studies designed to
obtain FDA approval of treatments for hot flashes in menopausal women must currently in-
clude participants with at least seven hot flashes per day or 50 per week. FDA guidelines are
regularly updated and similar guidelines are available from international regulatory agencies.

Trials for regulatory approval of new treatments are generally described by phase. This
system refers to an orderly progression in the testing of a new treatment, from experiments in
animals, human cell cultures or tissues (preclinical) and initial unblinded, uncontrolled treat-
ment of a few human volunteers to test safety (phase I), to small randomized or time series
trials that test the effect of a range of doses on adverse effects and biomarkers or clinical out-
comes (phase II), to randomized trials large enough to test the hypothesis that the treatment
improves the targeted condition (such as blood pressure) or reduces the risk of disease (such as
stroke) with acceptable safety (phase III) (Table 11.1). The FDA usually defines the endpoints
for phase III trials that are required to obtain approval to market the new drug. Phase IV refers
to large studies that may be randomized trials, but are often large observational studies that are
conducted after a drug is approved. These studies are often designed to assess the rate of serious

TABLE 11.1 STAGES IN TESTING NEW THERAPIES

Preclinical Studies in cell cultures, tissues, and animals
Phase | Unblinded, uncontrolled studies in a few volunteers to test safety
Phase Il Relatively small randomized or time series trials to test tolerability and different

intensity or dose of the intervention on biomarkers or clinical outcomes

Phase Il Relatively large randomized blinded trials to test conclusively the effect of the
therapy on clinical outcomes and adverse events

Phase IV Large trials or observational studies conducted after the therapy has been ap-
proved by the FDA to assess the rate of uncommon serious side effects and
evaluate additional therapeutic uses
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side effects when the drug is used in large populations or to test additional uses of the drug that
might be approved by the FDA. Sometimes, phase IV studies do not have a clear scientific goal,
but are performed to introduce physicians and patients to new drugs.

Pilot Studies

Designing and conducting a successful clinical trial requires extensive information on the type,
dose, and duration of the intervention; the likely effect of the intervention on the outcome;
potential adverse effects; the feasibility of recruiting, randomizing, and maintaining partici-
pants in the trial; and likely costs. Often, the only way to obtain some of this information is to
conduct a good pilot study.

Pilot studies vary from a brief test of feasibility in a small number of participants to a long
trial in hundreds of participants (in preparation for a major multicenter multi-year investment).
Pilot studies should be as carefully planned as the main trial, with clear objectives and methods.
Many pilot studies are focused primarily on determining the feasibility, time required, and
cost of recruiting adequate numbers of eligible participants, and discovering if they are will-
ing to accept randomization and can comply with the intervention. Pilot studies may also be
designed to demonstrate that planned measurements, data collection instruments, and data
management systems are feasible and efficient. For pilot studies done primarily to test feasibil-
ity, a control group is generally not included.

An important goal of many pilot studies is to define the optimal intervention—the frequency,
intensity, and duration of the intervention that will result in minimal toxicity and maximal
effectiveness.

Pilot studies are sometimes used to provide estimates of parameters needed to estimate
sample size. Sound estimates of the rate of the outcome or mean outcome measure in the
placebo group, the effect of the intervention on the main outcome (effect size), and the statis-
tical variability of this outcome are crucial to planning the sample size. In most cases, it’s best
to obtain these estimates from published full-scale studies of similar interventions in similar
participants. In the absence of such data, using estimates from a pilot study may be helpful, but
the sample size for pilot studies is usually so small that the calculated effect size and variance
are unstable, with very wide confidence intervals.

Many trials fall short of estimated power not because the effect of the intervention is less
than anticipated, but because the rate of dichotomous outcome events in the placebo group is
much lower than expected. This likely occurs because persons who fit the enrollment criteria
for a clinical trial and agree to be randomized are healthier than the general population with
the condition of interest. Therefore, it is crucial to determine the rate of the outcome in the
placebo group, which may be done by evaluating the placebo group of prior trials with similar
participants, or by randomizing participants to placebo in a pilot study.

A pilot study should have a short but complete protocol (approved by the institutional
review board), data collection forms, and analysis plans. Variables should include the typical
baseline measures, predictors, and outcomes included in a full-scale trial, but also estimates
of the number of participants available or accessible for recruitment, the number who are
contacted or respond using different sources or recruitment techniques, the number and
proportion eligible for the trial, those who are eligible but refuse (or say they would refuse)
randomization, the time and cost of recruitment and randomization, and estimates of adher-
ence to the intervention and other aspects of the protocol, including study visits. It is usually
helpful to “debrief” both participants and staff after the pilot study to obtain their views on how
the trial methods could be improved.

A good pilot study requires substantial time and can be costly, but markedly improves the
chance of funding for a major clinical trial and the likelihood that the trial will be successfully
completed.
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B CONDUCTING A CLINICAL TRIAL

Follow-Up and Adherence to the Protocol

If a substantial number of study participants do not receive the study intervention, do not ad-
here to the protocol, or are lost to follow-up, the results of the trial can be underpowered or
biased. Strategies for maximizing follow-up and adherence are outlined in Table 11.2.

The effect of the intervention (and the power of the trial) is reduced to the degree that par-
ticipants do not receive it. The investigator should try to choose a study drug or intervention
that is easy to apply or take and is well-tolerated. Adherence is likely to be poor if a behavioral
intervention requires hours of practice by participants. Drugs that can be taken in a single daily
dose are the easiest to remember and therefore preferable. The protocol should include provi-
sions that will enhance adherence, such as instructing participants to take the pill at a standard
point in the morning routine, giving them pill containers labeled with the day of the week, or
sending reminders to their cell phones.

There is also a need to consider how best to measure adherence to the intervention, using
such approaches as self-report, pill counts, pill containers with computer chips that record
when the container is opened, and serum or urinary metabolite levels. This information can

TABLE 11.2 MAXIMIZING FOLLOW-UP AND ADHERENCE TO THE PROTOCOL

PRINCIPLE

EXAMPLE

Choose participants who are likely to be
adherent to the intervention and protocol

Require completion of two or more visits
before randomization

Exclude those who are non-adherent in a
pre-randomization run-in period

Exclude those who are likely to move or be
noncompliant

Make the intervention simple

Use a single tablet once a day if possible

Make study visits convenient and
enjoyable

Schedule visits often enough to maintain close
contact but not frequently enough to be tiresome

Schedule visits in the evening or on weekends, or
collect information by phone or e-mail

Have adequate and well-organized staff to prevent
waiting
Provide reimbursement for travel and parking

Establish good interpersonal relationships with
participants

Make study measurements painless,
useful, and interesting

Choose noninvasive, informative tests that are
otherwise costly or unavailable

Provide test results of interest to participants and
appropriate counseling or referrals

Encourage participants to continue
in the trial

Never discontinue follow-up for protocol violations,
adverse events, or stopping the intervention

Send participants birthday and holiday cards

Send newsletters and e-mail messages

Emphasize the scientific importance of adherence and

follow-up

Find participants who are lost to follow-up

Pursue contacts of participants

Use a tracking service
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identify participants who are not complying, so that approaches to improving adherence can be
instituted and the investigator can interpret the findings of the study appropriately.

Adherence to study visits and measurements can be enhanced by discussing what is in-
volved in the study before consent is obtained, by scheduling the visits at a time that is conve-
nient and with enough staff to prevent waiting, by calling or e-mailing the participant the day
before each visit, and by reimbursing travel, parking, and other out-of-pocket costs.

Failure to follow-up trial participants and measure the outcome of interest can result in
biased results, diminished credibility of the findings, and decreased statistical power. For
example, a trial of nasal calcitonin spray to reduce the risk of osteoporotic fractures reported
that treatment reduced fracture risk by 36% (13). However, about 60% of those randomized
were lost to follow-up, and it was not known if fractures had occurred in these participants.
Because the overall number of fractures was small, even a few fractures in the participants
lost to follow-up could have altered the findings of the trial. This uncertainty diminished the
credibility of the study findings (14).

Even if participants violate the protocol or discontinue the trial intervention, they should
be followed so that their outcomes can be used in intention-to-treat analyses (see “Analyzing
the Results” in this chapter). In many trials, participants who violate the protocol by enrolling
in another trial, missing study visits, or discontinuing the study intervention are discontinued
from follow-up; this can result in biased or uninterpretable results. Consider, for example, a
drug that causes a symptomatic side effect that results in more frequent discontinuation of the
study medication in those on active treatment compared to those on placebo. If participants
who discontinue study medication are not continued in follow-up, this can bias the findings
if the side effect is associated with the main outcome or with a serious adverse event (SAE).

Strategies for achieving complete follow-up are similar to those discussed for cohort studies
(Chapter 7). At the outset of the study, participants should be informed of the importance of
follow-up and investigators should record the name, address, e-mail address, and telephone
number of one or two family members or close acquaintances who will always know where the
participant is. In addition to enhancing the investigator’s ability to assess vital status, the ability
to contact participants by phone or e-mail may give him access to proxy outcome measures from
those who refuse to come for a visit at the end. The Heart and Estrogen/Progestin Replacement
Study (HERS) trial used all of these strategies: 89% of the women returned for the final clinic visit
after an average of 4 years of follow-up, another 8% had a final telephone contact for outcome
ascertainment, and information on vital status was determined for every one of the remaining
participants by using registered letters, contacts with close relatives, and a tracking service (15).

The design of the trial should make it as easy as possible for participants to adhere to the
intervention and complete all follow-up visits and measurements. Lengthy and stressful visits
can deter some participants from attending. Participants are more likely to return for visits that
involve noninvasive tests, such as computed tomography scans, than for invasive tests such as
coronary angiography. Collecting follow-up information by phone or electronic means may
improve adherence for participants who find visits difficult. On the other hand, participants
may lose interest in a trial if there are not some social or interpersonal rewards for participation.
Participants may tire of study visits that are scheduled monthly, and they may lose interest if
visits only occur annually. Follow-up is improved by making the trial experience positive and
enjoyable for participants: designing trial measurements and procedures to be painless and
interesting; performing tests that would not otherwise be available; providing results of tests to
participants (unless they are specialized research tests that are not yet established for clinical
practice); sending newsletters, text messages, or e-mail notes of appreciation; hosting social
media sites; sending holiday and birthday cards; giving inexpensive gifts; and developing strong
interpersonal relationships with enthusiastic and friendly staff.

