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This fourth edition of Designing Clinical Research (DCR) marks the 25th anniversary of the 
publication of our first edition. It has become the most widely used textbook of its kind, with 
more than 130,000 copies sold and foreign language editions produced in Spanish, Portuguese, 
Arabic, Chinese, Korean, and Japanese. We designed it as a manual for clinical research in all 
its flavors: clinical trials, observational epidemiology, translational science, patient-oriented 
research, behavioral science, and health services research. We used epidemiologic terms and 
principles, presented advanced conceptual material in a practical and reader-friendly way, and 
suggested common sense approaches to the many judgments involved in designing a study.

Many of our readers are physicians, nurses, pharmacists, and other health scientists who, 
as trainees and junior faculty, are developing careers in clinical research and use this book as 
a guide in designing and carrying out their studies. Many others are clinicians in residency 
programs and pre-doctoral students in professional schools—medicine, nursing, pharmacy, 
and public health among others—who use DCR to help them become discerning readers with 
a grasp of the strengths and limitations of the research studies that inform evidence-based clini-
cal practice. A third audience consists of undergraduate students preparing to apply to these 
schools who are interested in looking ahead at the world of clinical research.

What’s new in the fourth edition? The most visible innovation is color, which, in addition 
to improving the esthetics, will speed comprehension of the color-coded components. A larger 
innovation that accompanies each purchase of the paperback text is an interactive digital 
experience powered by Inkling®, viewable through a browser or as a download to tablet or 
smartphone. Its features include rapid index-based search options that link to a newly created 
glossary; bookmarking, highlighting, and annotating capability; cross-linking of relevant con-
tent; the ability to cut-and-paste figures or text into PowerPoint presentations; and live Internet 
links to jump instantly from citations to articles on PubMed, and to Google topics.

The substantive revisions to the fourth edition include updated and tightened text, figures, 
and tables in every chapter; many new examples and references; and new sections covering 
recent advances in the field. For example:

 The chapters on observational studies have been reorganized with an entire chapter now 
devoted to various case–control designs, including the incidence-density approach for ad-
dressing changes in risk factor levels and differences in follow-up time.

 The chapters on clinical trials have an expanded section on the non-inferiority trials that 
have become popular in comparative effectiveness research, and they address subgroup 
analysis and effect modification more fully.

 The chapter on studying medical tests has a new section on the growing practice of develop-
ing clinical prediction rules.

 The chapter on utilizing existing data sets emphasizes attractive options for beginning inves-
tigators to publish rapidly and inexpensively.

 The chapter on research ethics is updated to reflect current policy on whole genome se-
quencing and other topics, with new cases that illustrate the resolution of ethical dilemmas 
in clinical research.

Introduction
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 The chapter on data management has been extensively updated with the latest Web-based 
approaches.

 The chapter on getting funded has strategies for addressing the new NIH grant-writing re-
quirements, as well as updates on funding by foundation and corporate sponsors.

The fourth edition is accompanied by an upgraded DCR website at www.epibiostat.ucsf.
edu/dcr/ that contains materials for teaching DCR, including links to a detailed syllabus for the   
4- and 7-week DCR workshops that we present to 300 trainees each year at UCSF. There are 
also instructor’s notes for the workshops that faculty who teach this material will find useful, 
and links to our Training In Clinical Research (TICR) master’s degree program at UCSF, with 
more than 30 other courses and their materials. In addition, there are useful tools for investiga-
tors, including an excellent interactive sample size calculator.

Many things have not changed in the fourth edition. It is still a simple book that leaves out 
unnecessary technicalities and invites the investigator to focus on the important things: how 
to find a good research question and how to plan an efficient, effective, ethical design. The 
chapters on estimating sample size continue to demystify the process and enable readers with 
minimal training in statistics to make these calculations themselves, thoughtfully, and without 
needing to wrestle with formulas. The book still works best when combined with the essential 
ingredient of one or more long-term mentors. It still does not address the important areas of 
how to analyze, present, and publish the findings of clinical research—topics that our readers 
can pursue with other books (e.g., 1–4). And we still do use the feminine pronoun in the first 
half of the book, masculine in the second, the goal (besides avoiding the passive tense) being 
to symbolically empower clinical investigators of both genders.

The process of becoming an independent clinical scientist can be challenging, especially 
getting over the hump of acquiring a substantial grant for the first time. But it is gratifying that 
many of our former trainees who used this book have achieved this goal, discovered that they 
like doing research, and settled into a great career. For those with inquiring minds, the pursuit 
of truth can become a lifelong fascination. For perfectionists and craftsmen, there are endless 
challenges in creating elegant studies that conclusively answer questions, large and small, at 
an affordable cost in time and money. Investigators who enjoy teamwork will develop reward-
ing relationships with colleagues, staff, and students, as well as friendships with collaborators 
working in the same field in distant places. And for those with the ambition to make a lasting 
contribution to society, there is the prospect that with skill and tenacity they will participate 
in the incremental advances in clinical and public health practice that is the natural order of 
our science.

REFERENCES
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S E C T I O N

Basic Ingredients

I



C H A P T E R

This chapter introduces clinical research from two viewpoints, setting up themes that run 
together throughout the book. One is the anatomy of research—what it’s made of. This includes 
the tangible elements of the study plan: research question, design, subjects, measurements, 
sample size calculation, and so forth. An investigator’s goal is to design these components in a 
fashion that will make the project feasible and efficient.

The other theme is the physiology of research—how it works. Studies are useful to the ex-
tent that they yield valid inferences, first about what happened in the study sample and then 
about how these findings generalize to people outside the study. The goal is to minimize the 
errors, random and systematic, that threaten conclusions based on these inferences.

Separating the two themes is artificial in the same way that the anatomy of the human body 
doesn’t make much sense without some understanding of its physiology. But the separation has 
the same advantage: It clarifies our thinking about a complex topic.

■ ANATOMY OF RESEARCH: WHAT IT’S MADE OF

The structure of a research project is set out in its protocol, the written plan of the study. 
Protocols are well known as devices for seeking grant funds and Institutional Review Board 
(IRB) approval, but they also have a vital scientific function: helping the investigator organize 
her research in a logical, focused, and efficient way. Table 1.1 outlines the components of a 
protocol. We introduce the whole set here, expand on each component in the ensuing chapters 
of the book, and return to put the completed pieces together in Chapter 19.

Research Question

The research question is the objective of the study, the uncertainty the investigator wants to 
resolve. Research questions often begin with a general concern that must be narrowed down to 
a concrete, researchable issue. Consider, for example, the general question:

 Should people eat more fish?

This is a good place to start, but the question must be focused before planning efforts can 
begin. Often this involves breaking the question into more specific components, and singling 
out one or two of these to build the protocol around:

 How often do Americans eat fish?
 Does eating more fish lower the risk of cardiovascular disease?
 Is there a risk of mercury toxicity from increasing fish intake in older adults?
 Do fish oil supplements have the same effects on cardiovascular disease as dietary fish?
 Which fish oil supplements don’t make your breath smell like fish?

1

Getting Started: The Anatomy  
and Physiology of Clinical Research
Stephen B. Hulley, Thomas B. Newman, and Steven R. Cummings

2
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TABLE 1.1  ANATOMY OF RESEARCH: THE STUDY PLAN

DESIGN COMPONENTS PURPOSE

Design

Sampling design

Variables

Hypotheses

Sample size

A good research question should pass the “So what?” test. Getting the answer should con-
tribute usefully to our state of knowledge. The acronym FINER denotes five essential char-
acteristics of a good research question: It should be feasible, interesting, novel, ethical, and 
relevant (Chapter 2).

Background and Significance

A brief background and significance section in a protocol sets the proposed study in context 
and gives its rationale: What is known about the topic at hand? Why is the research question 
important? What kind of answers will the study provide? This section cites relevant previous 
research (including the investigator’s own work) and indicates the problems with the prior re-
search and what uncertainties remain. It specifies how the findings of the proposed study will 
help resolve these uncertainties, lead to new scientific knowledge, or influence practice guide-
lines or public health policy. Often, the literature review and synthesis done for the significance 
section will lead the investigator to modify the research question.

Design

The design of a study is a complex issue. A fundamental decision is whether to take a passive 
role in making measurements on the study subjects in an observational study or to apply an 
intervention and examine its effects in a clinical trial (Table 1.2). Among observational studies, 
two common designs are cohort studies, in which observations are made in a group of subjects 
that is followed over time, and cross-sectional studies, in which observations are made on a 
single occasion. Cohort studies can be further divided into prospective studies that begin in the 
present and follow subjects into the future, and retrospective studies that examine information 
collected over a period of time in the past. A third common option is the case–control design, 
in which the investigator compares a group of people who have a disease or other outcome 
with another group who do not. Among clinical trial options, the randomized blinded trial is 
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TABLE 1.2  EXAMPLES OF CLINICAL RESEARCH DESIGNS TO FIND OUT  
WHETHER FISH INTAKE REDUCES CORONARY HEART DISEASE RISK

EPIDEMIOLOGIC DESIGN KEY FEATURE EXAMPLE

Observational Designs

Cohort study
-

lowed over time

(CHD) events.

point in time

with a group who do not have CHD 

Clinical Trial Design

Randomized blinded trial

blinded intervention

-

usually the best design but nonrandomized or unblinded designs may be all that are feasible 
for some research questions.

No one approach is always better than the others, and each research question requires a 
judgment about which design is the most efficient way to get a satisfactory answer. The ran-
domized blinded trial is often held up as the best design for establishing causality and the ef-
fectiveness of interventions, but there are many situations for which an observational study is 
a better choice or the only feasible option. The relatively low cost of case–control studies and 
their suitability for rare outcomes makes them attractive for some questions. Special consid-
erations apply to choosing designs for studying diagnostic tests. These issues are discussed in 
Chapters 7 through 12, each dealing with a particular set of designs.

A typical sequence for studying a topic begins with observational studies of a type that is 
often called descriptive. These studies explore the lay of the land—for example, describing 
distributions of health-related characteristics and diseases in the population:

 What is the average number of servings of fish per week in the diet of Americans with a his-
tory of coronary heart disease (CHD)?

Descriptive studies are usually followed or accompanied by analytic studies that evaluate 
associations to permit inferences about cause-and-effect relationships:

 Do people with a CHD who eat a lot of fish have a lower risk of recurrent myocardial infarc-
tion than people with a history of CHD who rarely eat fish?

The final step is often a clinical trial to establish the effects of an intervention:

 Does treatment with fish oil capsules reduce total mortality in people with CHD?
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Clinical trials usually occur relatively late in a series of research studies about a given ques-
tion, because they tend to be more difficult and expensive, and to answer more definitively the 
narrowly focused questions that arise from the findings of observational studies.

It is useful to characterize a study in a single sentence that summarizes the design and research 
question. If the study has two major phases, the design for each should be mentioned.

 This is a cross-sectional study of dietary habits in 50- to 69-year-old people with a history of 
CHD, followed by a prospective cohort study of whether fish intake is associated with lower 
risk of subsequent coronary events.

This sentence is the research analog to the opening sentence of a medical resident’s report on 
a new hospital admission: “This 62-year-old white policewoman was well until 2 hours before 
admission, when she developed crushing chest pain radiating to the left shoulder.”

Some designs do not easily fit into the categories listed above, and classifying them with a 
single sentence can be surprisingly difficult. It is worth the effort—a concise description of the 
design and research question clarifies the investigator’s thoughts and is useful for orienting 
colleagues and consultants.

Study Subjects

Two major decisions must be made in choosing the study subjects (Chapter 3). The first is to 
specify inclusion and exclusion criteria that define the target population: the kinds of people 
best suited to the research question. The second decision concerns how to recruit an appropri-
ate number of people from an accessible subset of this population to be the subjects of the study. 
For example, the study of fish intake in people with CHD might identify subjects seen in the 
clinic with diagnostic codes for myocardial infarction, angioplasty, or coronary artery bypass 
grafting in their electronic medical record. Decisions about which patients to study often rep-
resent trade-offs; studying a random sample of people with CHD from the entire country (or at 
least several different states and medical care settings) would enhance generalizability but be 
much more difficult and costly.

Variables

Another major set of decisions in designing any study concerns the choice of which variables to 
measure (Chapter 4). A study of fish intake in the diet, for example, might ask about different 
types of fish that contain different levels of omega-3 fatty acids, and include questions about 
portion size, whether the fish was fried or baked, and use of fish oil supplements.

In an analytic study the investigator studies the associations among variables to predict 
outcomes and to draw inferences about cause and effect. In considering the association 
between two variables, the one that occurs first or is more likely on biologic grounds to be 
causal is called the predictor variable; the other is called the outcome variable.1 Most obser-
vational studies have many predictor variables (age, race, sex, smoking history, fish and fish 
oil supplement intake) and several outcome variables (heart attacks, strokes, quality of life, 
unpleasant odor).

Clinical trials examine the effects of an intervention—a special kind of predictor variable 
that the investigator manipulates, such as treatment with fish oil capsules. This design al-
lows her to observe the effects on the outcome variable using randomization to minimize 
the influence of confounding variables—other predictors of the outcome such as smoking 
or income level that could be associated with dietary fish and confuse the interpretation of 
the findings.

1Predictors are sometimes termed independent variables and outcomes dependent variables, but the meaning of these 
terms is less self-evident and we prefer to avoid their use.
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Statistical Issues

The investigator must develop plans for estimating sample size and for managing and analyzing 
the study data. This generally involves specifying a hypothesis (Chapter 5).

Hypothesis: 50- to 69-year-old women with CHD who take fish oil supplements will have a 
lower risk of recurrent myocardial infarction than those who do not.

This is a version of the research question that provides the basis for testing the statistical 
significance of the findings. The hypothesis also allows the investigator to calculate the sample 
size—the number of subjects needed to observe the expected difference in outcome between 
study groups with reasonable probability (an attribute known as power) (Chapter 6). Purely 
descriptive studies (what proportion of people with CHD use fish oil supplements?) do not in-
volve tests of statistical significance, and thus do not require a hypothesis; instead, the number 
of subjects needed to produce acceptably narrow confidence intervals for means, proportions, 
or other descriptive statistics can be calculated.

■ PHYSIOLOGY OF RESEARCH: HOW IT WORKS

The goal of clinical research is to draw inferences from findings in the study about the nature 
of the universe around it. Two major sets of inferences are involved in interpreting a study 
 (illustrated from right to left in Figure 1.1). Inference #1 concerns internal validity, the de-
gree to which the investigator draws the correct conclusions about what actually happened in 
the study. Inference #2 concerns external validity (also called generalizability), the degree to 
which these conclusions can be appropriately applied to people and events outside the study.

When an investigator plans a study, she reverses the process, working from left to right in 
the lower half of Figure 1.1 with the goal of maximizing the validity of these inferences at the 
end of the study. She designs a study plan in which the choice of research question, subjects, 
and measurements enhances the external validity of the study and is conducive to implemen-
tation with a high degree of internal validity. In the next sections we address design and then 
implementation before turning to the errors that threaten the validity of these inferences.

Designing the Study

Consider this simple descriptive question:

What is the prevalence of daily ingestion of fish oil supplements among people with CHD?