Two design aspects that are specific to trials may improve adherence and follow-up: screen-
ing visits before randomization and a run-in period. Asking participants to attend one or two
screening visits before randomization may exclude participants who find that they cannot
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complete such visits. The trick here is to set the hurdles for entry into the trial high enough to
exclude those who will later be non-adherent, but not high enough to exclude participants who
will turn out to have satisfactory adherence.

A run-in period may be useful for increasing the proportion of study participants who adhere
to the intervention and follow-up procedures. During the baseline period, all participants are
placed on placebo. A specified time later (usually a few weeks), only those who have complied
with the intervention (e.g., taken at least 80% of the assigned placebo) are randomized. Exclud-
ing non-adherent participants before randomization in this fashion may increase the power of the
study and permit a better estimate of the full effects of intervention. However, a run-in period de-
lays entry into the trial, the proportion of participants excluded is generally small, and participants
randomized to the active drug may notice a change in their medication following randomization,
contributing to unblinding. It is also not clear that a placebo run-in is more effective in increasing
adherence than the requirement that participants complete one or more screening visits before
randomization. In the absence of a specific reason to suspect that adherence in the study will be
poor, it is probably not necessary to include a run-in period in the trial design.

A variant of the placebo run-in design is the use of the active drug rather than the placebo
for the run-in period. In addition to increasing adherence among those who enroll, an active
run-in can select participants who tolerate and respond to the intervention; the absence of
adverse effects, or the presence of a desired effect of treatment on a biomarker associated with
the outcome, can be used as criteria for randomization. For example, in a placebo-controlled
trial testing the effect of nitroglycerin on bone mass, the investigators used a 1-week active run-
in period and excluded women who stopped nitroglycerin due to headache (16). This design
maximized power by increasing the proportion of the intervention group that tolerated the
drug and were likely to be adherent. However, the findings of trials using this strategy may not
be generalizable to those excluded.

Using an active run-in may also result in underestimation of the rate of adverse effects.
A trial of the effect of carvedilol on mortality in 1,094 patients with congestive heart failure
used a 2-week active run-in period. During the run-in, 17 people had worsening congestive
heart failure and 7 died (17). These people were not randomized in the trial, and these adverse
effects of drug treatment were not included as outcomes.

Ascertaining and Adjudicating Outcomes

Data to ascertain that an outcome has occurred can come from many sources: self-report,
standardized questionnaires, administrative or clinical records, laboratory or imaging tests,
special measurements, and so on. Most self-reported outcomes, such as history of stroke or a
participant report of quitting smoking, are not 100% accurate. Self-reported outcomes that are
important to the trial should be confirmed if possible. Occurrence of disease, such as a stroke,
is generally adjudicated by:

1. Creating clear criteria for the outcome (e.g., a new, persistent neurologic deficit with
corresponding lesion on computed tomography or magnetic resonance imaging scan);

2. Collecting the clinical documents needed to make the assessment (e.g., discharge summa-
ries and radiology reports);

3. Having blinded experts review each potential case and judge whether the criteria for the
diagnosis have been met.

The adjudication is often done by two experts working independently, then resolving discor-
dant cases by discussion between the two or by a third expert. However, involving multiple
experts in adjudication can be expensive, and for straightforward outcomes in smaller studies
it may be sufficiently accurate to have a single investigator carry out the adjudication. The im-
portant thing is that anyone involved in collecting the information and adjudicating the cases
be blinded to the treatment assignment.
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Monitoring Clinical Trials

Investigators must assure that participants are not exposed to a harmful intervention, denied
a beneficial intervention, or continued in a trial if the research question is unlikely to be an-
swered. Each of these three considerations must be monitored during the course of a trial to
see if the trial should be stopped early.

e Stopping for harm. The most pressing reason to monitor clinical trials is to make sure that
the intervention does not turn out unexpectedly to be harmful. If harm is judged to be
clearly present and to outweigh benefits, the trial should be stopped.

e Stopping for benefit. If an intervention is more effective than was estimated when the trial
was designed, statistically significant benefit can be observed early in the trial. When clear
benefit has been proved, it may be unethical to continue the trial and delay offering the in-
tervention to participants on placebo and to others who could benefit.

e Stopping for futility. If there is a very low probability of answering the research question,
it may be unethical to continue participants in a trial that requires time and effort and that
may cause some discomfort or risk. If a clinical trial is scheduled to continue for 5 years,
for example, but after 4 years there is little difference in the rate of outcome events in the
intervention and control groups, the “conditional power” (the likelihood of rejecting the
null hypothesis in the remaining time, given the results thus far) becomes very small and
consideration should be given to stopping the trial. Sometimes trials are stopped early if
investigators are unable to recruit or retain enough participants to provide adequate power
to answer the research question, or adherence to the intervention is very poor.

The research question might be answered by other trials before a given trial is finished. It is
desirable to have more than one trial that provides evidence concerning a given research ques-
tion, but if definitive evidence for either benefit or harm becomes available during a trial, it may
be unethical to continue the trial.

Most clinical trials should include an interim monitoring plan. Trials funded by the
National Institutes of Health (NIH) generally require interim monitoring, even if the inter-
vention is considered safe (such as a behavioral intervention for weight loss). How interim
monitoring will occur should be considered in the planning of any clinical trial. In small trials
with interventions likely to be safe, the trial investigators might monitor safety or appoint a
single independent data and safety monitor. In large trials and trials in which adverse effects
of the intervention are unknown or potentially dangerous, interim monitoring is generally
performed by a committee, usually known as the Data and Safety Monitoring Board (DSMB),
consisting of experts in the disease or condition under study, biostatisticians, clinical trialists,
ethicists, and sometimes a representative of the patient group being studied. These experts are
not involved in the trial, and should have no personal or financial interest in its continuation.
DSMB guidelines and procedures should be detailed in writing before the trial begins. Guidance
for developing DSMB procedures is provided by the FDA and the NIH. Items to include in these
guidelines are outlined in Table 11.3.

Stopping a trial should always be a careful decision that balances ethical responsibility to the
participants and the advancement of scientific knowledge. Whenever a trial is stopped early, the
chance to provide more conclusive results will be lost. The decision is often complex, and poten-
tial risks to participants must be weighed against possible benefits. Statistical tests of significance
using one of the methods that compensates for multiple looks at the findings (Appendix 11B)
provide important but not conclusive information for stopping a trial. Trends over time and ef-
fects on related outcomes should be evaluated for consistency, and the impact of stopping the
study early on the credibility of the findings should be carefully considered (Example 11.2).

There are many statistical methods for monitoring the interim results of a trial. Analyzing
the results of a trial repeatedly (“multiple peeks”) is a form of multiple hypothesis testing and
increases the probability of a type I error. For example, if & = 0.05 is used for each interim
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TABLE 11.3 MONITORING A CLINICAL TRIAL

Elements to monitor
Recruitment
Randomization
Adherence to intervention and blinding
Follow-up completeness
Important variables
Outcomes
Adverse effects
Potential co-interventions
Who will monitor
Trial investigator or a single monitor if small trial with minor hazards
Independent data and safety monitoring board otherwise
Methods for interim monitoring
Specify statistical approach and frequency of monitoring in advance
Importance of judgment and context in addition to statistical stopping rules
Changes in the protocol that can result from monitoring
Terminate the trial
Modify the trial
Stop one arm of the trial
Add new measurements necessary for safety monitoring
Discontinue high-risk participants
Extend the trial in time
Enlarge the trial sample

test and the results of a trial are analyzed four times during the trial and again at the end, the
probability of making a type I error is increased from 5% to about 14% (18). To address this
problem, statistical methods for interim monitoring generally decrease the « for each interim
test so that the overall ¢ is close to 0.05. There are multiple approaches to deciding how to
“spend a” (Appendix 11B).

Analyzing the Results: Intention-to-Treat and Per-Protocol

Statistical analysis of the primary hypothesis of a clinical trial is generally straightforward. If the
outcome is dichotomous, the simplest approach is to compare the proportions in the study groups
using a chi-squared test. When the outcome is continuous, a ¢ test may be used, or a nonpara-
metric alternative if the outcome is not normally distributed. In many clinical trials, the duration
of follow-up is different for each participant, necessitating the use of survival time methods. More
sophisticated statistical models such as Cox proportional hazards analysis can accomplish this
and at the same time adjust for chance maldistributions of baseline confounding variables (19).

One important issue that should be considered in the analysis of clinical trial results is
the primacy of the intention-to-treat analytic approach to dealing with “crossovers,” partici-
pants assigned to the active treatment group who do not get treatment or discontinue it, and
those assigned to the control group who end up getting active treatment. An analysis done
by intention-to-treat compares outcomes between the study groups with every participant
analyzed according to his randomized group assignment, regardless of whether he adhered to
the assigned intervention. Intention-to-treat analyses may underestimate the full effect of the
treatment, but they guard against more important sources of biased results.
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An alternative to the intention-to-treat approach is to perform “per-protocol” analyses that
include only participants who adhered to the protocol. This is defined in various ways, but often
includes only participants in both groups who were adherent to the assigned study medication,
completed a certain proportion of visits or measurements, and had no other protocol violations.
A subset of the per-protocol analysis is an “as-treated” analysis in which only participants who
were adherent to the assigned intervention are included. These analyses seem reasonable because
participants can only be affected by an intervention they actually receive. However, participants
who adhere to the study treatment and protocol may be different from those who do not in
ways that are related to the outcome. In the Postmenopausal Estrogen-Progestin Interventions
(PEPI) trial, 875 postmenopausal women were randomly assigned to four different estrogen or
estrogen plus progestin regimens and placebo (20). Among women assigned to the unopposed
estrogen arm, 30% had discontinued treatment after 3 years because of endometrial hyperplasia,
a precursor of endometrial cancer. If these women were eliminated in a per protocol analysis,
the association of estrogen therapy and endometrial cancer would be missed.

The major disadvantage of the intention-to-treat approach is that participants who choose not
to take the assigned intervention will, nevertheless, be included in the estimate of the effects of
that intervention. Therefore, substantial discontinuation or crossover between treatments will
cause intention-to-treat analyses to underestimate the magnitude of the effect of treatment. For
this reason, results of trials are often evaluated with both intention-to-treat and per-protocol
analyses. For example, in the Women’s Health Initiative randomized trial of the effect of estro-
gen plus progestin treatment on breast cancer risk, the hazard ratio was 1.24 (P = 0.003) from
the intention-to-treat analysis and 1.49 in the as-treated analysis (P <0.001) (21). If the results
of intention-to-treat and per protocol analyses differ, the intention-to-treat results generally
predominate for estimates of efficacy because they preserve the value of randomization and,
unlike per-protocol analyses, can only bias the estimated effect in the conservative direction
(favoring the null hypothesis). However, for estimates of harm (e.g., the breast cancer find-
ings), as-treated or per-protocol analyses provide the most conservative estimates, as interven-
tions can only be expected to cause harm in exposed persons.

Results can only be analyzed by intention-to-treat if follow-up measures are completed
regardless of whether participants adhere to treatment. Therefore, this should always be the goal.

Subgroup Analyses

Subgroup analyses are defined as comparisons between randomized groups in a subset of
the trial cohort. The main reason for doing these analyses is to discover effect modification
(“interaction”) in subgroups, for example whether the effect of a treatment is different in men
than in women. These analyses have a mixed reputation because they are easy to misuse and
can lead to wrong conclusions. With proper care, however, they can provide useful ancillary
information and expand the inferences that can be drawn from a clinical trial. To preserve the
value of randomization, subgroups should be defined by measurements that were made before
randomization. For example, a trial of denosumab to prevent fractures found that the drug de-
creased risk of non-vertebral fracture by 20% among women with low bone density. Preplanned
subgroup analyses revealed that the treatment was effective (35% reduction in fracture risk;
P <0.01) among women with low bone density at baseline and that treatment was ineffective in
women with higher bone density at baseline (P = 0.02 for effect modification) (22). It is impor-
tant to note that the value of randomization is preserved: The fracture rate among women ran-
domized to denosumab is compared with the rate among women randomized to placebo in each
subgroup. Subgroup analyses based on post-randomization factors such as adherence to random-
ized treatment do not preserve the value of randomization and often produce misleading results.

Subgroup analyses can produce misleading results for several reasons. Being smaller than
the entire trial population, there may not be sufficient power to find important differences; in-
vestigators should avoid claiming that a drug “was ineffective” in a subgroup when the finding
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might reflect insufficient power to find an effect. Investigators often examine results in a large
number of subgroups, increasing the likelihood of finding a different effect of the intervention
in one subgroup by chance. For example, if 20 subgroups are examined, differences in one
subgroup at P <0.05 would be expected to occur by chance. To address this issue, planned
subgroup analyses should be defined before the trial begins, and the number of subgroups ana-
lyzed should be reported with the results of the study (23). Claims about different responses in
subgroups should be supported by evidence that there is a statistically significant interaction
between the effect of treatment and the subgroup characteristic, and a separate study should
confirm the effect modification before it is considered established.

B SUMMARY

1. There are several variations on the randomized trial design that can substantially increase
efficiency under the right circumstances:

a. The factorial design allows two or more independent trials to be carried out for the
price of one.

b. Cluster randomization permits efficient studies of naturally occurring groups.

c. Non-inferiority or equivalence trials compare a new intervention to an existing
“standard of care.”

d. Adaptive designs increase efficiency by allowing design changes based on interim
analyses, for example altering the dose of study drug, the number of participants, and
the duration of follow-up.

2. There are also other useful clinical trial designs:

a. Time series designs have a single group with outcomes compared within each partici-
pant during periods on and off an intervention.

b. Crossover designs combine within and between group designs to enhance control over
confounding (if carryover effects are not a problem) and minimize sample size.

3. Trials for regulatory approval of new drugs are classified as:

a. Phase I, small trials to explore dosage and safety

b. Phase II, medium-sized randomized or time series trials of drug effects at several doses

c. Phase III, large randomized trials to demonstrate that benefits outweigh harms as the
basis for FDA approval

d. Phase 1V, large post-marketing observational studies to confirm benefits and detect rare
adverse effects

4. Pilot studies are important steps to help determine acceptability of interventions and fea-
sibility, size, cost, and duration of planned trials.

5. In conducting a trial, if a substantial number of study participants do not adhere to the
study intervention or are lost to follow-up, the results of the trial are likely to be under-
powered, biased, or uninterpretable.

6. During a trial, interim monitoring by an independent data and safety monitoring board
(DSMB) is needed to assure the quality of the study, and to decide if the trial should stop
early due to evidence of harm, benefit, or futility.

7. Intention-to-treat analysis takes advantage of the control of confounding provided by
randomization and should be the primary analysis approach for assessing efficacy. Per
protocol analyses, a secondary approach that provides an estimate of the effect size in
adherent participants (interpreted with caution), is the most conservative analysis of the
harmful effects of treatment.

8. Subgroup analyses can detect whether the effect of treatment is modified by other vari-
ables; to minimize misinterpretations, the investigator should specify the subgroups in
advance, test possible effect modifications (interactions) for statistical significance, and
report the number of subgroups examined.



APPENDIX 11A
Specifying the Non-Inferiority
Margin in a Non-Inferiority Trial

One of the most difficult issues in designing a non-inferiority trial is establishing the loss of
efficacy of the new treatment that would be unacceptable (7), referred to as “A” and often called
the non-inferiority margin. This decision is based on both statistical and clinical considerations
of the potential efficacy and advantages of the new treatment, and requires expert judgment.
Here’s an example of how this works:

EXAMPLE 11.1 Designing a Study of a New Drug Compared to
Warfarin in Patients with Atrial Fibrillation

Warfarin reduces risk for stroke in high-risk patients with atrial fibrillation, so a new
drug should be compared to this standard of care. When warfarin is used to reduce the
risk of stroke in this situation, it is difficult to dose correctly, requires frequent blood
tests to monitor level of anticoagulation, and can cause major bleeding. If a new drug
were available that did not have these drawbacks, it could be reasonable to prefer this
drug to warfarin, even if its efficacy in reducing risk of stroke was slightly lower.

One approach to setting A is to perform a meta-analysis of previous trials of warfarin
compared to placebo, and set A at some proportion of the distance between the null and
lower bound for the treatment effect of warfarin. Alternatively, since studies included in
meta-analyses often vary in quality, it may be better to base A on the results of the best
quality randomized trial of warfarin that has similar entry criteria, warfarin dosage and
outcome measures. It is important to set A such that there is a high likelihood, taking all
benefits and harms into account, that the new therapy is better than placebo (6, 7).

Suppose that a meta-analysis of good-quality trials of warfarin compared to placebo
shows that treatment with warfarin reduces the rate of stroke in high-risk patients with
atrial fibrillation from 10% per year to about 5% per year (absolute treatment effect = 5%,
95% CI 4-6%). Given the advantages of our new drug, what loss of efficacy is clinically
unacceptable? Perhaps an absolute efficacy that is 2% lower than warfarin would be ac-
ceptable? In this case, we would declare the new treatment non-inferior to warfarin if the
lower limit of the confidence interval around the difference in stroke rates between war-
farin and the new treatment is less than 2% (Figure 11.2). In a non-inferiority trial, it is
also possible that the new treatment is found to be superior to the established treatment
(topmost example in Figure 11.2).
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APPENDIX 11B
Interim Monitoring of Trial
Outcomes and Early Stopping

Interim monitoring of trial results to decide whether to stop a trial is a form of multiple hypoth-
esis testing, and thereby increases the probability of a type I error. To address this problem, o
for each test (&) is generally decreased so that the overall ¢ is approximately = 0.05. There are
multiple statistical methods for decreasing .

One of the easiest to understand is the Bonferroni method, where ¢; = o/N if N is the total
number of tests performed. For example, if the overall «is 0.05 and five tests will be performed,
o, for each test is 0.01. This method has two disadvantages, however: it requires using an equal
threshold for stopping the trial at any interim analysis, and it results in a low « for the final
analysis. Most investigators would rather use a more strict threshold for stopping a trial earlier
rather than later and use an « close to 0.05 for the final analysis. In addition, this approach
is too conservative because it assumes that each test is independent. Interim analyses are not
independent, because each successive analysis is based on cumulative data, some of which were
included in prior analyses. For these reasons, the Bonferroni method is not generally used.

A commonly used method suggested by O’Brien and Fleming (24) uses a very small ¢; for
the initial hypothesis test, then gradually increases it for each test such that ¢; for the final
test is close to the overall o O'Brien and Fleming provide methods for calculating ¢ if the
investigator chooses the number of tests to be done and the overall ¢. At each test, Z; = Z*
(N)Y?, where Z, = Z value for the ith test; Z* is determined so as to achieve the overall signifi-
cance level; and N is the total number of tests planned. For example, for five tests and overall
o= 0.05, Z* = 2.04; the initial &= 0.00001 and the final o5 = 0.046. This method is unlikely
to lead to stopping a trial very early unless there is a striking difference in outcome between
randomized groups. In addition, this method avoids the awkward situation of getting to the
end of a trial and accepting the null hypothesis when the P value is 0.04 or 0.03 but the ¢ for
the final test is diluted down to 0.01.

A major drawback to the O’Brien-Fleming method is that the number of tests and the pro-
portion of data to be tested must be decided before the trial starts. In some trials, additional
interim tests become necessary when important trends occur. DeMets and Lan (25) developed
a method using a specified a~spending function that provides continuous stopping boundar-
ies. The ¢ at a particular time (or after a certain proportion of outcomes) is determined by the
function and by the number of previous “looks.” Using this method, the number of “looks”
and the proportion of data to be analyzed at each “look” do not need to be specified before
the trial. Of course, for each additional unplanned interim analysis conducted, the final « is
a little smaller.