This question cannot be answered with perfect accuracy because it would be impossible to 
study all patients with CHD and our approaches to discovering whether a person has CHD 

TRUTH IN THE
UNIVERSE

TRUTH IN THE
STUDY

FINDINGS IN
THE STUDY

Research
question 

Actual
studyDesign Implement

InferInferDrawing
Conclusions

Designing and
Implementing

Study
plan

EXTERNAL
VALIDITY

INTERNAL
VALIDITY

■ FIGURE 1.1 The process of designing and implementing a research project sets the stage for drawing conclusions 
based on inferences from the findings.
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and is taking fish oil are imperfect. So the investigator settles for a related question that can be 
answered by the study:

Among a sample of patients seen in the investigator’s clinic who have a previous CHD 
 diagnosis and respond to a mailed questionnaire, what proportion report taking daily fish 
oil supplements?

The transformation from research question to study plan is illustrated in Figure 1.2. One ma-
jor component of this transformation is the choice of a sample of subjects that will represent the 
population. The group of subjects specified in the protocol can only be a sample of the population 
of interest because there are practical barriers to studying the entire population. The decision to 
study patients in the investigator’s clinic identified through the electronic medical record system 
is a compromise. This is a sample that is feasible to study but has the disadvantage that it may 
produce a different prevalence of fish oil use than that found in all people with CHD.

The other major component of the transformation is the choice of variables that will repre-
sent the phenomena of interest. The variables specified in the study plan are usually proxies 
for these phenomena. The decision to use a self-report questionnaire to assess fish oil use is a 
fast and inexpensive way to collect information, but unlikely to be perfectly accurate because 
people usually do not accurately remember or record how much they take in a typical week.

In short, each of the differences in Figure 1.2 between the research question and the study 
plan has the purpose of making the study more practical. The cost of this increase in prac-
ticality, however, is the risk that design choices may cause the study to produce a wrong or 
misleading conclusion because it is designed to answer a somewhat different question from the 
research question of interest.

Implementing the Study

Returning to Figure 1.1, the right-hand side is concerned with implementation and the degree 
to which the actual study matches the study plan. At issue here is the problem of a wrong answer 

TRUTH IN THE
UNIVERSE

Research question

Target
population

People with CHD

Phenomena
of interest

The proportion who
take fish 

oil supplements

TRUTH IN THE
STUDY

EXTERNAL
VALIDITY

Study plan

Intended
sample

All patients with a 
history of CHD 
seen in clinic 

last year

Intended
variables

Self-reported use of
fish oil supplements

Design

Infer

Errors

■ FIGURE 1.2 Design errors and external validity: If the intended sample and variables do not 
sufficiently represent the target population and phenomena of interest, these errors may distort 
inferences about what actually happens in the population.
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to the research question because the way the sample was actually drawn, or the measurements 
made, differed in important ways from the way they were designed (Figure 1.3).

The actual sample of study subjects is almost always different from the intended sample. The 
plans to study all eligible clinic patients with CHD, for example, could be disrupted by incom-
plete diagnoses in the electronic medical record, wrong addresses for the mailed questionnaire, 
and refusal to participate. Those subjects who are reached and agree to participate may have a 
different prevalence of fish oil use than those not reached or not interested. In addition to these 
problems with the subjects, the actual measurements can differ from the intended measure-
ments. If the format of the questionnaire is unclear subjects may get confused and check the 
wrong box, or they may simply omit the question by mistake.

These differences between the study plan and the actual study can alter the answer to the 
research question. Figure 1.3 illustrates that errors in implementing the study join errors of 
design in leading to a misleading or wrong answer to the research question.

Causal Inference

A special kind of validity problem arises in studies that examine the association between a 
predictor and an outcome variable in order to draw causal inference. If a cohort study finds an 
association between fish intake and CHD events, does this represent cause and effect, or is fish 
intake just an innocent bystander in a web of causation that involves other variables? Reducing 
the likelihood of confounding and other rival explanations is one of the major challenges in 
designing an observational study (Chapter 9).

The Errors of Research

Recognizing that no study is entirely free of errors, the goal is to maximize the validity of in-
ferences from what was observed in the study sample to what is happening in the population. 

■ FIGURE 1.3 Implementation errors and internal validity: If the actual subjects and measure-
ments do not sufficiently represent the intended sample and variables, these errors may distort 
inferences about what happened in the study.
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Erroneous inferences can be addressed in the analysis phase of research, but a better strategy 
is to focus on design and implementation (Figure 1.4), preventing errors from occurring in the 
first place to the extent that this is practical.

The two main kinds of errors that interfere with research inferences are random error and 
systematic error. The distinction is important because the strategies for minimizing them are 
quite different.

Random error is a wrong result due to chance—sources of variation that are equally likely to 
distort measurements from the study in either direction. If the true prevalence of daily fish oil 
supplement use in the several hundred 50- to 69-year-old patients with CHD in the investigator’s 
clinic is 20%, a well-designed sample of 100 patients from that population might contain exactly 
20 patients who use these supplements. More likely, however, the sample would contain a nearby 
number such as 18, 19, 21, or 22. Occasionally, chance would produce a substantially different 
number, such as 12 or 28. Among several techniques for reducing the influence of random error 
(Chapter 4), the simplest is to increase the sample size. The use of a larger sample diminishes the 
likelihood of a substantially wrong result by increasing the precision of the estimate—the degree 
to which the observed prevalence approximates 20% each time a sample is drawn.

Systematic error is a wrong result due to bias—sources of variation that distort the study 
findings in one direction. An illustration is the decision in Figure 1.2 to study patients in the 
investigator’s clinic, where the local treatment patterns have responded to her interest in the 
topic and her fellow doctors are more likely than the average doctor to recommend fish oil. 
Increasing the sample size has no effect on systematic error. The best way to improve the 
 accuracy of the estimate (the degree to which it approximates the true value) is to design the 
study in a way that reduces the size of the various biases. Alternatively, the investigator can 
seek additional information to assess the importance of possible biases. An example would be 
to compare results with those from a second sample of patients with CHD drawn from another 
setting, for example, examining whether the findings of such patients seen in a cardiology clinic 
are different from those seen in a primary care clinic.

The examples of random and systematic error in the preceding two paragraphs are compo-
nents of sampling error, which threatens inferences from the study subjects to the population. 

Solution SolutionErrorError

Random
error

Improve design (Ch. 7–13)
Enlarge sample size
5 strategies to increase

precision (Ch. 4)
Improve design (Ch. 7–13)
7 strategies to increase

accuracy (Ch. 4)

Systematic
error

Random
error

Quality control (Ch.17)

Quality control (Ch.17)Systematic
error

InferInfer

Design Implement

EXTERNAL
VALIDITY

INTERNAL
VALIDITY

■ FIGURE 1.4 Research errors. This blown-up detail of the error boxes in Figures 1.2 and 1.3 
reveals strategies for controlling random and systematic error in the design and implementation 
phases of the study.
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Both random and systematic errors can also contribute to measurement error, threatening the 
inferences from the study measurements to the phenomena of interest. An illustration of random 
measurement error is the variation in the response when the diet questionnaire is administered 
to the patient on several occasions. An example of systematic measurement error is under-
estimation of the prevalence of fish oil use due to lack of clarity in how the question is phrased. 
Additional strategies for controlling all these sources of error are presented in Chapters 3 and 4.

The concepts presented in the last several pages are summarized in Figure 1.5 Getting the 
right answer to the research question is a matter of designing and implementing the study in a 
fashion that minimizes the magnitude of inferential errors.

■ DESIGNING THE STUDY

Study Plan

The process of developing the study plan begins with the one-sentence research question that 
specifies the main predictor and outcome variables and the population. Three versions of the 
study plan are then produced in sequence, each larger and more detailed than the preceding one.

 Study outline (Table 1.1 and Appendix 1). This one-page summary of the design serves as a 
standardized checklist to remind the investigator to address all the components. As impor-
tant, the sequence has an orderly logic that helps clarify the investigator’s thinking on the 
topic.

 Study protocol. This expansion on the study outline usually ranges from 5 to 15 pages, and 
is used to plan the study and to apply for IRB approval and grant support. The protocol parts 
are discussed throughout this book and summarized in Chapter 19.

 Operations manual. This collection of specific procedural instructions, questionnaires, and 
other materials is designed to ensure a uniform and standardized approach to carrying out 
the study with good quality control (Chapters 4 and 17).

The research question and study outline should be written out at an early stage. Putting 
thoughts down on paper leads the way from vague ideas to specific plans and provides a con-
crete basis for getting advice from colleagues and consultants. It is a challenge to do it (ideas are 
easier to talk about than to write down), but the rewards are a faster start and a better project.

Appendix 1 is an example of a study outline. This one-page outline deals more with the 
anatomy of research (Table 1.1) than with its physiology (Figure 1.5), so the investigator must 
remind herself to worry about the errors that may result when it is time to draw inferences 
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■ FIGURE 1.5 Physiology of research—how it works.
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from measurements in the study sample to phenomena of interest in the population. A study’s 
virtues and problems can be revealed by explicitly considering how the question the study is 
likely to answer differs from the research question, given the plans for acquiring subjects and 
making measurements, and given the likely problems of implementation.

With the study outline in hand and the intended inferences in mind, the investigator can 
proceed with the details of her protocol. This includes getting advice from colleagues, drafting 
specific recruitment and measurement methods, considering scientific and ethical appropriate-
ness, modifying the study question and outline as needed, pretesting specific recruitment and 
measurement methods, making more changes, getting more advice, and so forth. This iterative 
process is the nature of research design and the topic of the rest of this book.

Trade-offs

Regretably, errors are an inherent part of all studies. The main issue is whether the errors will 
be large enough to change the conclusions in important ways. When designing a study, the 
investigator is in much the same position as a labor union official bargaining for a new contract. 
The union official begins with a wish list—shorter hours, more money, health care benefits, 
and so forth. She must then make concessions, holding on to the things that are most impor-
tant and relinquishing those that are not essential or realistic. At the end of the negotiations is 
a vital step: She looks at the best contract she could negotiate and decides if it has become so 
bad that it is no longer worth having.

The same sort of concessions must be made by an investigator when she transforms the re-
search question to the study plan and considers potential problems in implementation. On one 
side are the issues of internal and external validity; on the other, feasibility. The vital last step 
of the union negotiator is sometimes omitted. Once the study plan has been formulated, the 
investigator must decide whether it adequately addresses the research question and whether it 
can be implemented with acceptable levels of error. Often the answer is no, and there is a need 
to begin the process anew. But take heart! Good scientists distinguish themselves not so much 
by their uniformly good research ideas as by their alacrity in turning over those that won’t work 
and moving on to better ones.

■ SUMMARY

 1. The anatomy of research is the set of tangible elements that make up the study plan: the 
research question and its significance, and the design, study subjects, and measurement 
approaches. The challenge is to design elements that are relatively inexpensive and easy 
to implement.

 2. The physiology of research is how the study works. The study findings are used to draw 
inferences about what happened in the study sample (internal validity), and about events 
in the world outside (external validity). The challenge here is to design and implement a 
study plan with adequate control over two major threats to these inferences: random error 
(chance) and systematic error (bias).

 3. In designing a study the investigator may find it helpful to consider Figure 1.5, the relation-
ships between the research question (what she wants to answer), the study plan (what the 
study is designed to answer), and the actual study (what the study will actually answer, 
given the errors of implementation that can be anticipated).

 4. A good way to develop the study plan is to begin with a one-sentence version of the 
 research question that specifies the main variables and population, and expand this into a 
one-page outline that sets out the study elements in a standardized sequence. Later on the 
study plan will be expanded into the protocol and the operations manual.

 5. Good judgment by the investigator and advice from colleagues are needed for the many 
trade-offs involved, and for determining the overall viability of the project.



APPENDIX 1
Outline of a Study
This is the one-page study plan of a project carried out by Valerie Flaherman, MD, MPH, begun 
while she was a general pediatrics fellow at UCSF. Most beginning investigators find observa-
tional studies easier to pull off, but in this case a randomized clinical trial of modest size and 
scope was feasible, the only design that could adequately address the research question, and 
ultimately successful—see publication by Flaherman et al (1) for the findings, which, if con-
firmed, could alter policy on how best to initiate breast feeding.

■  TITLE: EFFECT OF EARLY LIMITED FORMULA USE ON BREASTFEEDING

Research question:

Among term newborns who have lost ≥ 5% of their birth weight before 36 hours of age, does 
feeding 10 cc of formula by syringe after each breastfeeding before the onset of mature milk 
production increase the likelihood of subsequent successful breastfeeding?

Significance:

 1. Breast milk volume is low until mature milk production begins 2–5 days after birth.
 2. Some mothers become worried if the onset of mature milk production is late and their 

baby loses a lot of weight, leading them to abandon breastfeeding within the first week. A 
strategy that increased the proportion of mothers who succeed in breastfeeding would have 
many health and psycho-social benefits to mother and child. 

 3. Observational studies have found that formula feeding in the first few days after birth is 
associated with decreased breastfeeding duration. Although this could be due to confound-
ing by indication (see Chapter 9), the finding has led to WHO and CDC guidelines aimed 
at reducing the use of formula during the birth hospitalization.

 4. However, a small amount of formula combined with breastfeeding and counseling might 
make the early breastfeeding experience more positive and increase the likelihood of suc-
cess. A clinical trial is needed to assess possible benefits and harms of this strategy.

Study design:

Unblinded randomized control trial with blinded outcome ascertainment

Subjects:

 Entry criteria: Healthy term newborns 24–48 hours old who have lost ≥ 5% of their birth 
weight in the first 36 hours after birth

 Sampling design: Consecutive sample of consenting patients in two Northern California 
academic medical centers

Predictor variable, randomly assigned but not blinded:

 Control: Parents are taught infant soothing techniques.
 Intervention: Parents are taught to syringe-feed 10 cc of formula after each breastfeeding 

until the onset of mature milk production.

12
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Outcome variables, blindly ascertained:

 1. Any formula feeding at 1 week and 1, 2, and 3 months
 2. Any breastfeeding at 1 week and 1, 2, and 3 months
 3. Weight nadir

Primary null hypothesis:

Early limited formula does not affect the proportion of women who are breastfeeding their baby 
at 3 months.

REFERENCE
 1. Flaherman VJ, Aby J, Burgos AE, et al. Effect of early limited formula on duration and exclusivity of breastfeeding 

in at-risk infants: an RCT. Pediatrics, in press.
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The research question is the uncertainty that the investigator wants to resolve by  performing 
her study. There is no shortage of good research questions, and even as we succeed in answer-
ing some questions, we remain surrounded by others. Clinical trials, for example, established 
that treatments that block the synthesis of estradiol (aromatase inhibitors) reduce the risk of 
breast cancer in women who have had early stage cancer (1). But this led to new questions: 
How long should treatment be continued; does this treatment prevent breast cancer in patients 
with BRCA 1 and BRCA 2 mutations; and what is the best way to prevent the osteoporosis that 
is an adverse effect of these drugs? Beyond that are primary prevention questions: Are these 
treatments effective and safe for preventing breast cancer in healthy women?

The challenge in finding a research question is defining an important one that can be trans-
formed into a feasible and valid study plan. This chapter presents strategies for accomplishing 
this (Figure 2.1).

■ ORIGINS OF A RESEARCH QUESTION

For an established investigator the best research questions usually emerge from the findings 
and problems she has observed in her own prior studies and in those of other workers in the 
field. A new investigator has not yet developed this base of experience. Although a fresh per-
spective is sometimes useful by allowing a creative person to conceive new approaches to old 
problems, lack of experience is largely an impediment.

Conceiving the Research Question 
and Developing the Study Plan
Steven R. Cummings, Warren S. Browner, and Stephen B. Hulley

2C H A P T E R

■ FIGURE 2.1 This chapter focuses on the area within the dashed green line, the challenge of choosing a research 
question that is of interest and can be tackled with a feasible study plan.
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A good way to begin is to clarify the difference between a research question and a research 
interest. Consider this research question:

among women who have recently immigrated from Central America?

This might be asked by someone whose research interest involves the efficacy of group coun-
seling, or the prevention of domestic violence, or improving health in recent immigrants. The 
distinction between research questions and research interests matters because it may turn out 
that the specific research question cannot be transformed into a viable study plan, but the in-
vestigator can still address her research interest by asking a different question.

Of course, it’s impossible to formulate a research question if you are not even sure about 
your research interest (beyond knowing that you’re supposed to have one). If you find yourself 
in this boat, you’re not alone: Many new investigators have not yet discovered a topic that in-
terests them and is susceptible to a study plan they can design. You can begin by considering 
what sorts of research studies have piqued your interest when you’ve seen them in a journal. 
Or perhaps you were bothered by a specific patient whose treatment seemed inadequate or 
inappropriate: What could have been done differently that might have improved her outcome? 
Or one of your attending physicians told you that hypokalemia always caused profound thirst, 
and another said the opposite, just as dogmatically.

Mastering the Literature

It is important to master the published literature in an area of study: Scholarship is a 
necessary precursor to good research. A new investigator should conduct a thorough 
search of published literature in the areas pertinent to the research question and critically 
read important original papers. Carrying out a systematic review is a great next step for 
developing and establishing expertise in a research area, and the underlying literature re-
view can serve as background for grant proposals and research reports. Recent advances 
may be known to active investigators in a particular field long before they are published. 
Thus, mastery of a subject entails participating in meetings and building relationships with 
 experts in the field.

Being Alert to New Ideas and Techniques

In addition to the medical literature as a source of ideas for research questions, it is helpful 
to attend conferences in which new work is presented. At least as important as the formal 
presentations are the opportunities for informal conversations with other scientists at posters 
and during the breaks. A new investigator who overcomes her shyness and engages a speaker 
at the coffee break may find the experience richly rewarding, and occasionally she will have a 
new senior colleague. Even better, for a speaker known in advance to be especially relevant, it 
may be worthwhile to look up her recent publications and contact her in advance to arrange a 
meeting during the conference.

A skeptical attitude about prevailing beliefs can stimulate good research questions. For 
example, it was widely believed that lacerations which extend through the dermis required su-
tures to assure rapid healing and a satisfactory cosmetic outcome. However, Quinn et al. noted 
personal experience and case series evidence that wounds of moderate size repair themselves 
regardless of whether wound edges are approximated (2). They carried out a randomized trial 
in which all patients with hand lacerations less than 2 cm in length received tap water irriga-
tion and a 48-hour antibiotic dressing. One group was randomly assigned to have their wounds 
sutured, and the other group did not receive sutures. The suture group had a more painful and 
time-consuming treatment in the emergency room, but blinded assessment revealed similar 
time to healing and similar cosmetic results. This has now become a standard approach used 
in clinical practice.
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The application of new technologies often generates new insights and questions about famil-
iar clinical problems, which in turn can generate new paradigms (3). Advances in imaging and 
in molecular and genetic technologies, for example, have spawned translational research studies 
that have led to new treatments and tests that have changed clinical medicine. Similarly, taking 
a new concept, technology, or finding from one field and applying it to a problem in a different 
field can lead to good research questions. Low bone density, for example, is a risk factor for frac-
tures. Investigators applied this technology to other outcomes and found that women with low 
bone density have higher rates of cognitive decline (4), stimulating research for factors, such as 
low endogenous levels of estrogen, that could lead to loss of both bone and memory.

Keeping the Imagination Roaming

Careful observation of patients has led to many descriptive studies and is a fruitful source of 
research questions. Teaching is also an excellent source of inspiration; ideas for studies often 
occur while preparing presentations or during discussions with inquisitive students. Because 
there is usually not enough time to develop these ideas on the spot, it is useful to keep them in 
a computer file or notebook for future reference.

There is a major role for creativity in the process of conceiving research questions, imagin-
ing new methods to address old questions, and playing with ideas. Some creative ideas come 
to mind during informal conversations with colleagues over lunch; others arise from discuss-
ing recent research or your own ideas in small groups. Many inspirations are solo affairs that 
strike while preparing a lecture, showering, perusing the Internet, or just sitting and thinking. 
Fear of criticism or seeming unusual can prematurely quash new ideas. The trick is to put an 
unresolved problem clearly in view and allow the mind to run freely around it. There is also a 
need for tenacity, returning to a troublesome problem repeatedly until a resolution is reached.

Choosing and Working with a Mentor

Nothing substitutes for experience in guiding the many judgments involved in conceiving a 
research question and fleshing out a study plan. Therefore an essential strategy for a new in-
vestigator is to apprentice herself to an experienced mentor who has the time and interest to 
work with her regularly.

A good mentor will be available for regular meetings and informal discussions, encourage 
creative ideas, provide wisdom that comes from experience, help ensure protected time for 
research, open doors to networking and funding opportunities, encourage the development 
of independent work, and put the new investigator’s name first on grants and publications 
whenever appropriate. Sometimes it is desirable to have more than one mentor, representing 
different disciplines. Good relationships of this sort can also lead to tangible resources that are 
needed—office space, access to clinical populations, data sets and specimen banks, specialized 
laboratories, financial resources, and a research team.

A bad mentor, on the other hand, can be a barrier. A mentor can harm the career of the 
new investigator, for example, by taking credit for findings that arise from the new investiga-
tor’s work, or assuming the lead role on publishing or presenting it. More commonly, many 
mentors are simply too busy or distracted to pay attention to the new investigator’s needs. In 
either case, once discussions with the mentor have proved fruitless, we recommend finding a 
way to move on to a more appropriate advisor, perhaps by involving a neutral senior colleague 
to help in the negotiations. Changing mentors can be hazardous, emphasizing the importance 
of choosing a good mentor in the first place; it is perhaps the single most important decision a 
new investigator makes.

Your mentor may give you a database and ask you to come up with a research question. In that 
situation, it’s important to identify (1) the overlap between what’s in the database and your own 
research interests, and (2) the quality of the database. If there isn’t enough overlap or the data are 
irrevocably flawed, find a way to move on to another project.
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■ CHARACTERISTICS OF A GOOD RESEARCH QUESTION

The characteristics of a research question that lead to a good study plan are that it be Feasible, 
Interesting, Novel, Ethical, and Relevant (which form the mnemonic FINER; Table 2.1).

Feasible

It is best to know the practical limits and problems of studying a question early on, before wast-
ing much time and effort along unworkable lines.

 Number of subjects. Many studies do not achieve their intended purposes because they can-
not enroll enough subjects. A preliminary calculation of the sample size requirements of the 
study early on can be quite helpful (Chapter 6), together with an estimate of the number of 
subjects likely to be available for the study, the number who would be excluded or refuse 
to participate, and the number who would be lost to follow-up. Even careful planning often 
produces estimates that are overly optimistic, and the investigator should assure that there 
are enough eligible and willing subjects. It is sometimes necessary to carry out a pilot survey 
or chart review to be sure. If the number of subjects appears insufficient, the investigator can 
consider several strategies: expanding the inclusion criteria, eliminating unnecessary exclu-
sion criteria, lengthening the time frame for enrolling subjects, acquiring additional sources 
of subjects, developing more precise measurement approaches, inviting colleagues to join in 
a multicenter study, and using a different study design.

 Technical expertise. The investigators must have the skills, equipment, and experience 
needed for designing the study, recruiting the subjects, measuring the variables, and man-
aging and analyzing the data. Consultants can help to shore up technical aspects that are 
unfamiliar to the investigators, but for major areas of the study it is better to have an expe-
rienced colleague steadily involved as a coinvestigator; for example, it is wise to include a 
statistician as a member of the research team from the beginning of the planning process. 
It is best to use familiar and established approaches, because the process of developing new 

TABLE 2.1 FINER CRITERIA FOR A GOOD RESEARCH QUESTION  
AND STUDY PLAN

Feasible

Affordable in time and money

Fundable

Interesting

Novel

Provides new findings

 

Ethical

A study that the institutional review board will approve

Relevant



18

methods and skills is time-consuming and uncertain. When a new approach is needed, such 
as measurement of a new biomarker, expertise in how to accomplish the innovation should 
be sought.

 Cost in time and money. It is important to estimate the costs of each component of the 
project, bearing in mind that the time and money needed will generally exceed the amounts 
projected at the outset. If the projected costs exceed the available funds, the only options 
are to consider a less expensive design or to develop additional sources of funding. Early 
recognition of a study that is too expensive or time-consuming can lead to modification or 
abandonment of the plan before expending a great deal of effort.

 Scope. Problems often arise when an investigator attempts to accomplish too much, mak-
ing many measurements at repeated contacts with a large group of subjects in an effort to 
answer too many research questions. The solution is to narrow the scope of the study and 
focus only on the most important goals. Many scientists find it difficult to give up the op-
portunity to answer interesting side questions, but the reward may be a better answer to the 
main  question at hand.

 Fundability. Few investigators have the personal or institutional resources to fund their own 
research projects, particularly if subjects need to be enrolled and followed, or expensive mea-
surements must be made. The most elegantly designed research proposal will not be feasible 
if no one will pay for it. Finding sources of funding is discussed  in Chapter 19.

Interesting

An investigator may have many motivations for pursuing a particular research question: be-
cause it will provide financial support, because it is a logical or important next step in building 
a career, or because getting at the truth of the matter is interesting. We like this last reason; it 
is one that grows as it is exercised and that provides the intensity of effort needed for overcom-
ing the many hurdles and frustrations of the research process. However, it is wise to confirm 
that you are not the only one who finds a question interesting. Speak with mentors, outside 
experts, and representatives of potential funders such as NIH project officers before devoting 
substantial energy to develop a research plan or grant proposal that peers and funding agencies 
may consider dull.

Novel

Good clinical research contributes new information. A study that merely reiterates what is al-
ready established is not worth the effort and cost and is unlikely to receive funding. The novelty 
of a proposed study can be determined by thoroughly reviewing the literature, consulting with 
experts who are familiar with unpublished ongoing research, and searching for abstracts of 
projects in your area of interest that have been funded using the NIH Research Portfolio Online 
Reporting Tools (RePORT) website (http://report.nih.gov/categorical_spending.aspx.) Reviews 
of studies submitted to NIH give considerable weight to whether a proposed study is innovative 
(5) such that a successful result could shift paradigms of research or clinical practice through the 
use of new concepts, methods, or interventions (Chapter 19). Although novelty is an important 
criterion, a research question need not be totally original—it can be worthwhile to ask whether 
a previous observation can be replicated, whether the findings in one population also apply to 
others, or whether a new measurement method can clarify the relationship between known risk 
factors and a disease. A confirmatory study is particularly useful if it avoids the weaknesses of 
previous studies or if the result to be confirmed was unexpected.

Ethical

A good research question must be ethical. If the study poses unacceptable physical risks or in-
vasion of privacy (Chapter 14), the investigator must seek other ways to answer the question. 

http://report.nih.gov/categorical_spending.aspx


 19

If there is uncertainty about whether the study is ethical, it is helpful to discuss it at an early 
stage with a representative of the institutional review board (IRB).

Relevant

A good way to decide about relevance is to imagine the various outcomes that are likely to 
occur and consider how each possibility might advance scientific knowledge, influence prac-
tice guidelines and health policy, or guide further research. NIH reviewers emphasize the sig-
nificance of a proposed study: the importance of the problem, how the project will improve 
scientific knowledge, and how the result will change concepts, methods, or clinical services.

■ DEVELOPING THE RESEARCH QUESTION AND STUDY PLAN

It helps a great deal to write down the research question and a brief (one-page) outline of the 
study plan at an early stage (Appendix 1). This requires some self-discipline, but it forces the 
investigator to clarify her ideas about the plan and to discover specific problems that need at-
tention. The outline also provides a basis for specific suggestions from colleagues.

Problems and Approaches

Two complementary approaches to the problems involved in developing a research question 
deserve special emphasis.

The first is the importance of getting good advice. We recommend a research team that in-
cludes representatives of each of the major disciplines involved in the study, and that includes 
at least one senior scientist. In addition, it is a good idea to consult with specialists who can 
guide the discovery of previous research on the topic and the choice and design of measure-
ment techniques. Sometimes a local expert will do, but it is often useful to contact individuals 
in other institutions who have published pertinent work on the subject. A new investigator may 
be intimidated by the prospect of writing or calling someone she knows only as an author in 
the Journal of the American Medical Association, but most scientists respond favorably to such 
requests for advice.

The second approach is to allow the study plan to gradually emerge from an iterative pro-
cess of making incremental changes in the study’s design, estimating the sample size, review-
ing with colleagues, pretesting key features, and revising. Once the one-page study outline is 
specified, formal review by colleagues will usually result in important improvements. As the 
protocol takes shape pilot studies of the availability and willingness of sufficient numbers of 
subjects may lead to changes in the recruitment plan. The preferred imaging test may turn 
out to be prohibitively costly and a less expensive alternative sought.

Primary and Secondary Questions

Many studies have more than one research question. Experiments often address the effect of the 
intervention on more than one outcome; for example, the Women’s Health Initiative was de-
signed to determine whether reducing dietary fat intake would reduce the risk of breast  cancer, 
but an important secondary hypothesis was to examine the effect on coronary events (5). Almost 
all cohort and case–control studies look at several risk factors for each outcome. The advantage 
of designing a study with several research questions is the efficiency that can result, with several 
answers emerging from a single study. The disadvantages are the increased complexity of design-
ing and implementing the study and of drawing statistical inferences when there are multiple 
hypotheses (Chapter 5). A sensible strategy is to establish a single primary research question 
around which to focus the study plan and sample size estimate, adding  secondary research 
questions about other predictors or outcomes that may also produce  valuable conclusions.
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■ TRANSLATIONAL RESEARCH

Translational research refers to studies of how to translate findings from the ivory tower into 
the “real world,” how to assure that scientific creativity has a favorable impact on public health. 
Translational research (6) comes in two main flavors (Figure 2.2):

 Applying basic science findings from laboratory research in clinical studies of patients 
(sometimes abbreviated as T1 research), and

 Applying the findings of these clinical studies to alter health practices in the community 
(sometimes abbreviated as T2 research).

Both forms of translational research require identifying a “translation” opportunity. Just as 
a literary translator first needs to find a novel or poem that merits translating, a translational 
research investigator must first target a scientific finding or new technology that could have 
an important impact on clinical research, practice, or public health. Among the strategies for 
making this challenging choice, it may be helpful to pay attention to colleagues when they talk 
about their latest findings, to presentations at national meetings about novel methods, and to 
speculation about mechanisms in published reports.

Translating from Laboratory to Clinical Research (T1)

A host of tools
expression arrays, molecular imaging, and proteomics. From the viewpoint of a clinical investiga-
tor, there is nothing epidemiologically different about these novel measurements, technologies, or 
test results. The chapter on measurements will be useful in planning studies involving these types 
of measurements (Chapter 4), as will the advice about study design (Chapters 7–12), population 
samples (Chapter 3), and sample size (Chapter 6). Especially relevant to genomics and other 
“omics” will be the concern with multiple hypothesis testing (Chapter 5).