A different set of statistical methods based on curtailed sampling techniques suggests termi-
nation of a trial if future data are unlikely to change the conclusion. The multiple testing prob-
lem is irrelevant because the decision is based only on estimation of what the data will show
at the end of the trial. A common approach is to compute the probability of rejecting the null
hypothesis at the end of the trial, conditioned on the accumulated data. A range of conditional
power is typically calculated, first assuming that Ho is true (i.e., that any future outcomes in the
treated and control groups will be equally distributed) and also assuming that H, is true (i.e.,
that outcomes will be distributed unequally in the treatment and control groups as specified
by H,). Other estimates can also be used to provide a full range of reasonable effect sizes. If the
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conditional power to reject the null hypothesis across the range of assumptions is low, the null
hypothesis is not likely to be rejected and the trial might be stopped.

Examples of two trials that were stopped early are presented in Example 11.2

EXAMPLE 11.2 Two Trials That Have Been Stopped Early

Cardiac Arrhythmia Suppression Trial (CAST) (26). The occurrence of premature
ventricular contractions in survivors of myocardial infarction (MI) is a risk factor for
sudden death. The CAST evaluated the effect of antiarrhythmic therapy (encainide,
flecainide, or moricizine) in patients with asymptomatic or mildly symptomatic ven-
tricular arrhythmia after MI on risk for sudden death. During an average of 10 months
of follow-up, the participants treated with active drug had a higher total mortality (7.7%
versus 3.0%) and a higher rate of death from arrhythmia (4.5% versus 1.5%) than those
assigned to placebo. The trial was planned to continue for 5 years but this large and
highly statistically significant difference led to the trial being stopped after 18 months.

Physicians’ Health Study (27). The Physicians’ Health Study was a randomized trial

of the effect of aspirin (325 mg every other day) on cardiovascular mortality. The trial
was stopped after 4.8 years of the planned 8-year follow-up. There was a statistically
significant reduction in risk of non-fatal myocardial infarction in the treated group
(relative risk = 0.56), but no difference in the number of cardiovascular disease deaths.
The rate of cardiovascular disease deaths observed in the study was far lower than
expected (88 after 4.8 years of follow-up versus 733 expected), and the trial was stopped
because of the beneficial effect of aspirin on risk for nonfatal MI coupled with the very
low conditional power to detect a favorable impact on cardiovascular mortality.
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CHAPTER

Designing Studies
of Medical Tests

Thomas B. Newman, Warren S. Browner, Steven R. Cummings,

and Stephen B. Hulley

Medical tests, such as those performed to screen for a risk factor, diagnose a disease, or
estimate a patient’s prognosis, are an important aspect of clinical research. The study designs
discussed in this chapter can be used when studying whether, and in whom, a particular test
should be performed.

Most designs for studies of medical tests resemble the observational designs in Chapters 7
and 8. There are, however, some important differences between most observational studies and
those used to evaluate medical tests. Most important, the goal of most observational studies is
to identify statistically significant associations (Chapter 5) that represent causal relationships
(Chapter 9). In contrast, demonstrating that a test result has a statistically significant associa-
tion with a particular condition is not nearly enough to determine whether that test would be
useful clinically, and for studies of medical tests, causality is often irrelevant. Thus, odds ratios
and P values are secondary considerations for studies of medical tests, which focus instead on
descriptive parameters such as sensitivity, specificity, and likelihood ratios along with their
associated confidence intervals.

B DETERMINING WHETHER A TEST IS USEFUL

For a test to be useful it must pass muster on a series of increasingly difficult questions that
address its reproducibility, accuracy, feasibility, and, most importantly, its effects on clinical
decisions and outcomes (Table 12.1). Favorable answers to these questions are necessary but
not sufficient criteria for a test to be worth doing. For example, if a test gives very different re-
sults depending on who does it or where it is done, it is unlikely to be useful. If the test seldom
supplies new information, it is unlikely to affect clinical decisions. Even if it affects decisions, if
these decisions do not improve the clinical outcome of patients who were tested at reasonable
risk and cost, the test still may not be useful.

Of course, if using a test improves the outcomes of tested patients, favorable answers to the
other questions can be inferred. However, studies of whether doing a test improves patient
outcomes are the most difficult to do. Instead, the potential effects of a test on outcomes are
usually inferred by comparing the accuracy, safety, or costs with those of existing tests. When
developing a new diagnostic or prognostic test, it may be worthwhile to consider what aspects
of current practice are most in need of improvement. For example, are current tests unreliable,
inaccurate, expensive, dangerous, or difficult to perform?

General Issues for Studies of Medical Tests

e Spectrum of disease severity and of test results. Because the goal of most studies of medi-
cal tests is to draw inferences about populations by making measurements on samples, the
way the sample is selected has a major effect on the validity of the inferences. Spectrum
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TABLE 12.1 QUESTIONS TO DETERMINE THE USEFULNESS OF A MEDICAL TEST,
POSSIBLE DESIGNS TO ANSWER THEM, AND STATISTICS FOR REPORTING

RESULTS

QUESTION

POSSIBLE DESIGNS

STATISTICS FOR RESULTS*

How reproducible is the
test?

Studies of intra- and inter-observer
and intra- and inter-laboratory
variability

Proportion agreement, kappa,
coefficient of variation, mean, and
distribution of differences (avoid
correlation coefficient)

How accurate is the test?

Cross-sectional, case—control, or
cohort-type designs in which test
result is compared with a gold
standard

Sensitivity, specificity, positive and
negative predictive value, receiver
operating characteristic curves, and
likelihood ratios

How often do test results
affect clinical decisions?

Diagnostic yield studies, studies of
pre- and posttest clinical decision
making

Proportion abnormal, proportion
with discrepant results, proportion
of tests leading to changes in clini-
cal decisions; cost per abnormal
result or per decision change

What are the costs, risks,
and acceptability of the
test?

Prospective or retrospective studies

Mean costs, proportions
experiencing adverse effects,
proportions willing to undergo the
test

Does doing the test
improve clinical outcome
or have adverse effects?

Randomized trials, cohort or
case—control studies in which the
predictor variable is receiving the
test and the outcomes include

Risk ratios, odds ratios, hazard
ratios, numbers needed to treat,
rates and ratios of desirable and
undesirable outcomes

morbidity, mortality, or costs
related either to the disease or to
its treatment

*Most statistics in this table should be presented with confidence intervals.

bias occurs when the spectrum of disease (or non-disease) in the sample differs from that
of the patients to whom the investigator wishes to generalize. Early in the development of
a diagnostic test, it may be reasonable to investigate whether a test can distinguish between
subjects with clear-cut, late stage disease and healthy controls; if the answer is no, the inves-
tigator can go back to the lab to work on a modification or a different test. Later, however,
when the research question addresses the clinical utility of the test, the spectrum of both
disease and non-disease should be representative of the patients in whom the test will be
used. For example, a test developed by comparing symptomatic pancreatic cancer patients
to healthy controls could later be evaluated on a more difficult but clinically realistic sample,
such as consecutive patients with unexplained abdominal pain or weight loss.

Spectrum bias can occur from an inappropriate spectrum of test results as well as an in-
appropriate spectrum of disease. For example, consider a study of inter-observer agreement
among radiologists reading mammograms. If they are asked to classify the films as normal or
abnormal, their agreement will be much higher if the “positive” films the investigator selects
for them to examine are selected because they are clearly abnormal, and the “negative” films
are selected because they are free of all suspicious abnormalities.

Importance of blinding. Many studies of diagnostic tests involve judgments, such as
whether to consider a radiograph abnormal, or whether a patient meets the criteria for
diagnosing a particular disease. Whenever possible, investigators should blind those in-
terpreting test results from other information about the patient being tested. In a study
of the contribution of ultrasonography to the diagnosis of appendicitis, for example,
those reading the sonograms should not know the results of the history and physical
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examination.! Similarly, the pathologists making the final determination of who does and
does not have appendicitis (the gold standard to which sonogram results will be compared)
should not know the results of the ultrasound examination. Blinding prevents biases, precon-
ceptions, and information from sources other than the test from affecting these judgments.

e Sources of variation, generalizability, and the sampling scheme. For some research ques-
tions, differences among patients are the main source of variation in the results of a test. For
example, some infants with bacteremia (bacteria in the blood) will have an elevated white
blood cell count, whereas others will not. The proportion of bacteremic infants with high white
blood cell counts is not expected to vary much according to which laboratory does the blood
count. On the other hand, many test results depend on the person doing the test or the setting
in which the test is done. For example, the sensitivity, specificity, and inter-rater reliability for
interpreting mammograms depend on the readers’ skill and experience, as well as the quality
of the equipment. When accuracy may vary from reader to reader or institution to institution,
it is helpful to study different readers and institutions to assess the consistency of the results.

e Gold standard for diagnosis. Some diseases have a gold standard that is generally accepted
to indicate the presence or absence of the target disease, such as the pathological examination
of a tissue biopsy specimen for cancer. Other diseases have definitional gold standards, such
as defining coronary artery disease as a 50% obstruction of at least one major coronary artery
as seen with coronary angiography. Still others, such as rheumatologic diseases, require that a
patient have a specified number of signs, symptoms, or laboratory abnormalities to meet the
criteria for having the disease. Of course, if any signs, symptoms, or laboratory tests used
to diagnose a disease are used as part of the gold standard, a study comparing them to that
gold standard can make them look falsely good. This is called incorporation bias because the
test being studied is incorporated into the gold standard; avoiding it is one of the previously
mentioned reasons for blinding.

It is also important to consider whether the gold standard is truly gold. If the gold stan-
dard is imperfect it can make a test either look worse than it really is (if in reality the test
outperforms the gold standard) or better than it really is (if the index test makes the same
mistakes as the gold standard).

e What constitutes a positive test? Particularly if a test has continuous results (like a serum
erythropoietin level), it may be tempting for an investigator to look at all the results in
those with the outcome (say, anemia of chronic disease) and those without the outcome
(other types of anemia), and then select the best cut point to define a positive test. How-
ever, this is a type of overfitting (i.e., random variation in the particular sample studied that
makes the test performance look better than it is in the population). Better approaches are
to base the cut point on clinical or biological knowledge from other studies or to divide
continuous tests into intervals, then calculate likelihood ratios for each interval (see the fol-
lowing text). To minimize overfitting, cut points for defining intervals should be specified in
advance, or reasonable round numbers should be used. Overfitting is a particular issue for
clinical prediction rules, which are discussed later in this chapter.

B STUDIES OF TEST REPRODUCIBILITY

Sometimes the results of tests vary according to when or where they were done or who did
them. Intra-observer variability describes the lack of reproducibility in results when the same
observer or laboratory performs the test on the same specimen at different times. For example,
if a radiologist is shown the same chest radiograph on two occasions, what percent of the time
will he agree with himself on the interpretation, assuming he is unaware of his prior inter-
pretation? Inter-observer variability describes the lack of reproducibility among two or more

! Alternatively, the accuracy of the history and physical examination alone could be compared with the accuracy of
history and physical examination plus ultrasound.
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observers: If another radiologist is shown the same film, how likely is he to agree with the first
radiologist?

Often, the level of reproducibility (or lack thereof) is the main research question. In other
cases, reproducibility is studied with the goal of quality improvement, either for clinical care
or for a research study. When reproducibility is poor—because either intra- or inter-observer
variability is large—a measurement is unlikely to be useful, and it may need to be either im-
proved or abandoned.

Studies of reproducibility per se address precision, not accuracy or validity (Chapter 4), so
all observers can agree with one another and still be wrong. When a gold standard is available,
investigators of intra- and inter-observer reproducibility may compare subjects’ observations
with a gold standard to determine accuracy. When no gold standard is available, investigators
must rely on the other methods of assessing validity described in Chapter 4.

Designs

The basic design to assess test reproducibility involves comparing test results from more than
one observer or that were performed on more than one occasion. For tests that involve several
steps, differences in any one of which might affect reproducibility, the investigator will need to
decide on the breadth of the study’s focus. For example, measuring inter-observer agreement
of pathologists on a set of Pap smear slides in a single hospital may overestimate the overall
reproducibility of Pap smears because the variability in how the sample was obtained and how
the slide was prepared would not be captured.

The extent to which an investigator needs to isolate the steps that might lead to inter-
observer disagreement depends partly on the goals of his study. Most studies should estimate
the reproducibility of the entire testing process, because this is what determines whether the
test is worth using. On the other hand, an investigator who is developing or improving a test
may want to focus on the specific steps that are problematic in order to improve the process.
In either case, the investigator should lay out the exact process for obtaining the test result in
the operations manual (Chapters 4 and 17) and then describe it in the methods section when
reporting the study results.

Analysis

e Categorical variables. The simplest measure of inter-observer agreement is the percent of
observations on which the observers agree exactly. However, when the observations are not
evenly distributed among the categories (e.g., when the proportion that are “abnormal” on
a dichotomous test is not close to 50%), the percent agreement can be hard to interpret,
because it does not account for agreement that could result simply from both observers
having some knowledge about the prevalence of abnormality. For example, if 95% of sub-
jects are normal, two observers who randomly choose which 5% of tests to call “abnormal”
will agree that results are “normal” about 90% of the time. The percent agreement is also
a suboptimal measure when a test has more than two possible results that are intrinsically
ordered (e.g., normal, borderline, abnormal), because it counts partial disagreement (e.g.,
normal/borderline) the same as complete disagreement (normal/abnormal).

A better measure of inter-observer agreement, called kappa (Appendix 12A), measures the
extent of agreement beyond what would be expected from observers’ knowledge of the preva-
lence of abnormality,® and can give credit for partial agreement. Kappa ranges from —1 (perfect
disagreement) to 1 (perfect agreement). A kappa of 0 indicates no more agreement than would
be expected from the observers’ estimates of the prevalence of each level of abnormality. Kappa
values above 0.8 are generally considered very good; levels of 0.6 to 0.8 are good.

>Kappa is often described as the extent of agreement beyond that expected by chance, but the estimate of the agreement
expected by chance is based on the prevalence of abnormality assigned by each observer.
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e Continuous variables. Measures of inter-observer variability for continuous variables depend
on the design of the study. Some studies measure the agreement between just two machines
or methods (e.g., temperatures obtained from two different thermometers). The best way to
describe the data from such a study is to gather the data on the pairs of measurements (each
pair consists of two measurements made at close to the same time in the same subject) and
report the mean difference between those pairs with some measure of the spread of values,
such as the standard deviation or how often the difference exceeds a clinically relevant
threshold. For example, if a clinically important difference in body temperature is 0.3°C, a
study comparing temperatures from tympanic and rectal thermometers could estimate the
mean (x standard deviation) difference between the two techniques, and report how often
the two measurements differed by more than 0.3°C.?

Other studies examine the inter-assay, inter-observer, or inter-instrument variability of
tests across a large group of different technicians, laboratories, or machines. These results
are commonly summarized using the coefficient of variation (CV), which is the standard
deviation of all of the results obtained from a single specimen divided by the mean value.
Often, the CVs of two or more different assays or instruments are compared; the one with
the smallest CV is the most precise (though it may not be the most accurate).

B STUDIES OF THE ACCURACY OF TESTS

Studies in this section address the question, “To what extent does the test give the right answer?”
This assumes, of course, that a gold standard is available to reveal what the right answer is.

Designs

e Sampling. Studies of diagnostic test accuracy can have designs analogous to case—control or
cross-sectional studies. In the case—control design of a diagnostic test, those with and with-
out the disease are sampled separately, and the test results in the two groups are compared.
As previously noted, case—control sampling may be appropriate early in the development of a
diagnostic test, when the research question is whether the test warrants further study. Later,
when the research question is the clinical utility of the test, the spectra of disease and non-
disease should resemble those of the people to whom the test will be applied clinically; this
is much more difficult to achieve with case—control sampling than with samples designed to
be representative of the whole target population.

Studies of tests that sample those with and without the disease separately are subject to
bias in the measurement or reporting of the test result, because its measurement necessarily
comes after the measurement of disease status. In addition, studies with this sampling scheme
usually cannot be used to estimate predictive values (discussed in the following text).

A consecutive sample of patients being evaluated for a particular diagnosis generally
will yield more valid and interpretable results, including predictive values. For example,
Tokuda et al. (3) found that the degree of chills (e.g., feeling cold versus whole body shak-
ing under a thick blanket) was a strong predictor of bacteremia in a series of 526 consecu-
tive febrile adult emergency department patients. Because the subjects were enrolled before
it was known whether they were bacteremic, the spectrum of patients in this study should
be reasonably representative of patients who present to emergency departments with fever.

> Although commonly used, the correlation coefficient is best avoided in studies of the reliability of laboratory tests
because it is highly influenced by outlying values and does not allow readers to determine how frequently differences
between the two measurements are clinically important. Confidence intervals for the mean difference should also be
avoided because their dependence on sample size makes them potentially misleading. A narrow confidence interval
for the mean difference between the two measurements does not imply that they generally closely agree—only that the
mean difference between them is being measured precisely. See Bland and Altman (1) or Newman and Kohn (2) for
additional discussion of these points.
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A sampling scheme that we call tandem testing is sometimes used to compare two (pre-
sumably imperfect) tests with one another. Both tests are done on a representative sample of
subjects and the gold standard is selectively applied to those with positive results on either
or both tests. The gold standard should also be applied to a random sample of patients with
concordant negative results, to make sure that they really don’t have the disease. This design,
which allows the investigator to determine which test is more accurate without the expense
of doing the gold standard test in all the subjects with negative results, has been used in
studies comparing different cervical cytology methods (4).

Prognostic test studies require cohort designs. In a prospective design, the test is done
at baseline, and the subjects are then followed to see who develops the outcome of interest.
A retrospective cohort study can be used when a new test becomes available, such as viral
load in HIV-positive patients, if a previously defined cohort with banked blood samples is
available. Then the viral load can be measured in the stored blood to see whether it predicts
prognosis. The nested case—control design (Chapter 8) is particularly attractive if the out-
come of interest is rare and the test is expensive.

e Predictor variable: the test result. Although it is simplest to think of the results of a diagnos-
tic test as being either positive or negative, many tests have categorical, ordinal, or continu-
ous results. In order to take advantage of all available information in the test, investigators
should generally report the results of ordinal or continuous tests rather than dichotomizing
as “normal or abnormal.” Most tests are more indicative of disease if they are very abnormal
than if they are slightly abnormal, and have a borderline range in which they do not provide
much information.

e Outcome variable: the disease (or its outcome). The outcome variable in a diagnostic test
study is the presence or absence of the disease, which is best determined with a gold stan-
dard. Wherever possible, the assessment of outcome should not be influenced by the results
of the diagnostic test being studied. This is best accomplished by blinding those doing the
gold standard test so that they do not know the results of the index test.

Sometimes, particularly with screening tests, uniform application of the gold standard is
not ethical or feasible. For example, Smith-Bindman et al. (5) studied the accuracy of mam-
mography according to characteristics of the interpreting radiologist. Women with positive
mammograms were referred for further tests, eventually with pathologic evaluation as the
gold standard. However, it is not reasonable to do breast biopsies in women whose mammo-
grams are negative. Therefore, to determine whether these women had false-negative mam-
mograms, the authors linked their mammography results with local tumor registries and
considered whether or not breast cancer was diagnosed in the year following mammography
to be the gold standard. This solution assumes that all breast cancers that exist at the time of
mammography will be diagnosed within 1 year, and that all cancers diagnosed within 1 year
existed at the time of the mammogram. Measuring the gold standard differently depending
on the result of the test creates a potential for bias, discussed in more detail at the end of the
chapter, but sometimes that is the only feasible option.

The outcome variable in a prognostic test study involves what happens to patients with
a disease, such as how long they live, what complications they develop, or what additional
treatments they require. Again, blinding is important, especially if clinicians caring for the
patients may make decisions based upon the prognostic factors being studied. For example,
Rocker et al. (6) found that attending physicians’ estimates of prognosis, but not those of
bedside nurses, were independently associated with intensive care unit mortality. This could
be because the attending physicians were more skilled at estimating severity of illness, but
it could also be because physician prognostic estimates had a greater effect than those of the
nurses on decisions to withdraw life support. To distinguish between these possibilities, it
would be helpful to obtain estimates of prognosis from attending physicians other than those
involved in making or framing decisions about withdrawal of support.
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Analysis

e Sensitivity, specificity, and positive and negative predictive values. When results of a
dichotomous test are compared with a dichotomous gold standard, the results can be sum-
marized in a 2 X 2 table (Table 12.2). The sensitivity of a test is defined as the proportion of
subjects with the disease in whom the test gives the right answer (i.e., is positive); specific-
ity is the proportion of subjects without the disease in whom the test gives the right answer
(i.e., is negative). If the sample of patients who were studied is representative of the group
of patients in whom the test would be used, two additional parameters can be calculated.
The positive predictive value is the proportion of subjects with positive tests who have the
disease; the negative predictive value is the proportion of subjects with negative tests who
don’t have the disease.