Compared with ordinary clinical research, being a successful T1 translational investigator often 
requires having an additional skill set or working with a collaborator with those skills. Bench-to- 
bedside research necessitates a thorough understanding of the underlying basic science. Al-
though many clinical researchers believe that they can master this knowledge—just like many 
laboratory-based researchers believe doing clinical research requires no special training—in 
reality, the skills hardly overlap. For example, suppose a basic scientist has identified a gene that 

■ FIGURE 2.2 Translational research is the component of clinical research that interacts with basic science research 
(hatched area T1) or with population research (hatched area T2).
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affects circadian rhythm in mice. A clinical investigator whose expertise is in sleep has access to 

there is an association between variants in the human homolog of that gene and sleep. In order 
to propose a T1 study of that association she needs collaborators who are familiar with that gene, 
as well as the advantages and limitations of the various methods of genotyping.

Similarly, imagine that a laboratory-based investigator has discovered a unique pattern 
of gene expression in tissue biopsy samples from patients with breast cancer. She should not 
propose a study of its use as a test for predicting the risk of recurrence of breast cancer without 
collaborating with someone who understands the importance of clinical research issues, such 
as test-retest reliability, sampling and blinding, and the effects of prior probability of disease on 
the applicability of her discovery. Good translational research requires expertise in more than 
one area. Thus a research team interested in testing a new drug may need scientists familiar 
with molecular biology, pharmacokinetics, pharmacodynamics, phase I and II clinical trials, 
and practice patterns in the relevant field of medicine.

Translating from Clinical to Population Research (T2)

Studies that attempt to apply findings from clinical trials to larger and more diverse populations 
often require expertise in identifying high-risk or underserved groups, understanding the dif-
ference between screening and diagnosis, and knowing how to implement changes in health 
care delivery systems. On a practical level, this kind of research usually needs access to large 
groups of patients (or clinicians), such as those enrolled in health plans or large clinics. Sup-
port and advice from the department chair, the chief of the medical staff at an affiliated hospital, 
the leader of a managed care organization, or a representative from a community organization 
may be helpful when planning these studies.

Some investigators take a short cut when doing this type of translational research, expand-
ing a study in their own clinic by studying patients in their colleagues’ practices (e.g., a house 
staff-run clinic in an academic medical center) rather than involving practitioners in the com-
munity. This is a bit like translating Aristophanes into modern Greek—it will still not be very 
useful for English-speaking readers. Chapter 18 emphasizes the importance of getting as far 
into the community as possible.

Testing research findings in larger populations often requires adapting methods to fit organiza-
tions. For example, in a study of whether a new office-based diet and exercise program will be 
effective in the community, it may not be possible to randomly assign individual patients. One 
solution would be to randomly assign physician practices instead. This may require collaborating 
with an expert on cluster sampling and clustered analyses. Many T2 research projects aimed to 
improve medical care use proxy “process” variables as their outcomes. For example, if clinical trials 
have established that a new treatment reduces mortality from sepsis, a translational research study 
comparing two programs for implementing and promoting use of the new treatment might not 
need to have mortality as the outcome. Rather, it might just compare the percentages of patients 
with sepsis who received the new treatment. Moving research from settings designed for research 
into organizations designed for medical care or other purposes requires flexibility and creativity in 
applying principles that assure as much rigor and validity of the study results as possible.

■ SUMMARY

 1. All studies should start with a research question that addresses what the investigator 
would like to know. The goal is to find one that can be developed into a good study plan.

 2. Scholarship is essential to developing research questions that are worth pursuing. A  
systematic review of research pertinent to an area of research interest is a good place to 
start. Attending conferences and staying alert to new results extends the investigator’s ex-
pertise beyond what is already published.
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 3. The single most important decision a new investigator makes is her choice of one or two 
senior scientists to serve as her mentor(s): experienced investigators who will take time to 
meet, provide resources and connections, encourage creativity, and promote the indepen-
dence and visibility of their junior scientists.

 4. Good research questions arise from finding new collaborators at conferences, from critical 
thinking about clinical practices and problems, from applying new methods to old is-
sues, and from considering ideas that emerge from teaching, daydreaming, and tenacious 
 pursuit of solutions to vexing problems.

 5. Before committing much time and effort to writing a proposal or carrying out a study, the 
investigator should consider whether the research question and study plan are “FINER”: 
feasible, interesting, novel, ethical, and relevant. Those who fund research give priority 
to proposals that may have innovative and significant impacts on science and health.

 6. Early on, the research question should be developed into a one-page written study outline 
that specifically describes how many subjects will be needed, how the subjects will be se-
lected, and what measurements will be made.

iterative process that includes 
consultations with advisors and friends, a growing familiarity with the literature, and pilot 
studies of the recruitment and measurement approaches.

 8. Most studies have more than one question, and it is useful to focus on a single primary 
question in designing and implementing the study.

 9. Translational research is a type of clinical research that studies the application of ba-
sic  science findings in clinical studies of patients (T1) and how to apply these findings 
to improve health practices in the community (T2); it requires collaborations between 
 laboratory and population-based investigators, using the clinical research methods 
 presented in this book.

REFERENCES
 1. The ATAC Trialists Group. Anastrazole alone or in combination with tamoxifen versus tamoxifen alone for adju-

vant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomized trials. 
Lancet 2002;359:2131–2139.

 2. Quinn J, Cummings S, Callaham M, et al. Suturing versus conservative management of lacerations of the hand: 
randomized controlled trial. BMJ 2002;325:299–301.

 3. Kuhn TS. The structure of scientific revolutions. Chicago, IL: University of Chicago Press, 1962.
 4. Yaffe K, Browner W, Cauley J, et al. Association between bone mineral density and cognitive decline in older 

women. J Am Geriatr Soc 1999;47:1176–1182.
 5. Prentice RL, Caan B, Chlebowski RT, et al. Low-fat dietary pattern and risk of invasive breast cancer. JAMA 

2006;295:629–642.
 6. Zerhouni EA. US biomedical research: basic, translational and clinical sciences. JAMA 2005;294:1352–1358.



23

C H A P T E R

A good choice of study subjects serves the vital purpose of ensuring that the findings in 
the study accurately represent what is going on in the population of interest. The protocol 
must specify a sample of subjects that can be studied at an acceptable cost in time and money 
(i.e., modest in size and convenient to access), yet large enough to control random error 
and representative enough to allow generalizing study findings to populations of interest. 
An important precept here is that generalizability is rarely a simple yes-or-no matter; it is a 
complex qualitative judgment that depends on the investigator’s choice of population and of 
sampling design.

We will come to the issue of choosing the appropriate number of study subjects in  Chapter 6. 
In this chapter we address the process of specifying and sampling the kinds of subjects who 
will be representative and feasible (Figure 3.1). We also discuss strategies for recruiting these 
people to participate in the study.

■ BASIC TERMS AND CONCEPTS

Populations and Samples

A population is a complete set of people with specified characteristics, and a sample is a 
subset of the population. In lay usage, the characteristics that define a population tend to be 
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geographic—for example, the population of Canada. In research, the defining characteristics 
are also clinical, demographic, and temporal:

 Clinical and demographic characteristics define the target population, the large set of people 
throughout the world to which the results may be generalized—teenagers with asthma, for 
example.

 The accessible population is a geographically and temporally defined subset of the target 
population that is available for study—teenagers with asthma living in the investigator’s 
town this year.

 The intended study sample is the subset of the accessible population that the investigator 
seeks to include in the study.

 The actual study sample is the group of subjects that does participate in the study.

Generalizing the Study Findings

The classic Framingham Study was an early approach to scientifically designing a study 
to allow inferences from findings observed in a sample to be applied to a population 
(Figure 3.2).

The sampling design called for identifying all the families in Framingham with at least one 
person aged 30–59, listing the families in order by address, and then asking age- eligible persons 
in the first two of every set of three families to participate. This “systematic”  sampling design 
is not as tamperproof as choosing each subject by a random process (as discussed later in this 
chapter), but two more serious concerns were the facts that one-third of the  Framingham 
residents selected for the study refused to participate, and that in their place the investigators 
accepted age-eligible residents who were not in the sample and volunteered (1).

Because respondents are often healthier than nonrespondents, especially if they are volun-
teers, the characteristics of the actual sample undoubtedly differed from those of the intended 
sample. Every sample has some errors, however, and the issue is how much damage has been 
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done. The Framingham Study sampling errors do not seem large enough to invalidate the con-
clusion that risk relationships observed in the study—for example, that hypertension is a risk 
factor for coronary heart disease (CHD)—can be generalized to all the residents of Framingham.

The next concern is the validity of generalizing the finding that hypertension is a risk fac-
tor for CHD from the accessible population of Framingham residents to target populations 
elsewhere. This inference is more subjective. The town of Framingham was selected not with a 
scientific sampling design, but because it seemed fairly typical of middle-class white communi-
ties in the United States and was convenient to the investigators. The validity of generalizing 
the Framingham risk relationships to populations in other parts of the country involves the 
precept that, in general, analytic studies and clinical trials that address biologic relationships 
produce more widely generalizable results across diverse populations than descriptive studies 
that address distributions of characteristics. Thus, the strength of hypertension as a risk factor 
for CHD is similar in Caucasian Framingham residents to that observed in inner city African 
Americans, but the prevalence of hypertension is much higher in the latter population.

Steps in Designing the Protocol for Acquiring Study Subjects

The inferences in Figure 3.2 are presented from right to left, the sequence used for interpreting 
the findings of a completed study. An investigator who is planning a study reverses this se-
quence, beginning on the left (Figure 3.3). She begins by specifying the clinical and demographic 
characteristics of the target population that will serve the research question well. She then uses 
geographic and temporal criteria to specify a study sample that is representative and practical.

■ SELECTION CRITERIA

If an investigator wants to study the efficacy of low dose testosterone supplements versus 
placebo for enhancing libido in postmenopausal women, she can begin by creating selection 
criteria that define the population to be studied.
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■ FIGURE 3.3 Steps in designing the protocol for choosing the study subjects.
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Establishing Selection Criteria

Inclusion criteria define the main characteristics of the target population that pertain to the 
research question (Table 3.1). Age is often a crucial factor, and in this study the investigator 
might decide to focus on women in their fifties, speculating that in this group the benefit-to-
harm ratio of the drug might be optimal; another study might make a different decision and 
focus on older decades. The investigator also might incorporate African American, Hispanic, 
and Asian women in the study in an effort to expand generalizability. This is generally a good 
idea, but it’s important to realize that the increase in generalizability is illusory if there is other 
evidence to suggest that the effects differ by race. In that case the investigator would need 
enough women of each race to statistically test for the presence of effect modification (an 
effect in one race that is different from that in other races, also known as “an interaction”; 
Chapter 9); the number needed is generally large, and most studies are not powered to detect 
effect modification.

Inclusion criteria that address the geographic and temporal characteristics of the accessible 
population often involve trade-offs between scientific and practical goals. The investigator 
may find that patients at her own hospital are an available and inexpensive source of subjects. 
But she must consider whether peculiarities of the local referral patterns might interfere with 
generalizing the results to other populations. On these and other decisions about inclusion 
criteria, there is no single course of action that is clearly right or wrong; the important thing 
is to make decisions that are sensible, that can be used consistently throughout the study, 
and that can be clearly described to others who will be deciding to whom the published 
 conclusions apply.

TABLE 3.1  DESIGNING SELECTION CRITERIA FOR A CLINICAL TRIAL OF LOW 
DOSE TESTOSTERONE VERSUS PLACEBO TO ENHANCE LIBIDO IN MENOPAUSE

DESIGN FEATURE EXAMPLE

Inclusion criteria 

Patients attending clinic at the 

Exclusion criteria 
that will not

Alcoholic
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Specifying clinical characteristics for selecting subjects often involves difficult judgments, 
not only about which factors are important to the research question, but about how to define 
them. How, for example, would an investigator put into practice the criterion that the subjects 
be in “good health”? She might decide not to include patients with any self-reported illness, but 
this would likely exclude large numbers of subjects who are perfectly suitable for the research 
question at hand.

More reasonably, she might exclude only those with diseases that could interfere with 
follow-up, such as metastatic cancer. This would be an example of “exclusion criteria,” which 
indicate individuals who meet the inclusion criteria and would be suitable for the study were it 
not for characteristics that might interfere with the success of follow-up efforts, the quality of 
the data, or the acceptability of randomized treatment (Table 3.1). Difficulty with the English 
language, psychological problems, alcoholism, and serious illness are examples of exclusion 
criteria. Clinical trials differ from observational studies in being more likely to have exclusions 
mandated by concern for the safety of an intervention in certain patients; for example, the use 
of drugs in pregnant women (Chapter 10). A good general rule that keeps things simple and 
preserves the number of potential study subjects is to have as few exclusion criteria as possible.

Clinical Versus Community Populations

If the research question involves patients with a disease, hospitalized or clinic-based patients 
are easier to find, but selection factors that determine who comes to the hospital or clinic may 
have an important effect. For example, a specialty clinic at a tertiary care medical center at-
tracts patients from afar with serious forms of the disease, giving a distorted impression of the 
features and prognosis that are seen in ordinary practice. Sampling from primary care practices 
can be a better choice.

Another common option in choosing the sample is to select subjects in the community who 
represent a healthy population. These samples are often recruited using mail, e-mail, or adver-
tising via Internet, broadcast, or print media; they are not fully representative of a general popu-
lation because some kinds of people are more likely than others to volunteer or be active users 
of Internet or e-mail. True “population-based” samples are difficult and expensive to recruit, 
but useful for guiding public health and clinical practice in the community. One of the larg-
est and best examples is the National Health and Nutrition Examination Survey (NHANES), a 
representative sample of U.S. residents.

The size and diversity of a sample can be increased by collaborating with colleagues in other 
cities, or by using preexisting data sets such as NHANES and Medicare data. Electronically 
 accessible data sets from public health agencies, healthcare providing organizations, and medical 
insurance companies have come into widespread use in clinical research and may be more repre-
sentative of national populations and less time-consuming than other possibilities (Chapter 13).

■ SAMPLING

Often the number of people who meet the selection criteria is too large, and there is a need to 
select a sample (subset) of the population for study.

Nonprobability Samples

In clinical research the study sample is often made up of people who meet the entry criteria and 
are easily accessible to the investigator. This is termed a convenience sample. It has obvious 
advantages in cost and logistics, and is a good choice for some research questions.

A consecutive sample can minimize volunteerism and other selection biases by consecutively 
selecting subjects who meet the entry criteria. This approach is especially desirable, for example, 
when it amounts to taking the entire accessible population over a long enough period to include 
seasonal variations or other temporal changes that are important to the research question.
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The validity of drawing inferences from any sample is the premise that, for the purpose of 
answering the research question at hand, it sufficiently represents the accessible population. 
With convenience samples this requires a subjective judgment.

Probability Samples

Sometimes, particularly with descriptive research questions, there is a need for a scientific 
basis for generalizing the findings in the study sample to the population. Probability sampling, 
the gold standard for ensuring generalizability, uses a random process to guarantee that each 
unit of the population has a specified chance of being included in the sample. It is a scientific 
approach that provides a rigorous basis for estimating the fidelity with which phenomena 
observed in the sample represent those in the population, and for computing statistical signifi-
cance and confidence intervals. There are several versions of this approach.

 A simple random sample is drawn by enumerating (listing) all the people in the population 
from which the sample will be drawn, and selecting a subset at random. The most common 
use of this approach in clinical research is when the investigator wishes to select a represen-
tative subset from a population that is larger than she needs. To take a random sample of 
the cataract surgery patients at her hospital, for example, the investigator could list all such 
patients on the operating room schedules for the period of study, then use a table of random 
numbers to select individuals for study (Appendix 3).

 A systematic sample resembles a simple random sample in the first step, enumerating the 
population, but differs in that the sample is selected by a preordained periodic process (e.g., 
the Framingham approach of taking the first two out of every three families from a list of 
town families ordered by address). Systematic sampling is susceptible to errors caused by 
natural periodicities in the population, and it allows the investigator to predict and perhaps 
manipulate those who will be in the sample. It offers no logistic advantages over simple 
random sampling, and in clinical research it is rarely a better choice.

 A stratified random sample begins by dividing the population into subgroups according to 
characteristics such as sex or race, and taking a random sample from each of these “strata.” The 
Stratified subsamples can be weighted to draw disproportionately from subgroups that are less 
common in the population but of special interest to the investigator. In studying the incidence 
of toxemia in pregnancy, for example, the investigator could stratify the population by race 
and then sample equal numbers from each stratum. Less common races would then be over-
represented, yielding incidence estimates of comparable precision from each racial group.

 A cluster sample is a random sample of natural groupings (clusters) of individuals in the popula-
tion. Cluster sampling is useful when the population is widely dispersed and it is impractical to 
list and sample from all its elements. Consider, for example, the problem of interviewing patients 
with lung cancer selected randomly from a statewide database of discharge diagnoses; patients 
could be studied at lower cost by choosing a random sample of the hospitals and taking the cases 
from these. Community surveys often use a two-stage cluster sample: A random sample of city 
blocks is drawn from city blocks enumerated on a map and a field team visits the blocks in the 
sample, lists all the addresses in each, and selects a subsample of addresses for study by a second 
random process. A disadvantage of cluster sampling is the fact that naturally occurring groups 
are often more homogeneous for the variables of interest than the population; each city block, 
for example, tends to have people of similar socioeconomic status. This means that the effective 
sample size (after adjusting for within-cluster uniformity) will be somewhat smaller than the 
number of subjects, and that statistical analysis must take the clustering into account.

Summarizing the Sampling Design Options

The use of descriptive statistics and tests of statistical significance to draw inferences about the 
population from observations in the study sample is based on the assumption that a probability 
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sample has been used. But in clinical research a random sample of the whole target population 
is almost never possible. Convenience sampling, preferably with a consecutive design, is a prac-
tical approach that is often suitable. The decision about whether the proposed sampling design 
is satisfactory requires that the investigator make a judgment: for the research question at hand, 
will the conclusions drawn from observations in the study sample be similar to the conclusions 
that would result from studying a true probability sample of the accessible population? And 
beyond that, will the conclusions be appropriate for the target population?

■ RECRUITMENT

The Goals of Recruitment

An important factor to consider in choosing the accessible population and sampling approach is 
the feasibility of recruiting study participants. There are two main goals: (1) to recruit a sample 
that adequately represents the target population, minimizing the prospect of getting the wrong 
answer to the research question due to systematic error (bias); and (2) to recruit a sufficient 
sample size to minimize the prospect of getting the wrong answer due to random error (chance).

Achieving a Representative Sample

The approach to recruiting a representative sample begins in the design phase with wise deci-
sions about choosing target and accessible populations, and approaches to sampling. It ends 
with implementation, guarding against errors in applying the entry criteria to prospective study 
participants, and enhancing successful strategies as the study progresses.

A particular concern, especially for descriptive studies, is the problem of nonresponse.1 The 
proportion of subjects selected for the study who consent to be enrolled (the response rate) 
influences the validity of inferring that the enrolled sample represents the population. People 
who are difficult to reach and those who refuse to participate once they are contacted tend to be 
different from people who do enroll. The level of nonresponse that will compromise the general-
izability of the study depends on the nature of the research question and on the reasons for not 
responding. A nonresponse rate of 25%, a good achievement in many settings, can seriously dis-
tort the estimate of the prevalence of a disease when the disease itself is a cause of nonresponse.

The degree to which nonresponse bias may influence the conclusions of a descriptive study 
can sometimes be estimated during the study by acquiring additional information on a sample 
of nonrespondents. The best way to deal with nonresponse bias, however, is to minimize the 
number of nonrespondents. The problem of failure to make contact with individuals who have 
been chosen for the sample can be reduced by designing a series of repeated contact attempts 
using various methods (mail, e-mail, telephone, home visit). Among those contacted, refusal 
to participate can be minimized by improving the efficiency and attractiveness of the study, by 
choosing a design that avoids invasive and uncomfortable tests, by using brochures and indi-
vidual discussion to allay anxiety and discomfort, by providing incentives such as reimbursing 
the costs of transportation and providing the results of tests, and by circumventing language 
barriers with bilingual staff and translated questionnaires.

Recruiting Sufficient Numbers of Subjects

Falling short in the rate of recruitment is one of the commonest problems in clinical research. 
In planning a study it is best to assume that the number of subjects who meet the entry criteria 
and agree to enter the study will be fewer, sometimes by severalfold, than the number projected 

1Concern with nonresponse in the process of recruiting subjects for a study (the topic of this chapter) is chiefly a 
 concern in descriptive studies that have a primary goal of estimating distributions of variables in particular popula-
tions. Nonresponse in the follow-up process is often a major issue in any study that follows a cohort over time, and 
particularly in a clinical trial of an intervention that may alter the response rate (Chapter 10).
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at the outset. The approaches to this problem are to estimate the magnitude of the recruitment 
problem empirically with a pretest, to plan the study with an accessible population that is larger 
than believed necessary, and to make contingency plans should the need arise for additional 
subjects. While recruitment is ongoing it is important to closely monitor progress in meeting the 
recruitment goals and tabulate reasons for falling short of the goals. Understanding why poten-
tial subjects are lost to the study at various stages can lead to strategies for reducing these losses.

Sometimes recruitment involves selecting subjects who are already known to the members 
of the research team (e.g., in a study of a new treatment in patients attending the investigator’s 
clinic). Here the chief concern is to present the opportunity for participation in the study fairly, 
making clear the advantages and disadvantages. In discussing participation, the investigator 
must recognize the ethical dilemmas that arise when her advice as the patient’s physician might 
conflict with her interests as an investigator (Chapter 14).

Often recruitment involves contacting populations that are not known to the members of 
the research team. It is helpful if at least one member of the research team has previous experi-
ence with the approaches for contacting the prospective subjects. These include screening in 
work settings or public places such as shopping malls; sending out large numbers of mailings to 
listings such as driver’s license holders; advertising on the Internet; inviting referrals from clini-
cians; carrying out retrospective record reviews; and examining lists of patients seen in clinic 
and hospital settings. Some of these approaches, particularly the latter two, involve concerns 
with privacy invasion that must be considered by the institutional review board.

It may be helpful to prepare for recruitment by getting the support of important organiza-
tions. For example, the investigator can meet with hospital administrators to discuss a clinic-
based sample, and with community leaders, the medical society and county health department 
to plan a community screening operation or mailing to physicians. Written endorsements can 
be included as an appendix in applications for funding. For large studies it may be useful to 
create a favorable climate in the community by giving public lectures or by advertising through 
radio, TV, newspapers, fliers, websites, and mass mailings.

■ SUMMARY

 1. Most clinical research is based, philosophically and practically, on the use of a sample to 
represent a population.

 2. The advantage of sampling is efficiency: It allows the investigator to draw inferences about 
a large population by examining a subset at relatively small cost in time and effort. The 
disadvantage is the sources of error it introduces: If the sample is not sufficiently represen-
tative for the research question at hand the findings may not generalize well to the target 
population, and if it is not large enough the findings may not sufficiently minimize the role 
of chance.

 3. In designing a sample, the investigator begins by conceptualizing the target population 
with a specific set of inclusion criteria that establish demographic and clinical character-
istics of subjects well suited to the research question.

 4. She then selects an appropriate accessible population that is geographically and tempo-
rally convenient, and defines a parsimonious set of exclusion criteria that eliminate sub-
jects who are unethical or inappropriate to study.

 5. The next step is to design an approach to sampling the population. A convenience 
sample may be adequate, especially for initial studies of some questions, and a consecu-
tive sample is often a good choice. Simple random sampling can be used to reduce the 
size of the sample if necessary, and other probability sampling strategies (stratified and 
cluster) are useful in certain situations.

 6. Finally, the investigator must design and implement strategies for recruiting a sample of 
subjects that is sufficiently representative of the target population to control systematic 
sources of error, and large enough to control random sources of error.
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TABLE 3.2  SELECTING A RANDOM SAMPLE FROM A TABLE  
OF RANDOM NUMBERS

25595

20922

This table provides a simple paper-based way to select a 10% random sample from a table of ran-
dom numbers. Begin by enumerating (listing and numbering) every person in the population to 
be sampled. Then decide on a rule for obtaining an appropriate series of numbers; for example, if 
your list has 741 elements (which you have numbered 1 to 741), your rule might be to go vertically 
down each column in this table using the first three digits of each number (beginning at the upper 
left, the numbers are 104, 223, etc.) and to select the first 74 different numbers that fall in the range 
of 1 to 741. Finally, pick a starting point by an arbitrary process (closing your eyes and putting 
your pencil on some number in the table is one way to do it) and begin applying the rule. The 
modern approach, with a computerized series of random numbers, basically works the same way.

REFERENCE
 1. www.framinghamheartstudy.org/about/background.html, accessed 7/23/12.
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4

Measurements describe phenomena in terms that can be analyzed statistically, and the 
validity of a study depends on how well the variables designed for the study represent the phe-
nomena of interest (Figure 4.1). How well does a handheld glucometer measure blood glucose, 
for example, or an insomnia questionnaire detect amount and quality of sleep?

This chapter begins by considering how the choice of measurement scale influences the 
information content of the measurement. We then turn to the central goal of minimizing 
measurement error: how to design measurements that are relatively precise (free of random 
error) and accurate (free of systematic error), thereby enhancing the appropriateness of draw-
ing inferences from these measurements to the phenomena of interest. We address the concept 
of validity, a qualitative relative of accuracy, before concluding with some considerations for 
clinical and translational research, noting especially the advantages of storing specimens for 
later measurements.

■ MEASUREMENT SCALES

Table 4.1 presents a simplified classification of measurement scales and the information that 
results. The classification is important because some types of variables are more informative 
than others, adding power or reducing sample size requirements, and revealing more detailed 
distribution patterns.

Planning the Measurements: 
Precision, Accuracy, and Validity
Stephen B. Hulley, Thomas B. Newman, and Steven R. Cummings

Research 
question

Target
population

Study plan Actual
study

Intended
sample

Actual
subjects

Design Implement

Infer Infer

TRUTH IN THE
UNIVERSE

TRUTH IN THE
STUDY

EXTERNAL
VALIDITY

INTERNAL
VALIDITY

FINDINGS IN 
THE STUDY

Error Error

Phenomena
of interest

Intended
variables

Actual
measurements

■ FIGURE 4.1 Designing measurements that represent the phenomena of interest.
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Numeric Variables: Continuous and Discrete

Numeric variables can be quantified with a number that expresses how much or how many. 
Continuous variables quantify how much on an infinite scale; the number of possible values 
of body weight, for example, is limited only by the sensitivity of the machine that is used to 
measure it. Continuous variables are rich in information. Discrete numeric variables quantify 
how many on a scale with fixed units, usually integers, such as the number of times a woman 
has been pregnant. Discrete variables that have a considerable number of possible values can 
resemble continuous variables in statistical analyses and be equivalent for the purpose of de-
signing measurements.

Categorical Variables: Dichotomous, Nominal, and Ordinal

Phenomena that are not suitable for quantification are measured by classifying them in catego-
ries. Categorical variables with two possible values (e.g., dead or alive) are termed dichoto-
mous. Categorical variables with more than two categories (polychotomous) can be further 
characterized according to the type of information they contain. Among these, nominal vari-
ables have categories that are not ordered; type O blood, for example, is neither more nor less 
than type B blood; nominal variables tend to have an absolute qualitative character that makes 
them straightforward to measure. The categories of ordinal variables do have an order, such as 
severe, moderate, and mild pain. The additional information is an advantage over nominal vari-
ables, but because ordinal variables do not specify a numerical or uniform difference between 
one category and the next, the information content is less than that of discrete or continuous 
numeric variables.

Choosing a Measurement Scale

A good general rule is to prefer continuous over categorical variables when there is a choice, 
because the additional information they contain improves statistical efficiency. In a study 
comparing the antihypertensive effects of several treatments, for example, measuring blood 
pressure in millimeters of mercury allows the investigator to observe the magnitude of the 
change in every subject, whereas measuring it as hypertensive versus normotensive limits the 

TABLE 4.1  MEASUREMENT SCALES

TYPE OF 
MEASUREMENT

CHARACTERISTICS OF 
VARIABLE

EXAMPLE DESCRIPTIVE 
STATISTICS

STATISTICAL 
POWER

Categorical

dead)
Counts, proportions Low

Nominal Low

Ordinal
with intervals that are 

In addition to the Intermediate

Numeric

Continuous or 
†

In addition to the 

 standard deviations

High

†
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assessment. The continuous variable contains more information, and the result is a study with 
more power and/or a smaller sample size (Chapter 6).

Continuous variables also allow for more flexibility than categorical variables in fitting the 
data to the nature of the variable or the shape of the association, especially when the relation-
ship might have a complex pattern. For example, a study of the relationship of vitamin D to 
various cancers would need to measure vitamin D as a continuous variable to be able to detect 
a possible U-shaped pattern, the higher mortality that has been observed in subjects with low 
or high levels of vitamin D than in those with intermediate levels (1). And a study of predictors 
of low birth weight babies should record actual birth weight rather than above or below the 
conventional 2,500 g threshold; this leaves the analytic options open, to change the cutoff that 
defines low birth weight, or to develop an ordinal scale with several categories of birth weight 
(e.g., >2,500 g, 2,000–2,499 g, 1,500–1,999 g, and <1,500 g).

Similarly, when there is the option of designing the number of response categories in an 
ordinal scale, as in a question about food preferences, it is often useful to provide a half-dozen 
categories that range from “strongly dislike” to “extremely fond of.” The results can later be 
collapsed into a dichotomy (dislike and like), but not vice versa.

Many characteristics, particularly symptoms like pain or aspects of lifestyle, are difficult 
to describe with categories or numbers. But these phenomena often have important roles in 
diagnostic and treatment decisions, and the attempt to measure them is an essential part of the 
scientific approach to description and analysis. This is illustrated by the Short Form (SF)-36, a 
standardized questionnaire for assessing quality of life that produces discrete numerical ratings 
(2). The process of classification and measurement, if done well, can increase the objectivity of 
our knowledge, reduce bias, and provide a means of communication.

■ PRECISION

The precision of a variable is the degree to which it is reproducible, with nearly the same value 
each time it is measured. A beam scale can measure body weight with great precision, whereas 
an interview to measure quality of life is more likely to produce values that vary from one 
observer or occasion to another. Precision has a very important influence on the power of a 
study. The more precise a measurement, the greater the statistical power at a given sample size 
to estimate mean values and to test hypotheses (Chapter 6).

Precision (also called reproducibility, reliability, and consistency) is a function of random 
error (chance variability); the greater the error, the less precise the measurement. There are 
three main sources of random error in making measurements.