* Receiver operating characteristic curves. Many diagnostic tests yield ordinal or continuous
results. With such tests, several values of sensitivity and specificity are possible, depending
on the cutoff chosen to define a positive test. This trade-off between sensitivity and specific-
ity can be displayed using a graphic technique originally developed in electronics: receiver
operating characteristic (ROC) curves. The investigator selects several cutoff points and
determines the sensitivity and specificity at each point. He then graphs the sensitivity (or
true-positive rate) on the Y-axis as a function of 1 — specificity (the false-positive rate) on
the X-axis. An ideal test is one that reaches the upper left corner of the graph (100% true-
positives and no false-positives). A worthless test follows the diagonal from the lower left to
the upper right corners: at any cutoff the true-positive rate is the same as the false-positive
rate (Figure 12.1). The area under the ROC curve, which thus ranges from 0.5 for a useless
test to 1.0 for a perfect test, is a useful summary of the overall accuracy of a test and can be
used to compare the accuracy of two or more tests.

e Likelihood ratios. Although the information in a diagnostic test with continuous or ordinal
results can be summarized using sensitivity and specificity or ROC curves, there is a better
way. Likelihood ratios allow the investigator to take advantage of all information in a test.
For each test result, the likelihood ratio is the ratio of the likelihood of that result in some-
one with the disease to the likelihood of that result in someone without the disease.

P (Result | Disease)
P (Result | No Disease)

Likelihood ratio =

TABLE 12.2 SUMMARIZING RESULTS OF A STUDY OF DICHOTOMOUS TESTS IN
A 2 x 2 TABLE

GOLD STANDARD

DISEASE NO DISEASE TOTAL
Positive @ b a+h Polsitiv_e F;redic;ive
TEST True-positive False-positive value = a/(a + b)
Negative € d o NegatE/e predictive
False-negative True-negative value = d/(c +d)
Total a+c b+d
Sensitivity = Specificity =
al/(a + ¢ d/(b + d)

Positive and negative predictive values can be calculated from a 2 x 2 table like this only when the prevalence of
disease is (a + ¢)/(a + b + ¢ + d). This will not be the case if subjects with and without disease are sampled separately
(e.g., 100 of each in a study with case-control sampling).
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1
Good test e

% Different cutoffs _—%
for considering
the test positive

Worthless
test

True positives (sensitivity)

False positives (1-specificity)

M FIGURE 12.1 Receiver operating characteristic curves for
good and worthless tests.

The P is read as “probability of” and the “|” is read as “given.” Thus, P(Result|Disease) is
the probability of the result given disease, and P(Result|No Disease) is the probability of that
result given no disease. The likelihood ratio is a ratio of these two probabilities.*

The higher the likelihood ratio, the better the test result for ruling in a disease; a likeli-
hood ratio greater than 100 is very high (and unusual among tests). On the other hand,
the lower a likelihood ratio (the closer it is to 0), the better the test result is for ruling out
the disease. A likelihood ratio of 1 means that the test result provides no information at all
about the likelihood of disease; those close to 1 (say from 0.8 to 1.25) provide little helpful
information.

An example of likelihood ratios is shown in Table 12.3, which presents results from a study
of complete blood counts in newborns at risk for serious infections (7). A white blood cell
count less than 5,000 cells/uL was much more common among infants with serious infections
than among other infants. The calculation of likelihood ratios simply quantifies this: 19% of
the infants with infections had white blood cell counts less than 5,000 cells/uL, compared with
only 0.52% of those without infections. Therefore, the likelihood ratio is 19%/0.52% = 36.

*For dichotomous tests the likelihood ratio for a positive test is
Sensitivity
1- Specificity

and the likelihood ratio for a negative test is
1- Sensitivity
Specificity ~

Detailed discussions of how to use likelihood ratios and prior information (the prior probability of disease) to estimate
a patient’s probability of disease after knowing the test result (the posterior probability) are available in Newman and
Kohn (2). The formula is

Prior odds x Likelihood ratio = Posterior odds

where prior and posterior odds are related to their respective probabilities by

P
odds = P
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TABLE 12.3 EXAMPLE OF CALCULATION OF LIKELIHOOD RATIOS FROM
A STUDY OF COMPLETE BLOOD COUNTS TO PREDICT SERIOUS INFECTIONS
IN YOUNG NEWBORNS (7)

WHITE BLOOD CELL LIKELIHOOD

COUNT (PER pL) SERIOUS INFECTION RATIO
YES NO

<5,000 46 347 36
19% 0.52%

5,000-9,999 53 5,103 2.9
22% 7.6%

10,000-14,999 53 16,941 0.86
22% 25%

15,000-19,999 45 21,168 0.58
18% 31%

>20,000 48 23,818 0.56
20% 35%

Total 245 67,377

100% 100%

e Absolute risks, risk ratios, risk differences, and hazard ratios. The analysis of studies of
prognostic tests is similar to that of other cohort studies. If everyone in a prognostic test
study is followed for a set period of time (say 3 years) with few losses to follow-up, then the
results can be summarized with absolute risks, risk ratios, and risk differences. Especially
when follow-up is complete and of short duration, results of studies of prognostic tests are
sometimes summarized like those of diagnostic tests, using sensitivity, specificity, predic-
tive value, likelihood ratios, and ROC curves. On the other hand, when the study subjects
are followed for varying lengths of time, a survival-analysis technique that accounts for the
length of follow-up time and estimates hazard ratios is preferable (8).

e Net reclassification improvement. For new tests or biomarkers intended to predict future
disease events, it is important to quantify what the new tests add to existing prediction mod-
els. While one way to do this is to look at the amount they increase the area under the ROC
curve, changes in the area under the ROC curve are often small, even for well-established pre-
dictors, and are difficult to translate into projected changes in clinical decisions and patient
outcomes (9, 10). A more direct approach, which is most useful when treatment thresholds
are well-established, is to examine how often a model or clinical prediction rule including the
new test changes the classification of patients from one risk category (and treatment decision)
to another, compared with the old model. If the new test improves prediction, more subjects
who develop the outcome (“cases”) should move up to a higher risk category than move
down to a lower risk category; the opposite should be true for those who do not develop the
outcome (“controls”): their risk should move down in more subjects than it moves up. Net
reclassification improvement (NRI) quantifies these differences as follows (11):

NRI = P(uplcase) — P(downl|case) + P(down|control) — P(uplcontrol)

where P(uplcase) is the proportion of cases in whom the model with the new marker led
to the subject moving to a higher risk category and the other terms are correspondingly
defined. For example, Shepherd et al. (12) found that adding the calculated mammographic
fibroglandular volume (i.e., the estimated amount of breast tissue at risk of malignancy) to
a model that included traditional clinical risk factors improved the prediction of subsequent
breast cancer or ductal carcinoma in situ with an NRI of 21% (P = 0.0001).
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Bl STUDIES TO CREATE CLINICAL PREDICTION RULES

Studies to create clinical prediction rules differ from studies of existing tests (or rules) because
the goal is to improve clinical decisions by using mathematical methods to develop a new (com-
posite) test, rather than to evaluate one that already exists.

Subjects for these studies should be similar to those in whom the rule will be applied.
Clinical prediction rules are likely to be most helpful when intended to guide a specific clinical
decision, such as the decision to start treatment with statins (for which the Framingham Risk
Score is used). Therefore, subjects should be those in whom the specific clinical decision needs
to be made, especially those in whom it is currently difficult or uncertain (13). Many studies to
develop clinical decision rules include subjects only from a single center, but those developed
using data from multiple centers are more likely to be generalizable.

Mathematical methods for creating prediction rules generally involve a multivariate
technique for selecting candidate predictor variables and combining their values to gener-
ate a prediction. The candidate variables should include all known and plausible predictor
variables that can be easily, reliably, and inexpensively measured. A multivariate model,
such as logistic regression or the Cox (proportional hazards) model, can quantify the in-
dependent contribution of candidate predictor variables for predicting the outcome. Those
most strongly and consistently associated with outcome can be included in the rule, and
points can be assigned to different values of the predictor variables depending on the coef-
ficients in the model. For example, Wells et al. (14) used logistic regression analysis on
40 potential clinical predictors of pulmonary embolism to create a prediction score based
on just 7 variables (Table 12.4). This now popular score is used to assign a pretest prob-
ability of pulmonary embolism, to guide further testing decisions and the interpretation of
their results (15).

An alternative technique, which does not require modeling and is helpful for generating
rules of high sensitivity, is recursive partitioning, or Classification and Regression Tree
(CART) analysis. This technique creates a tree that asks a series of yes/no questions, taking the
user down different branches depending on the answers. At the end of each branch will be an
estimated probability of the outcome. The tree can be designed to have high sensitivity by in-
structing the software to make the penalty for false negatives higher than that for false positives.
An example of such a tree, used to predict bacterial meningitis among adults with meningitis
(16), is shown in Figure 12.2.

TABLE 12.4 EXAMPLE OF A CLINICAL PREDICTION RULE (FOR PULMONARY
EMBOLISM) DERIVED FROM A LOGISTIC REGRESSION ANALYSIS (14)

CLINICAL CHARACTERISTIC POINTS
Previous pulmonary embolism or deep vein thrombosis +1.5
Heart rate >100 beats per minute +1.5
Recent surgery or immobilization (within the last 30 days) +1.5
Clinical signs of deep vein thrombosis +3
Alternative diagnosis less likely than pulmonary embolism +3
Hemoptysis (coughing blood) +1
Cancer (treated within the last 6 mo) +1
ESTIMATED CLINICAL PROBABILITY OF PULMONARY EMBOLISM (15) TOTAL SCORE
Low (Probability ~1%-2%) 0-1
Intermediate (Probability ~16%) 2-6

High (Probability ~40%) 27
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Bacteria on CSF
gram stain

High risk
(28/28 = 100%)

CSF neutrophil
percent (%)

CSF neutrophil
count
(cells/uL)

Low risk
(0/58 = 0%)

< 150/uL

> 150/uL

Mental status
change

High risk
(38/50 = 76%)

Low risk
(1/50 = 2%)

High risk
(4/5 = 80%)

B FIGURE 12.2 Example of a Classification and Regression Tree to distinguish
bacterial from viral meningitis in adults (16). White boxes serve to divide sub-
jects into those at high risk of bacterial meningitis (red boxes) and those at low
risk (green boxes); the numbers show the proportions with bacterial meningitis®
in the red and green “terminal branches” of the tree.

Regardless of the method chosen to develop the rule, it is important that it be validated
in a group of patients different from those in whom it was derived. One reason for this is to
avoid overfitting (i.e., taking advantage of the tendency in a single sample for random error to
increase the predictive strength of some factors). Overfitting can be addressed by dividing the
cohort into derivation (typically 50% to 67% of the sample) and validation data sets, and test-
ing the rule derived from the derivation cohort using data from the validation cohort. However,
this validates the rule only in a population very similar to that from which it was derived (i.e., it
addresses only internal validity). To address external validity, it is important to determine how
well the rule performs in different populations (“prospective validation”) (17).

B STUDIES OF THE EFFECT OF TEST RESULTS ON CLINICAL DECISIONS

A test may be accurate, but if the disease is very rare, the test may be so seldom positive that
it is hardly ever worth doing. Other tests may not affect clinical decisions because they do not
provide new information beyond what was already known (e.g., from the medical history and
physical examination). The study designs in this section address the yield of diagnostic tests
and their effects on clinical decisions.

> The numbers in the figure include both derivation and validation data sets.



182 Section Il e Study Designs

Types of Studies

e Diagnostic yield studies. Diagnostic yield studies address such questions as:
e When a test is ordered for a particular indication, how often is it abnormal?
e Can abnormal results be predicted from other information available at the time of testing?
¢ In which group(s) of patients does the testing have the most or least value?
e What happens to patients with abnormal results? Do benefits outweigh harms?

Diagnostic yield studies estimate the proportion of positive tests among patients with a
particular indication for the test. Unfortunately, showing that a test is often positive is not
sufficient to indicate the test should be done. However, a diagnostic yield study showing a
test is almost always negative may be sufficient to question its use for that indication.

For example, Siegel et al. (18) studied the yield of stool cultures in hospitalized patients
with diarrhea. Although not all patients with diarrhea receive stool cultures, it seems rea-
sonable to assume that those who do are, if anything, more likely to have a positive culture
than those who do not. Overall, only 40 (2%) of 1,964 stool cultures were positive. More-
over, none of the positive results were in the 997 patients who had been in the hospital
for more than 3 days. Because a negative stool culture is unlikely to affect management in
these patients with a low likelihood of bacterial diarrhea, the authors concluded that stool
cultures are of little value among patients with diarrhea who have been in the hospital for
more than 3 days.

o Before/after studies of clinical decision-making. These designs directly address the effect of
a test result on clinical decisions. The design generally involves a comparison between what
clinicians do (or say they would do) before and after obtaining results of a diagnostic test.
For example, Carrico et al. (19) prospectively studied the value of abdominal ultrasound
scans in 94 children with acute lower abdominal pain. They asked the clinicians requesting
the sonograms to record their diagnostic impression and what their treatment would be if a
sonogram were not available. After doing the sonograms and providing the clinicians with
the results, they asked again. They found that sonographic information changed the initial
treatment plan in 46% of patients.

Of course (as discussed later), altering a clinical decision does not guarantee that a
patient will benefit, and some altered decisions could actually be harmful. Studies that
demonstrate effects on decisions are most useful when the natural history of the disease
and the efficacy of treatment are clear. In the preceding example, there would very likely
be a benefit from changing the decision from “discharge from hospital” to “laparoscopy” in
children with appendicitis, or from “laparoscopy” to “observe” in children with nonspecific
abdominal pain.

B STUDIES OF FEASIBILITY, COSTS, AND RISKS OF TESTS

Another important area for clinical research relates to the practicalities of diagnostic testing.
What proportion of patients will return a postcard with tuberculosis skin test results? What are
the medical effects of false-positive screening tests in newborns, and the psychological effects
on the parents? What proportion of colonoscopies are complicated by colonic perforation?

Design Issues

Studies of the feasibility, costs, and risks of tests are generally descriptive. The sampling
scheme is important because tests often vary among the people or institutions doing them, and
among the patients receiving them.

A straightforward choice is to study everyone who receives the test, as in a study of the
return rate of postcards after tuberculosis skin testing. Alternatively, for some questions, the
subjects in the study may be only those with results that were positive or falsely positive. For
example, Bodegard et al. (20) studied families of infants who had tested falsely positive on a
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newborn screening test for hypothyroidism and found that fears about the baby’s health per-
sisted for at least 6 months in almost 20% of the families.

Adverse effects can occur not just from false-positive results, but also from the testing itself.
For example, Rutter et al. (21) employed an electronic medical record to do a retrospective
cohort study of serious adverse events (perforation, hemorrhage, and acute diverticulitis) in
the 30 days following colonoscopy among patients in the Group Health Cooperative of Puget
Sound.

Analysis

Results of these studies can usually be summarized with simple descriptive statistics like means
and standard deviations, medians, ranges, and frequency distributions. Dichotomous variables,
such as the occurrence of adverse effects, can be summarized with proportions and their 95%
confidence intervals (CIs). For example, in the aforementioned study Rutter et al. (21) reported
perforations in 21/43,456 colonoscopies; this is 0.48 per 1,000 with a 95% confidence interval
from 0.30 to 0.74 per 1,000.

There are generally no sharp lines that divide tests into those that are or are not feasible, or
those that have or do not have an unacceptably high risk of adverse effects. For this reason it is
helpful in the design stage of the study to specify criteria for deciding that the test is acceptable.
What rate of follow-up would be insufficient? What rate of complications would be too high?

B STUDIES OF THE EFFECT OF TESTING ON OUTCOMES

The best way to determine the value of a medical test is to see whether patients who are tested
have a better clinical outcome (e.g., live longer or with better quality of life) than those who are
not. Randomized trials are the ideal design for making this determination, but trials of diagnostic
tests are often difficult to do. The value of tests is therefore usually estimated from observational
studies. The key difference between the designs described in this section and the experimental
and observational designs discussed elsewhere in this book is that the predictor variable for this
section is performing the test, rather than a treatment, risk factor, or the result of a test.

Designs

Testing itself is unlikely to have any direct benefit on the patient’s health. It is only when a test
result leads to effective preventive or therapeutic interventions that the patient may benefit (22).
Therefore, one important caveat about outcome studies of testing is that the predictor variable
actually being studied is not just a test (e.g., a fecal occult blood test), but also all of the medical
care that follows (e.g., procedures for following up abnormal results, colonoscopy, etc.).

It is best if the outcome variable of these studies is a measure of morbidity or mortality, not
simply a diagnosis or stage of disease. For example, showing that men who are screened for
prostate cancer have a greater proportion of cancers diagnosed at an early stage does not by
itself establish the value of screening (23, 24). Many of those cancers would not have caused
any problem if they had not been detected.

The outcome should be broad enough to include plausible adverse effects of testing and
treatment, and may include psychological as well as medical effects of testing. Therefore, a
study of the value of prostate-specific antigen screening for prostate cancer should include
treatment-related impotence or incontinence in addition to cancer-related morbidity and mor-
tality. When many more people are tested than are expected to benefit (as is usually the case),
less severe adverse outcomes among those without the disease may be important, because they
will occur much more frequently. While negative test results may be reassuring and comforting
to some patients (25), in others the psychological effects of labeling or false-positive results,
loss of insurance, and troublesome (but nonfatal) side effects of preventive medications or
surgery may outweigh infrequent benefits (24).
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e Observational studies. Observational studies are generally quicker, easier, and less costly
than clinical trials. However, they have important disadvantages as well, especially because
patients who are tested tend to differ from those who were not tested in important ways that
may be related to the risk of a disease or its prognosis. For example, those getting the test
could be at relatively low risk of an adverse health outcome, because people who volunteer
for medical tests and treatments tend to be healthier than average, an example of volunteer
bias. On the other hand, those tested may be at relatively high risk, because patients are more
likely to be tested when there are indications that lead them or their clinicians to be con-
cerned about a disease, an example of confounding by indication for the test (Chapter 9).

An additional common problem with observational studies of testing is the lack of stan-
dardization and documentation of any interventions or changes in management that follow
positive results. If a test does not improve outcome in a particular setting, it could be be-
cause follow-up of abnormal results was poor, because patients were not compliant with the
planned intervention, or because the particular intervention used in the study was not ideal.

e Clinical trials. The most rigorous design for assessing the benefit of a diagnostic test is a
clinical trial, in which subjects are randomly assigned to receive or not to receive the test.
Presumably the result of the test is then used to guide clinical management. A variety of
outcomes can be measured and compared in the two groups. Randomized trials minimize
or eliminate confounding and selection bias and allow measurement of all relevant outcomes
such as mortality, morbidity, cost, and satisfaction. Standardizing the testing and interven-
tion process enables others to reproduce the results.

Unfortunately, randomized trials of diagnostic tests are often not practical, especially for
diagnostic tests already in use in the care of sick patients. Randomized trials are generally
more feasible and important for tests that might be used in large numbers of apparently
healthy people, such as new screening tests.

Randomized trials, however, may bring up ethical issues about withholding potentially
valuable tests. Rather than randomly assigning subjects to undergo a test or not, one ap-
proach to minimizing this ethical concern is to randomly assign some subjects to receive

EXAMPLE 12.1 An Elegant Observational Study of a Screening Test

Selby et al.(26) did a nested case—control study in the Kaiser Permanente Medical Care
Program to determine whether screening sigmoidoscopy reduces the risk of death from
colon cancer. They compared the rates of previous sigmoidoscopy among patients who
had died of colon cancer with controls who had not. They found an adjusted odds ratio
of 0.41 (95% CI, 0.25 to 0.69), suggesting that sigmoidoscopy resulted in an almost 60%
decrease in the death rate from cancer of the rectum and distal colon.