 Observer variability is due to the observer, and includes such things as choice of words in 
an interview and skill in using a mechanical instrument.
Instrument variability is due to the instrument, and includes changing environmental fac-
tors (e.g., temperature), aging mechanical components, different reagent lots, and so on.
Subject variability is due to intrinsic biologic variability in the study subjects unrelated to 
variables under study, such as variablity due to time of day of measurements or time since 
last food or medication.

Assessing Precision

Precision is assessed as the reproducibility of repeated measurements, either comparing 
 measurements made by the same person (within-observer reproducibility) or different people 
(between-observer reproducibility). Similarly, it can be assessed within or between  instruments. 
The reproducibility of continuous variables is often expressed as either the within-subject 
 standard deviation or the coefficient of variation (within-subject standard deviation divided by 
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the mean).1 For categorical variables, percent agreement, the interclass correlation coefficient, 
and the kappa statistic are often used (3–5).

Strategies for Enhancing Precision

There are five approaches to minimizing random error and increasing the precision of measure-
ments (Table 4.2):

 1. Standardizing the measurement methods. All study protocols should include specific 
 instructions for making the measurements (operational definitions). This may include 
 written directions on how to prepare the environment and the subject, how to carry out and 
record the interview, how to calibrate the instrument, and so forth (Appendix 4). This set of 
materials, part of the operations manual, is essential for large and complex studies and recom-
mended for smaller ones. Even when there is only a single observer, specific written guidelines 
for making each measurement will help her performance to be uniform over the duration of 
the study and serve as the basis for describing the methods when the results are published.

TABLE 4.2  STRATEGIES FOR REDUCING RANDOM ERROR IN ORDER  
TO  INCREASE PRECISION, WITH ILLUSTRATIONS FROM A STUDY  
OF  ANTIHYPERTENSIVE TREATMENT

STRATEGY TO REDUCE 
RANDOM ERROR

SOURCE OF RANDOM 
ERROR

EXAMPLE OF RANDOM 
ERROR

EXAMPLE OF STRATEGY 
TO PREVENT THE ERROR

1. Standardizing 
the measurement 
 methods in an 
 operations manual

-

measurement

sit in a quiet room for 

measurement

3. Refining the 
instrument

Instrument and 

manometer
quality manometer

instrument

-

5. Repeating the 
measurement instrument

Use mean of 

measurements

1 When there are two measurements of a continuous variable per subject, it may be tempting to express their agreement 
using a correlation coefficient. However, because the correlation coefficient is extremely sensitive to outliers (3,4), a 
better approach is a “Bland-Altman” plot in which the difference between the two measurements is plotted as a func-
tion of their mean. If the absolute value of the difference between the measurements tends to increase linearly with the 
mean, the coefficient of variation is a better way to summarize variability than the within-subject standard deviation.
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 2. Training and certifying the observers. Training will improve the consistency of measure-
ment techniques, especially when several observers are involved. It is often desirable to 
design a formal test of the mastery of the techniques specified in the operations manual and 
to certify that observers have achieved the prescribed level of performance (Chapter 17).

 3. Refining the instruments. Mechanical and electronic instruments can be engineered to 
reduce variability. Similarly, questionnaires and interviews can be written to increase clarity 
and avoid potential ambiguities (Chapter 15).

 4. Automating the instruments. Variations in the way human observers make measurements 
can be eliminated with automatic mechanical devices and self-response questionnaires.

 5. Repetition. The influence of random error from any source is reduced by repeating the 
measurement, and using the mean of the two or more readings. Precision will be substan-
tially increased by this strategy, the primary limitations being the added cost and practical 
difficulties of repeating the measurements.

For each measurement in the study, the investigator must decide how vigorously to pur-
sue each of these strategies. This decision can be based on the importance of the variable, the 
magnitude of the potential problem with precision, and the feasibility and cost of the strategy. 
In general, the first two strategies (standardizing and training) should always be used, and the 
fifth (repetition) is an option that is guaranteed to improve precision when it is feasible and 
affordable.

Good precision
Poor accuracy

Poor precision
Good accuracy

Good precision
Good accuracy

Poor precision
Poor accuracy

■ FIGURE 4.2 The difference between precision and accuracy.

TABLE 4.3  THE PRECISION AND ACCURACY OF MEASUREMENTS

PRECISION ACCURACY

Definition
nearly the same value when measured 
several times

 approximates the true value

Best way to assess Comparison among repeated measures Comparison with a “gold standard”

The instrument The instrument

■ ACCURACY

The accuracy of a variable is the degree to which it represents the true value.
Accuracy is different from precision in the ways shown in Table 4.3, and the two are not 

necessarily linked. If serum cholesterol were measured repeatedly using standards that had 
inadvertently been diluted twofold, for example, the result would be inaccurate but could still 
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be precise (consistently off by a factor of two). This concept is further illustrated in Figure 4.2. 
Accuracy and precision do often go hand in hand, however, in the sense that many of the strate-
gies for increasing precision will also improve accuracy.

Accuracy is a function of systematic error (bias); the greater the error, the less accurate the 
variable. The three main classes of measurement error noted in the earlier section on precision 
each have counterparts here.

Observer bias is a distortion, conscious or unconscious, in the perception or reporting of the 
measurement by the observer. It may represent systematic errors in the way an instrument is 
operated, such as a tendency to round down blood pressure measurements or to use leading 
questions in interviewing a subject.
Instrument bias can result from faulty function of a mechanical instrument. A scale that has 
not been calibrated recently may have drifted downward, producing consistently low body 
weight readings.
Subject bias is a distortion of the measurement by the study subject, for example, in report-
ing an event (respondent or recall bias). Patients with breast cancer who believe that alcohol 
is a cause of their cancer, for example, may exaggerate the alcohol intake they report.

The accuracy of a measurement is best assessed by comparing it, when possible, to a “gold 
standard”—a reference measurement carried out by a technique that is believed to best rep-
resent the true value of the characteristic. The decision as to what measurement approach to 
designate as the gold standard can be a difficult judgment that the investigator needs to make, 
drawing on previous work in the field.

The degree of accuracy can be expressed, for measurements on a continuous scale, as the mean 
difference between the measurement under investigation and the gold standard across study sub-
jects. For measurements on a dichotomous scale, accuracy in comparison to a gold standard can 
be described in terms of sensitivity and specificity (Chapter 12). For measurements on categori-
cal scales with more than two response options, the percent correct on each can be calculated.

Strategies for Enhancing Accuracy

The major approaches to increasing accuracy include the first four strategies listed earlier for 
precision, and three additional ones (Table 4.4):

 1. Standardizing the measurement methods.
 2. Training and certifying the observers.
 3. Refining the instruments.
 4. Automating the instruments.
 5. Making unobtrusive measurements. It is sometimes possible to design measurements that the 

subjects are not aware of, thereby eliminating the possibility that they will consciously bias the 
variable. For example, an evaluation of the effect of placing a hand sanitizer and a hand hygiene 
poster in a hospital cafeteria utilized observers who blended in with cafeteria customers (6).

 6. Calibrating the instrument. The accuracy of many instruments, especially those that are 
mechanical or electrical, can be increased by periodic calibration with a gold standard.

 7. Blinding. This classic strategy does not ensure the overall accuracy of the measurements, 
but it can eliminate differential bias that affects one study group more than another. In a 
double-blind clinical trial the subjects and observers do not know whether active medicine 
or placebo has been assigned, and any inaccuracy in measuring the outcome will be the 
same in the two groups.

The decision on how vigorously to pursue each of these seven strategies for each measure-
ment rests, as noted earlier for precision, on the judgment of the investigator. The consid-
erations are the potential impact that the anticipated degree of inaccuracy will have on the 
conclusions of the study, and the feasibility and cost of the strategy. The first two strategies 
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(standardizing and training) should always be used, calibration is needed for any instrument 
that has the potential to change over time, and blinding is essential whenever feasible.

■ VALIDITY

Validity resembles accuracy, but we like to think of it as adding a qualitative dimension to 
considering how well a measurement represents the phenomena of interest. For example, mea-
surements of creatinine and cystatin C in the blood, two chemicals excreted by the kidneys, 

TABLE 4.4  STRATEGIES FOR REDUCING SYSTEMATIC ERROR IN  ORDER 
TO  INCREASE ACCURACY, WITH ILLUSTRATIONS FROM A STUDY OF 
 ANTIHYPERTENSIVE TREATMENT

STRATEGY TO REDUCE 
SYSTEMATIC ERROR

SOURCE OF 
SYSTEMATIC 
ERROR

EXAMPLE OF SYSTEMATIC 
ERROR

EXAMPLE OF STRATEGY TO 
PREVENT THE ERROR

1. Standardizing the 
 measurement methods 
in an operations manual

-
ings due to using the 

Consistently high readings 

after walking upstairs to 
quiet room for 5 minutes 

-
ings due to failure to fol-

in operations manual

3. Refining the instrument Instrument -

arms

instrument
-

-

measurements
with study drug

in urine

instrument
Instrument -

ings due to manometer 

7. Blinding

treatment group
assignment

drug to overreport side assignment
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might be equally accurate (e.g., within 1% of the true level), but cystatin C may be more valid 
as a measure of kidney function because creatinine levels are also influenced by the amount 
of muscle (7). In Figure 4.2, we can think of validity as describing whether the bull’s-eye is in 
the right target.

Validity is often not amenable to assessment with a gold standard, particularly for measure-
ments aimed at subjective and abstract phenomena such as pain or quality of life. Social sci-
entists have created qualitative and quantitative constructs for addressing the validity of these 
measurement approaches.

Content validity examines how well the measurement represents all aspects of the phenom-
ena under study; for example, including questions on social, physical, emotional, and intel-
lectual functioning to assess quality of life.
Face validity describes whether the measurement seems inherently reasonable, such as mea-
suring pain on a 10-point scale or social class by household income.
Construct validity is the degree to which a specific measuring device agrees with a theoreti-
cal construct; for example, an IQ test should distinguish between people that theory or other 
measures suggest have different levels of intelligence.
Predictive validity is the ability of the measurement to predict an outcome; for example, how 
well a questionnaire designed to assess depression predicts job loss or suicide.
Criterion-related validity is the degree to which a new measurement correlates with well 
accepted existing measures.

The general approach to measuring subjective and abstract phenomena is to begin by 
searching the literature and consulting with experts in an effort to find a suitable instrument 
(typically a questionnaire) that has already been validated. Using such an instrument has the 
advantage of making the results of the new study comparable to earlier work in the area, and 
may simplify and strengthen the process of applying for grants and publishing the results. Its 
disadvantages, however, are that the validation process may have been suboptimal, and that 
an instrument taken off the shelf may be outmoded or not optimal for the research question.

If existing instruments are not suitable for the needs of the study, then the investigator 
may decide to develop a new measurement approach and validate it herself. This can be an 
interesting challenge and even lead to a worthwhile contribution to the literature, but it gener-
ally requires a lot of time and effort (Chapter 15). It is fair to say that the process is often less 
conclusive than the word “validation” connotes.

■ OTHER FEATURES OF MEASUREMENT APPROACHES

Measurements should be sensitive enough to detect differences in a characteristic that are im-
portant to the investigator. Just how much sensitivity is needed depends on the research ques-
tion. For example, a study of whether a new medication helps people to quit smoking could 
use an outcome measure that is not very sensitive to the number of cigarettes smoked each day. 
On the other hand, if the question is the effect of reducing the nicotine content of cigarettes on 
the number of cigarettes smoked, the method should be sensitive to differences in daily habits 
of just a few cigarettes.

An ideal measurement is specific, representing only the characteristic of interest. The carbon 
monoxide level in expired air is a measure of smoking habits that is only moderately specific 
because it can also be affected by other exposures such as automobile exhaust. The specificity 
of assessing smoking habits can be increased by adding measurements (such as self-report and 
serum cotinine level) that are not affected by air pollution.

Measurements should be appropriate to the objectives of the study. A study of stress as an 
antecedent to myocardial infarction, for example, would need to consider which kind of stress 
(psychological or physical, acute or chronic) was of interest before setting out the operational 
definitions for measuring it.
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Measurements should provide an adequate distribution of responses in the study sample. 
A measure of functional status is most useful if it produces values that range from high in some 
subjects to low in others. A major reason for pretesting is to ensure that the actual responses do 
not all cluster around one end of the possible range of responses (Chapter 17).

Whenever possible, measurements should be designed in a way that minimizes subjective 
judgments. Objectivity is achieved by reducing the involvement of the observer and by using 
automated instruments. One danger in these strategies, however, is the consequent tunnel 
vision that limits the scope of the observations and the ability to discover unanticipated phe-
nomena. This can be addressed by including some open-ended questions, and an opportunity 
for acquiring subjective and qualitative data, in addition to the main objective and quantitative 
measurements.

In designing a study there is a tendency to keep adding items that are not central to the 
research question but could be of interest. It is true that additional measurements increase 
the likelihood of interesting findings, including some that were not anticipated at the outset. 
However, it is important to keep in mind the value of efficiency and parsimony. The full set 
of measurements should be designed to collect useful data at an affordable cost in time and 
money. Collecting too much information is a common error that can tire subjects, overwhelm 
the team making the measurements, and clutter data management and analysis. The result may 
be a more expensive study that paradoxically is less successful in answering the main research 
questions.

■ MEASUREMENTS ON STORED MATERIALS

Clinical research involves measurements on people that range across many domains. Some of 
these measurements can only be made during contact with the study subject, but many can be 
carried out later on biological specimens banked for chemical or genetic analysis, or on images 
from radiographic and other procedures filed electronically (Table 4.5).

One advantage of such storage is the opportunity to reduce the cost of the study by making 
measurements only on individuals who turn out during follow-up to have an outcome of inter-
est. A terrific approach to doing this is the nested case–control design (Chapter 8), especially 
if paired blinded measurements can be made in a single analytic batch eliminating the batch-
to-batch component of random error. This approach also has the advantage that scientific ad-
vances years after the study is begun may lead to new ideas and measurement techniques that 
can then be employed, funded by newly submitted grants.

TABLE 4.5  COMMON TYPES OF MEASUREMENTS THAT CAN BE MADE  
ON STORED MATERIALS

TYPE OF MEASUREMENT EXAMPLES BANK FOR LATER MEASUREMENT

-

Depression, family history

Serum, plasma, urine, pathology 

Imaging

disease
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The growing interest in translational research (Chapter 2) takes advantage of new measure-
ments that have greatly expanded clinical research, for example, in the areas of genetic and 
molecular epidemiology (8, 9) and imaging. Measurements on specimens that contain DNA 
(e.g., saliva and blood) can provide information on genotypes that contribute to the occur-
rence of disease or modify a patient’s response to treatment. Measurements on serum can be 
used to study molecular causes or consequences of disease; for example, inflammatory markers 
provide useful information in the pathophysiology of many diseases. It is important to consult 
with experts regarding the proper collection tubes and storage conditions in order to preserve 
the quality of the specimens and make them available for the widest spectrum of subsequent 
use. It is also important to obtain informed consent from participants that covers the scope of 
potential uses of the specimens.

■ SUMMARY

 1. Variables are either numerical or categorical. Numerical variables are continuous (quanti-
fied on an infinite scale) or discrete (quantified on a finite scale such as integers); categori-
cal variables are nominal (unordered) or ordinal (ordered), and those that have only two 
categories are termed dichotomous.

 2. Variables that contain more information provide greater power and/or allow smaller sam-
ple sizes, according to the following hierarchy: continuous variables > discrete numeric 
variables > ordinal variables > nominal and dichotomous variables.

 3. The precision of a measurement (i.e., the reproducibility of replicate measures) is an-
other major determinant of power and sample size. Precision is reduced by random error 
(chance) from three sources of variability: the observer, the subject, and the instrument.

 4. Strategies for increasing precision that should be part of every study are to operationally 
define and standardize methods in an operations manual. Other strategies that are often 
useful are training and certifying observers, refining and automating the instruments, 
and repetition—using the mean of repeated measurements.

 5. The accuracy of a measurement is the degree to which it approximates a gold standard. 
Accuracy is reduced by systematic error (bias) from the same three sources: the observer, 
subject, and instrument.

 6. The strategies for increasing accuracy include all those listed for precision with the excep-
tion of repetition. In addition, accuracy is enhanced by unobtrusive measures, by calibra-
tion, and (in comparisons between groups) by blinding.

 7. Validity is the degree to which a measurement represents the phenomena it is intended to 
measure; it is commonly used for more abstract and subjective variables, and is assessed by 
content validity, face validity, construct validity, predictive validity, and  criterion-related 
validity.

 8. Individual measurements should be sensitive, specific, appropriate, and objective, and 
they should produce a range of values. In the aggregate, they should be broad but parsi-
monious, serving the research question at moderate cost in time and money.

 9. Investigators should consider storing images and other materials for later measurements 
that can take advantage of new technologies as they are developed and the efficiency of 
nested case–control designs.
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■ OPERATIONAL DEFINITION OF A MEASUREMENT OF GRIP STRENGTH

The operations manual describes the method for conducting and recording the results of all 
the measurements made in the study. This example, from the operations manual of the Study 
of Osteoporotic Fractures, describes the use of a dynamometer to measure grip strength. To 
standardize instructions from examiner to examiner and from subject to subject, the protocol 
includes a script of instructions to be read to the participant verbatim.

■ PROTOCOL FOR MEASURING GRIP STRENGTH  
WITH THE DYNAMOMETER

Grip strength will be measured in both hands. The handle should be adjusted so that the par-
ticipant holds the dynamometer comfortably. Place the dynamometer in the right hand with the 
dial facing the palm. The participant’s arm should be flexed 90° at the elbow with the forearm 
parallel to the floor.

 1. Demonstrate the test to the subject. While demonstrating, use the following description: 
“This device measures your arm and upper body strength. We will measure your grip 
strength in both arms. I will demonstrate how it is done. Bend your elbow at a 90° angle, 
with your forearm parallel to the floor. Don’t let your arm touch the side of your body. 
Lower the device and squeeze as hard as you can while I count to three. Once your arm is 
fully extended, you can loosen your grip.”

 2. Allow one practice trial for each arm, starting with the right if she is right handed. On the 
second trial, record the kilograms of force from the dial to the nearest 0.5 kg.

 3. Reset the dial. Repeat the procedure for the other arm.

The arm should not contact the body. The gripping action should be a slow, sustained squeeze 
rather than an explosive jerk.
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C H A P T E R

After an investigator has decided whom and what she is going to study and the design to be 
used, she must decide how many subjects to sample. Even the most rigorously executed study 
may fail to answer its research question if the sample size is too small. On the other hand, a 
study with too large a sample will be more difficult and costly than necessary. The goal of 
sample size planning is to estimate an appropriate number of subjects for a given study design.

Although a useful guide, sample size calculations give a deceptive impression of statistical 
objectivity. They are only as accurate as the data and estimates on which they are based, which 
are often just informed guesses. Sample size planning is best thought of as a mathematical way 
of making a ballpark estimate. It often reveals that the research design is not feasible or that 
different predictor or outcome variables are needed. Therefore, sample size should be estimated 
early in the design phase of a study, when major changes are still possible.

Before setting out the specific approaches to calculating sample size for several common 
research designs in Chapter 6, we will spend some time considering the underlying principles. 
Readers who find some of these principles confusing will enjoy discovering that sample size 
planning does not require their total mastery. However, just as a recipe makes more sense if 
the cook is somewhat familiar with the ingredients, sample size calculations are easier if the 
investigator is acquainted with the basic concepts. Even if you plan to ask a friendly biostat-
istician to calculate your study’s sample size, having some understanding of how the process 
works will allow you to participate more actively in considering the assumptions and estimates 
involved in the calculation.

■ HYPOTHESES

The process begins by restating your research question as a research hypothesis that summa-
rizes the main elements of the study—the sample, and the predictor and outcome variables. 
For example, suppose your research question is whether people who do crossword puzzles are 
less likely to develop dementia. Your research hypothesis would need to specify the sample (for 
example, people living in a retirement community who have normal cognitive function), the 
predictor variable (doing crossword puzzles at least once a week on average), and the outcome 
variable (an abnormal score on a standard test of cognitive function after two years of follow-up).

Hypotheses per se are not needed in descriptive studies that describe how characteristics 
are distributed in a population, such as the prevalence of abnormal cognitive function in the 
retirement community. (This does not mean, however, that you won’t need to do a sample size 
estimate for a descriptive study, just that the methods for doing so, described in Chapter 6, 
are different.) Hypotheses are needed for studies that will use tests of statistical significance 
to compare findings among groups, such as whether elderly people who do crossword puzzles 
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regularly are less likely to become demented. Because most observational studies and all ex-
periments address research questions that involve making comparisons, most studies need to 
specify at least one hypothesis. If any of the following terms appear in the research question, 
then the study is not simply descriptive and a research hypothesis should be formulated: 
greater than, less than, more likely than, associated with, compared with, related to, similar to, 
correlated with, causes, and leads to.

Characteristics of a Good Research Hypothesis

A good hypothesis must be based on a good research question. It should also be simple, 
 specific, and stated in advance.

Simple Versus Complex

A simple hypothesis contains one predictor and one outcome variable:

Among patients with Type II diabetes, a sedentary lifestyle is associated with an increased 
risk of developing proteinuria.

A complex hypothesis contains more than one predictor variable:

Among patients with Type II diabetes, a sedentary lifestyle and alcohol consumption are 
associated with an increased risk of developing proteinuria.

Or more than one outcome variable:

Among patients with Type II diabetes, alcohol consumption is associated with increased 
risks of developing proteinuria and neuropathy.

Complex hypotheses like these are not readily tested with a single statistical test and are 
more easily approached as two or more simple hypotheses. Sometimes, however, a combined 
predictor or outcome variable can be used:

Among patients with Type II diabetes, alcohol consumption is associated with an in-
creased risk of developing a microvascular complication (i.e., proteinuria, neuropathy, or 
retinopathy).

In this last example the investigator has decided that what matters is whether a participant has 
a complication, not what type of complication occurs.

A specific hypothesis leaves no ambiguity about the subjects and variables or about how the 
test of statistical significance will be applied. It uses concise operational definitions that sum-
marize the nature and source of the subjects and how variables will be measured:

Prior use of tricyclic antidepressant medications for at least 6 weeks is more common in 
patients hospitalized for myocardial infarction at Longview Hospital than in controls hospi-
talized for pneumonia.

This is a long sentence, but it communicates the nature of the study in a clear way that 
minimizes any opportunity for testing something a little different once the study findings have 
been examined. It would be incorrect to substitute, during the analysis phase of the study, a dif-
ferent measurement of the predictor, such as the self-reported depression, without considering 
the issue of multiple hypothesis testing (a topic we discuss at the end of the chapter). Usually, 
to keep the research hypothesis concise, some of these details are made explicit in the study 
plan rather than being stated in the research hypothesis. But they should always be clear in the 
investigator’s conception of the study, and spelled out in the protocol.
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It is often obvious from the research hypothesis whether the predictor variable and the 
 outcome variable are dichotomous, continuous, or categorical. If it is not clear, then the type 
of variables can be specified:

Among non-obese men 35 to 59 years of age, at least weekly participation in a bowling league 
is associated with a increased risk of developing obesity (body mass index > 30 kg/m2)  
during 10 years of follow-up.

Again, if the research hypothesis gets too cumbersome, the definitions can be left out, as long 
as they are clarified elsewhere.

In-Advance Versus After-the-Fact

The hypothesis should be stated in writing at the outset of the study. This will keep the research 
effort focused on the primary objective. A single prestated hypothesis also creates a stronger 
basis for interpreting the study results than several hypotheses that emerge as a result of in-
specting the data. Hypotheses that are formulated after examination of the data are a form of 
multiple hypothesis testing that can lead to overinterpreting the importance of the findings.

The Null and Alternative Hypotheses

Warning: If you have never had any formal training in statistics, or you have forgotten what you 
did learn, the next few paragraphs may not make sense the first time(s) you read them. Try to 
work through the terminology even if it seems cumbersome or silly.

The process begins by restating the research hypothesis to one that proposes no difference 
between the groups being compared. This restatement, called the null hypothesis, will become 
the formal basis for testing statistical significance when you analyze your data at the end of 
the study. By assuming that there really is no association in the population, statistical tests will 
help to estimate the probability that an association observed in a study may be due to chance.

For example, suppose your research question is whether drinking unpurified tap water is as-
sociated with an increased risk of developing peptic ulcer disease (perhaps because of a greater 
likelihood of H. pylori contamination). Your null hypothesis—that there is no association be-
tween the predictor and outcome variables in the population—would be:

People in Phnom Penh who drink tap water have the same risk of developing peptic ulcer 
disease as those who drink bottled water.

The proposition that there is an association (“People in Phnom Penh who drink tap water 
have a greater risk of developing peptic ulcer disease than those who drink bottled water.”) 
is called the alternative hypothesis. The alternative hypothesis cannot be tested directly; it is 
accepted by default if the test of statistical significance rejects the null hypothesis (see later).

Another piece of confusing terminology is needed. The alternative hypothesis can be ei-
ther one-sided or two-sided. A one-sided alternative hypothesis specifies the direction of the 
association between the predictor and outcome variables. The hypothesis that drinking tap 
water increases the risk of peptic ulcer disease (compared with bottled water) is a one-sided 
hypothesis. A two-sided alternative hypothesis states only that there is an association; it does 
not specify the direction. For example, “Drinking tap water is associated with a different risk of 
peptic ulcer disease—either increased or decreased—than drinking bottled water.”

One-sided hypotheses may be appropriate in selected circumstances, such as when only one 
direction for an association is clinically important or biologically meaningful. An example is 
the one-sided hypothesis that a new drug for hypertension is more likely to cause rashes than a 
placebo; the possibility that the drug causes fewer rashes than the placebo is not usually worth 
testing (however, it might be if the drug had anti-inflammatory properties!). A one-sided hy-
pothesis may also be appropriate when there is very strong evidence from prior studies that an 
association is unlikely to occur in one of the two directions, such as a study to test whether 
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cigarette smoking affects the risk of brain cancer. Because smoking has been associated with 
an increased risk of many different types of cancers, a one-sided alternative hypothesis (e.g., 
that smoking increases the risk of brain cancer) might suffice. However, investigators should 
be aware that many well-supported hypotheses (e.g., that β-carotene therapy will reduce the 
risk of lung cancer, or that treatment with drugs that reduce the number of ventricular ectopic 
beats will reduce sudden death among patients with ventricular arrhythmias) turn out to be 
wrong when tested in randomized trials. Indeed, in these two examples, the results of well-
done trials revealed a statistically significant effect that was opposite in direction from the one 
the investigators hoped to find (1–3). Overall, we believe that most alternative hypotheses 
should be two-sided.

It is important to keep in mind the difference between the research hypothesis, which is usu-
ally one-sided, and the alternative hypothesis that is used when planning sample size, which is 
almost always two-sided. For example, suppose the research hypothesis is that recurrent use of 
antibiotics during childhood is associated with an increased risk of inflammatory bowel disease. 
That hypothesis specifies the direction of the anticipated effect, so it is one-sided. Why use a 
two-sided alternative hypothesis when planning the sample size? The answer is that most of 
the time, both sides of the alternative hypothesis (i.e., greater risk or lesser risk) are interesting, 
and the investigators would want to publish the results no matter which direction was observed 
in the study. Statistical rigor requires the investigator to choose between one- and two-sided 
hypotheses before analyzing the data; switching from a two-sided to a one-sided alternative 
hypothesis to reduce the P value (see below) is not correct. In addition—and this is probably 
the real reason that two-sided alternative hypotheses are much more common—most grant and 
manuscript reviewers expect two-sided hypotheses and are critical of a one-sided approach.

■ UNDERLYING STATISTICAL PRINCIPLES

A research hypothesis, such as 15 minutes or more of exercise per day is associated with a lower 
mean fasting blood glucose level in middle-aged women with diabetes, is either true or false in 
the real world. Because an investigator cannot study all middle-aged women with diabetes, she 
must test the hypothesis in a sample of that target population. As noted in Figure 1.5, there will 
always be a need to draw inferences about phenomena in the population from events observed 
in the sample. Unfortunately, by chance alone, sometimes what happens in a sample does not 
reflect what would have happened if the entire population had been studied.

In some ways, the investigator’s problem is similar to that faced by a jury judging a defendant 
(Table 5.1). The absolute truth about whether the defendant committed the crime cannot usually 
be determined. Instead, the jury begins by presuming innocence: The defendant did not commit 
the crime. The jury must then decide whether there is sufficient evidence to reject the presumed 
innocence of the defendant; the standard is known as beyond a reasonable doubt. A jury can err, 
however, by convicting an innocent defendant or by failing to convict a guilty one.

In similar fashion, the investigator starts by presuming the null hypothesis of no association 
between the predictor and outcome variables in the population. Based on the data collected in 
her sample, she uses statistical tests to determine whether there is sufficient evidence to reject 
the null hypothesis in favor of the alternative hypothesis that there is an association in the 
population. The standard for these tests is known as the level of statistical significance.

Type I and Type II Errors

Like a jury, an investigator may reach a wrong conclusion. Sometimes by chance alone a sample 
is not representative of the population and the results in the sample do not reflect reality in the 
population, leading to an erroneous inference. A type I error (false-positive) occurs if an in-
vestigator rejects a null hypothesis that is actually true in the population; a type II error (false-
negative) occurs if the investigator fails to reject a null hypothesis that is actually false in the 



47

population. Although type I and type II errors can never be avoided entirely, the investigator 
can reduce their likelihood by increasing the sample size (the larger the sample, the less likely 
that it will differ substantially from the population) or by adjusting the design or the measure-
ments in other ways that we will discuss.

In this chapter and the next, we deal only with ways to reduce type I and type II errors 
due to chance variation, also known as random error. False-positive and false-negative results 
can also occur because of bias, but errors due to bias are not usually referred to as type I and 
type II errors. Such errors are troublesome, because they may be difficult to detect and cannot 
usually be quantified using statistical methods or avoided by increasing the sample size. (See 
Chapters 1, 3, 4, and 7–12 for ways to reduce errors due to bias.)

Effect Size

The likelihood that a study will be able to detect an association between a predictor and an 
outcome variable in a sample depends on the actual magnitude of that association in the popu-
lation. If it is large (e.g., a 20 mg/dL difference in fasting glucose), it will be easy to detect in 
the sample. Conversely, if the size of the association is small (a difference of 2 mg/dL), it will 
be hard to detect in the sample.