A potential problem is that patients who undergo sigmoidoscopy may differ in
important ways from those who do not, and that those differences might be associated
with a difference in the expected death rate from colon cancer. To address this possible
confounding, Selby et al. examined the apparent efficacy of sigmoidoscopy at prevent-
ing death from cancers of the proximal colon, above the reach of the sigmoidoscope. If
patients who underwent sigmoidoscopy were less likely to die of colon cancer for other
reasons, then sigmoidoscopy would appear to be protective against these cancers as well.
However, sigmoidoscopy had no effect on mortality from cancer of the proximal colon
(adjusted odds ratio = 0.96; 95% CI, 0.61 to 1.50), suggesting that confounding was not
the reason for the apparent reduction in distal colon cancer mortality. Specifying alter-
nate endpoints (in advance!) that are expected not to be associated with the predictor of
interest (cancer of the proximal colon in this case), and then showing that they are not,
can greatly strengthen causal inference (27).
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an intervention that increases the use of the test, such as frequent postcard reminders and
assistance in scheduling. The primary analysis must still follow the “intention-to-treat”
rule—that is, the entire group that was randomized to receive the intervention must be
compared with the entire comparison group. However, this rule will tend to create a conser-
vative bias; the observed efficacy of the intervention will underestimate the actual efficacy
of the test, because some subjects in the control group will get the test and some subjects in
the intervention group will not. This problem can be addressed in secondary analyses that
include testing rates in both groups and assume all the difference in outcomes between the
two groups is due to different rates of testing. The actual benefits of testing in the subjects
as a result of the intervention can then be estimated algebraically (8, 28).

Analysis

Analysis of studies of the effect of testing on outcome are those appropriate to the specific
design used—odds ratios for case—control studies, and risk ratios or hazard ratios for cohort
studies or clinical trials. A convenient way to express the results is to project the results of the
testing procedure to a large cohort (e.g., 100,000), and list the number of initial tests, follow-up
tests, people treated, side effects of treatment, costs, and deaths in tested and untested groups.

B PITFALLS IN THE DESIGN OR ANALYSIS
OF DIAGNOSTIC TEST STUDIES

As with other types of clinical research, compromises in the design of studies of diagnostic tests
may threaten the validity of the results, and errors in analysis may hinder their interpretation.
Some of the most common and serious of these, along with steps to avoid them, are outlined
in the following text.

Inadequate Sample Size

If the outcome of a diagnostic test study is common, obtaining an adequate sample size is likely
to be feasible. When the disease or outcome is rare, a very large number of people may be
needed. Many laboratory tests, for example, are not expensive, and a yield of 1% or less might
justify doing them, especially if they can diagnose a serious treatable illness. For example,
Sheline and Kehr (29) retrospectively reviewed routine admission laboratory tests, including
the Venereal Disease Research Laboratory (VDRL) test for syphilis among 252 psychiatric pa-
tients and found that the laboratory tests identified one patient with previously unsuspected
syphilis. If this patient’s psychiatric symptoms were indeed due to syphilis, it would be hard to
argue that it was not worth the $3,186 spent on VDRLs to make this diagnosis. But if the true
rate of unsuspected syphilis were close to the 0.4% seen in this study, a study of this sample
size could easily have found no cases.

Inappropriate Exclusion

When calculating proportions, it is inappropriate to exclude subjects from the numerator
without excluding similar subjects from the denominator. For example, in a study of routine
laboratory tests in emergency department patients with new seizures (30), 11 of 136 patients
(8%) had a correctable laboratory abnormality (e.g., hypoglycemia) as a cause for their seizure.
In 9 of the 11 patients, however, the abnormality was suspected on the basis of the history or
physical examination. The authors therefore reported that only 2 of 136 patients (1.5%) had ab-
normalities not suspected on the basis of the history or physical examination. But if all patients
with suspected abnormalities are excluded from the numerator, then similar patients should
have been excluded from the denominator as well. The correct denominator for this proportion
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is therefore not all 136 patients tested, but only those who were not suspected of having any
laboratory abnormalities on the basis of their medical history or physical examination.

Dropping Borderline or Uninterpretable Results

Sometimes a test may fail to give any answer at all, such as if the assay failed, the test specimen
deteriorated, or the test result fell into a gray zone of being neither positive nor negative. It is
not usually legitimate to ignore these problems, but how to handle them depends on the spe-
cific research question and study design. In studies dealing with the expense or inconvenience
of tests, failed attempts to do the test are clearly important results.

Patients with “nondiagnostic” imaging studies or a borderline result on a test need to be
counted as having had that specific result on the test. In effect, this may change a dichotomous
test (positive, negative) to an ordinal one—positive, indeterminate and negative. ROC curves
can then be drawn and likelihood ratios can be calculated for “indeterminate” as well as posi-
tive and negative results.

Verification Bias: Selective Application of a Single Gold Standard

A common sampling strategy for studies of medical tests is to study (either prospectively or
retrospectively) patients who are tested for disease who also receive the gold standard for diag-
nosis. However, this causes a problem if the test being studied is also used to decide who gets
the gold standard. For example, consider a study of predictors of fracture in children presenting
to the emergency department with ankle injuries, in which only children who had ankle x-rays
were included. If those with a particular finding (for example, ankle swelling) were more likely
to get an x-ray, this could affect the sensitivity and specificity of ankle swelling as a test for
fracture. This bias, called verification bias, is illustrated numerically in Appendix 12B. Verifica-
tion bias can be avoided by using strict criteria for application of the gold standard that do not
include the test or finding being studied. If this is not practical, it is possible to estimate and
correct for verification bias if the gold standard can be applied to a random sample of those
who test negative.

Differential Verification Bias: Different Gold Standards for Those Testing
Positive and Negative

Another strategy is to use a different gold standard for those in whom the usual gold standard is
not indicated. For example, subjects with ankle injuries in whom no x-ray was performed could
be included by contacting them by telephone a few weeks after the injury and classifying them
as not having had a fracture if they recovered uneventfully. However, this can cause differen-
tial verification bias, also called double gold standard bias (31). This bias can occur any time
the gold standard differs among those with positive and negative test results. In the previously
mentioned study of mammography (5) the gold standard for those with positive mammograms
was a biopsy, whereas for those with negative mammograms, it was follow-up to see if a cancer
became evident in the next year. Having different gold standards for the disease is a problem
if the gold standards don’t always have the same results, as would occur if breast cancer that
would be detected by biopsy in the case of a positive mammogram would not become evident
in the 1-year follow-up of those with a negative mammogram.

Another example is a study of ultrasonography to diagnose intussusception in young chil-
dren (32). All children with a positive ultrasound scan for intussusception received the gold
standard contrast enema. In contrast, the majority of children with a negative ultrasound were
observed in the emergency department and intussusception was ruled out clinically. For cases
of intussusception that resolve spontaneously, the two gold standards would give different
results: the contrast enema would be positive, whereas clinical follow-up would be negative. A
numerical illustration of differential verification bias in this study is provided in Appendix 12C.
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Differential verification bias can be avoided by applying the same gold standard to all sub-
jects. When this is not feasible (as was the case in the mammography study), investigators
should make every effort to use other studies (e.g., autopsy studies examining the prevalence
of asymptomatic cancers among patients who died from other causes in a study of a cancer
screening test) to assess the degree to which this bias might threaten the validity of the study.

B SUMMARY

1. The usefulness of medical tests can be assessed using designs that address a series of
increasingly stringent questions (Table 12.1). For the most part, standard observational
designs provide descriptive statistics of test characteristics with confidence intervals.

2. The subjects for a study of a diagnostic test should be chosen from patients who have a
spectrum of disease and non-disease appropriate for the research question, in most cases
reflecting the anticipated use of the test in clinical practice.

3. If possible, the investigator should blind those interpreting the test results and determining
the gold standard from other information about the patients being tested.

4. Measuring the reproducibility of a test, including the intra- and inter-observer variability,
is often a good first step in evaluating a test.

5. Studies of the accuracy of tests require a gold standard for determining if a patient has, or
does not have, the disease or outcome being studied.

6. The results of studies of the accuracy of diagnostic tests can be summarized using sensitiv-
ity, specificity, predictive value, ROC curves, and likelihood ratios. Studies of the value
of prognostic tests can be summarized with risk ratios, hazard ratios, or reclassification
improvement.

7. Studies to develop new clinical prediction rules are subject to problems of overfitting and
lack of generalizability, requiring that new rules be validated in additional population
samples.

8. The most rigorous design for studying the utility of a diagnostic test is a clinical trial, with
subjects randomized to receive the test or not, and with mortality, morbidity, cost, and
quality of life among the outcomes.

9. If trials are not ethical or feasible, observational studies of benefits, harms, and costs, with
appropriate attention to possible biases and confounding, can be helpful.



APPENDIX 12A
Calculation of Kappa to Measure
Inter-Observer Agreement

Consider two observers listening for an S4 gallop on cardiac examination (Table 12A.1). They
record it as either present or absent. The simplest measure of inter-observer agreement is the
proportion of observations on which the two observers agree. This proportion can be obtained
by summing the numbers along the diagonal from the upper left to the lower right and divid-
ing it by the total number of observations. In this example, out of 100 patients there were 10
patients in whom both observers heard a gallop, and 75 in whom neither did, for (10 + 75)/100
= 85% agreement.

TABLE 12.A.1 INTER-OBSERVER AGREEMENT ON PRESENCE OF AN S4 GALLOP

GALLOP HEARD BY  NO GALLOP HEARD

OBSERVER 1 BY OBSERVER 1 TOTAL, OBSERVER 2
Gallop heard by observer 2 10 5 15
No gallop heard by observer 2 10 75 85
Total, observer 1 20 80 100

When the observations are not evenly distributed among the categories (e.g., when the
proportion “abnormal” on a dichotomous test is substantially different from 50%), or when
there are more than two categories, another measure of inter-observer agreement, called
kappa (x), is sometimes used. Kappa measures the extent of agreement beyond what would
be expected by c