Unfortunately, the investigator almost never knows the exact size of the association; one of 
the purposes of the study is to estimate it! Instead, the investigator must choose the size of the 
association in the population that she wishes to detect in the sample. That quantity is known 
as the effect size. Selecting an appropriate effect size is the most difficult aspect of sample size 
planning (4). The investigator should try to find data from prior studies in related areas to make 
an informed guess about a reasonable effect size. Alternatively, she can choose the smallest ef-
fect size that in her opinion would be clinically meaningful (say, a 10 mg/dL reduction in the 
fasting glucose level).

Of course, from the public health point of view, even a reduction of 2 or 3 mg/dL in fasting 
glucose levels might be important, especially if it was easy to achieve. The choice of the effect 
size is always arbitrary, and considerations of feasibility are often paramount. Indeed, when 

TABLE 5.1  THE ANALOGY BETWEEN JURY DECISIONS AND STATISTICAL TESTS

JURY DECISION STATISTICAL TEST

Innocence: The defendant did not 
 counterfeit money.

Null hypothesis: There is no association between  dietary 
carotene and the incidence of colon cancer in the 
population.

Guilt: The defendant did counterfeit 
money.

Alternative hypothesis: There is an association between 
dietary carotene and the incidence of colon cancer.

Standard for rejecting innocence: Be-
yond a reasonable doubt.

Standard for rejecting null hypothesis: Level of  statistical 
α).

Correct judgment: Convict a 
counterfeiter.

Correct inference: Conclude that there is an association 
between dietary carotene and colon cancer when one 
does exist in the population.

Correct judgment: Acquit an innocent 
person.

Correct inference: Conclude that there is no association 
between carotene and colon cancer when one does not 
exist.

Incorrect judgment: Convict an innocent 
person.

Incorrect inference (type I error): Conclude that there 
is an association between dietary carotene and colon 
 cancer when there actually is none.

Incorrect judgment: Acquit a 
counterfeiter.

Incorrect inference (type II error): Conclude that there 
is no association between dietary carotene and colon 
 cancer when there actually is one.
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TABLE 5.2  TRUTH IN THE POPULATION VERSUS THE RESULTS IN THE STUDY 
SAMPLE: THE FOUR POSSIBILITIES

TRUTH IN THE POPULATION

RESULTS IN THE STUDY SAMPLE
ASSOCIATION BETWEEN 
PREDICTOR AND OUTCOME

NO ASSOCIATION BETWEEN 
PREDICTOR AND OUTCOME

Reject null hypothesis Correct Type I error

Fail to reject null hypothesis Type II error Correct

the number of available or affordable subjects is limited, the investigator may have to work 
backward (Chapter 6) to determine the effect size she will be able to detect, given the number 
of subjects she is able to study.

Many studies have several effect sizes, because they measure several different predictor and 
outcome variables. When designing a study, the sample size should be determined using the 
desired effect size for the most important hypothesis; the detectable effect sizes for the other 
hypotheses can then be estimated. If there are several hypotheses of similar importance, then 
the sample size for the study should be based on whichever hypothesis needs the largest sample.

`, a, and Power

After a study is completed, the investigator uses statistical tests to try to reject the null 
 hypothesis in favor of its alternative, in much the same way that a prosecuting attorney tries to 
convince a jury to reject innocence in favor of guilt. Depending on whether the null hypothesis 
is true or false in the target population, and assuming that the study is free of bias, four situ-
ations are possible (Table 5.2). In two of these, the findings in the sample and reality in the 
population are concordant, and the investigator’s inference will be correct. In the other two 
situations, either a type I or type II error has been made, and the inference will be incorrect.

The investigator establishes the maximum chance that she will tolerate of making type I and 
type II errors in advance of the study. The maximum probability of committing a type I error 
(rejecting the null hypothesis when it is actually true) is called a (alpha). Another name for a 
is the level of statistical significance.

If, for example, a study of the effects of exercise on fasting blood glucose levels is designed 
with an a of 0.05, then the investigator has set 5% as the maximum chance of incorrectly reject-
ing the null hypothesis if it is true (and inferring that exercise and fasting blood glucose levels 
are associated in the population when, in fact, they are not). This is the level of reasonable 
doubt that the investigator will be willing to accept when she uses statistical tests to analyze 
the data after the study is completed.

The probability of making a type II error (failing to reject the null hypothesis when it is ac-
tually false) is called b (beta). The quantity [1 – b ] is called power, the probability of correctly 
rejecting the null hypothesis in the sample if the actual effect in the population is equal to (or 
greater than) the specified effect size.

If b is set at 0.10, then the investigator has decided that she is willing to accept a 10% chance 
of missing an association of the specified effect size if it exists. This represents a power of 0.90; 
that is, a 90% chance of finding an association of that size or greater. For example, suppose that 
exercise really does lead to an average reduction of 20 mg/dL in fasting glucose levels among 
diabetic women in the population. If the investigator replicated the study with the same 90% 
power on numerous occasions, we would expect that in 9 of 10 studies she would correctly 
reject the null hypothesis at the specified level of alpha (0.05) and conclude that exercise is 
associated with fasting glucose level. This does not mean that the investigator would be unable 
to detect a smaller effect in the population, say, a 15 mg/dL reduction; it means simply that she 
will have less than a 90% likelihood of doing so.
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Ideally, a and b would be set close to zero, minimizing the possibility of false-positive and 
false-negative results. Reducing them, however, requires increasing the sample size or one of 
the other strategies discussed in Chapter 6. Sample size planning aims at choosing a sufficient 
number of subjects to keep a and b at an acceptably low level without making the study un-
necessarily expensive or difficult.

Many studies set a at 0.05 and b at 0.20 (a power of 0.80). These are arbitrary values, and 
others are sometimes used: The conventional range for a is between 0.01 and 0.10, and that for 
b is between 0.05 and 0.20. In general, the investigator should use a low a when the research 
question makes it particularly important to avoid a type I (false-positive) error—for example, 
in testing the efficacy of a potentially dangerous medication. She should use a low b (and a 
small effect size) when it is especially important to avoid a type II (false-negative) error—for 
example, in reassuring the public that living near a toxic waste dump is safe.

P Value

Now it’s time to return to the null hypothesis, whose underlying purpose will finally become 
clear. The null hypothesis has only one function: to act like a straw man. It is assumed to be 
true so that it can be rejected as false with a statistical test. When the data are analyzed, a 
statistical test is used to determine the P value, which is the probability of seeing—by chance 
alone—an effect as big as or bigger than that seen in the study if the null hypothesis actually 
were true. The key insight is to recognize that if the null hypothesis is true, and there really is 
no difference in the population, then the only way that the study could have found one in the 
sample is by chance.

If that chance is small, then the null hypothesis of no difference can be rejected in favor of 
its alternative, that there is a difference. By “small” we mean a P value that is less than a, the 
predetermined level of statistical significance.

However, a “nonsignificant” result (i.e., one with a P value greater than a) does not mean 
that there is no association in the population; it only means that the result observed in the 
sample is small compared with what could have occurred by chance alone. For example, an 
investigator might find that women who played intercollegiate sports were twice as likely to 
undergo total hip replacements later in life as those who did not, but because the number of 
hip replacements in the study was modest this apparent effect had a P value of only 0.08. This 
means that even if athletic activity and hip replacement were not associated in the popula-
tion, there would be an 8% probability of finding an association at least as large as the one 
observed by the investigator by chance alone. If the investigator had set the significance level as 
a two-sided a of 0.05, she would have to conclude that the association in the sample was “not 
statistically significant.”

It might be tempting for the investigator to change her mind and switch to a one-sided P 
value and report it as “P = 0.04.” A better choice would be to report her results with the 95% 
confidence interval and comment that “These results, although suggestive of an association, 
did not achieve statistical significance (P = 0.08).” This solution preserves the integrity of the 
original two-sided hypothesis design, and also acknowledges that statistical significance is not 
an all-or-none situation.

Sides of the Alternative Hypothesis

Recall that an alternative hypothesis actually has two sides, either or both of which can be 
tested in the sample by using one- or two-sided1 statistical tests. When a two-sided statistical 
test is used, the P value includes the probabilities of committing a type I error in each of the 
two directions, which is about twice as great as the probability in either direction alone. It is 

1These are sometimes referred to as one- and two-tailed tests, after the tails (extreme areas) of statistical distributions.
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easy to convert from a one-sided P value to a two-sided P value, and vice versa. A one-sided P 
value of 0.05, for example, is usually the same as a two-sided P value of 0.10. (Some statistical 
tests are asymmetric, which is why we said “usually.”)

In those rare situations in which an investigator is only interested in one of the sides of the 
alternative hypothesis (e.g., a noninferiority trial designed to determine whether a new antibiotic 
is no less effective than one in current use; see Chapter 11), sample size can be calculated ac-
cordingly. A one-sided hypothesis, however, should never be used just to reduce the sample size.

Type of Statistical Test

The formulas used to calculate sample size are based on mathematical assumptions, which 
differ for each statistical test. Before the sample size can be calculated, the investigator must 
decide on the statistical approach to analyzing the data. That choice depends mainly on the 
type of predictor and outcome variables in the study. Table 6.1 lists some common statistics 
used in data analysis, and Chapter 6 provides simplified approaches to estimating sample size 
for studies that use these statistics.

■ ADDITIONAL POINTS

Variability

It is not simply the size of an effect that is important; its variability also matters. Statistical tests 
depend on being able to show a difference between the groups being compared. The greater 
the variability (or spread) in the outcome variable among the subjects, the more likely it is that 
the values in the groups will overlap, and the more difficult it will be to demonstrate an overall 
difference between them. Because measurement error contributes to the overall variability, less 
precise measurements require larger sample sizes (5).

Consider a study of the effects of two diets (low fat and low carbohydrate) in achieving 
weight loss in 20 obese patients. If all those on the low-fat diet lost about 3 kg and all those on 
the low-carbohydrate diet lost little if any weight (an effect size of 3 kg), it is likely that the low-
fat diet really is better (Figure 5.1A). On the other hand, if the average weight loss were 3 kg in 
the low-fat group and 0 kg in the low-carbohydrate group, but there was a great deal of overlap 
between the two groups (the situation in Figure 5.1B), the greater variability would make it 
more difficult to detect a difference between the diets, and a larger sample size would be needed.

When one of the variables used in the sample size estimate is continuous (e.g., body weight 
in Figure 5.1), the investigator will need to estimate its variability. (See the section on the t 
test in Chapter 6 for details.) In the other situations, variability is already included in the other 
parameters entered into the sample size formulas and tables, and need not be specified.

Multiple and Post Hoc Hypotheses

When more than one hypothesis is tested in a study, especially if some of those hypotheses were 
formulated after the data were analyzed (post hoc hypotheses), the likelihood that at least one 
will achieve statistical significance on the basis of chance alone increases. For example, if 20 in-
dependent hypotheses are tested at an α of 0.05, the likelihood is substantial (64%; [1 – 0.9520]) 
that at least one hypothesis will be statistically significant by chance alone. Some statisticians 
advocate adjusting the level of statistical significance when more than one hypothesis is tested 
in a study. This keeps the overall probability of accepting any one of the alternative hypotheses, 
when all the findings are due to chance, at the specified level. For example, genomic studies 
that look for an association between thousands of genotypes and a disease need to use a much 
smaller α than 0.05, or they risk identifying many false-positive associations.

One approach, named after the mathematician Bonferroni, is to divide the significance level 
(say, 0.05) by the number of hypotheses tested. If there were four hypotheses, for example, 
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each would be tested at an α of 0.0125 (i.e., 0.05 ÷ 4). This requires substantially increasing 
the sample size over that needed for testing each hypothesis at an α of 0.05. Thus, for any par-
ticular hypothesis, the Bonferroni approach reduces the chance of a type I error at the cost of 
either increasing the chance of a type II error or requiring a greater sample size. If the results 
of a study are still statistically significant after the Bonferroni adjustment, that loss of power is 
not a problem. However, a result that loses statistical significance after Bonferroni adjustment, 
which could represent failing to support an association that was actually present in the popula-
tion (a type II error), is more problematic.

Especially in these cases, the issue of what significance level to use depends more on the prior 
probability of each hypothesis than on the number of hypotheses tested, and for this reason our 
general view is that the mindless Bonferroni approach to multiple hypothesis testing is often 
too stringent. There is an analogy with the use of diagnostic tests that may be helpful (6, 7). 
When interpreting the results of a diagnostic test, a clinician considers the likelihood that the 
patient being tested has the disease in question. For example, a modestly abnormal test result 
in a healthy person (a serum alkaline phosphatase level that is 15% greater than the upper limit 
of normal) is probably a false-positive test that is unlikely to have much clinical importance. 
Similarly, a P value of 0.05 for an unlikely hypothesis is probably also a false-positive result.
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■ FIGURE 5.1 A: Weight loss achieved by two diets. All subjects on the low-fat diet lost from 2 to 4 kg, whereas 
weight change in those on the low-carbohydrate (CHO) diet varied from –1 to +1 kg. Because there is no overlap 
between the two groups, it is reasonable to infer that the low-fat diet is better at achieving weight loss than the 
low-carbohydrate diet (as would be confirmed with a t test, which has a P value < 0.0001). B: Weight loss achieved 
by two diets. There is substantial overlap in weight change in the two groups. Although the effect size is the same 
(3 kg) as in A, there is little evidence that one diet is better than the other (as would be confirmed with a t test, 
which has a P value of 0.19).
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However, an alkaline phosphatase level that is 10 or 20 times greater than the upper limit 
of normal is unlikely to have occurred by chance (although it might be a laboratory error). So 
too a very small P value (say, < 0.001) is unlikely to have occurred by chance (although it 
could be due to bias). It is hard to dismiss very abnormal test results as being false-positives or 
to dismiss very low P values as being due to chance, even if the prior probability of the disease 
or the hypothesis was low.2

Moreover, the number of tests that were ordered, or hypotheses that were tested, is not al-
ways relevant. The interpretation of an elevated serum uric acid level in a patient with a painful 
and swollen joint should not depend on whether the physician ordered just a single test (the 
uric acid level) or obtained the result as part of a panel of 20 tests. Similarly, when interpreting 
the P value for testing a research hypothesis that makes good sense, it should not matter that 
the investigator also tested several unlikely hypotheses. What matters most is the reasonable-
ness of the research hypothesis being tested: that it has a substantial prior probability of being 
correct. (Prior probability, in this “Bayesian” approach, is usually a subjective judgment based 
on evidence from other sources.) Hypotheses that are formulated during the design of a study 
usually meet this requirement; after all, why else would the investigator put the time and effort 
into planning and doing the study?

What about unanticipated associations that appear during the collection and analysis of 
a study’s results? This process is sometimes called hypothesis generation or, less favorably, 
“data-mining” or a “fishing expedition.” The many informal comparisons that are made during 
data analysis are a form of multiple hypothesis testing. A similar problem arises when variables 
are redefined during data analysis, or when results are presented for subgroups of the sample. 
Significant P values for data-generated hypotheses that were not considered during the design 
of the study are all too often due to chance. They should be viewed with skepticism, and con-
sidered a source of potential research questions for future studies.

Sometimes, however, an investigator fails to specify a particular hypothesis in advance, al-
though that hypothesis seems reasonable when it is time for the data to be analyzed. This might 
happen, for example, if others discover a new risk factor while the study is going on, or if the 
investigator just didn’t happen to think of a particular hypothesis when the study was being 
designed. The important issue is not so much whether the hypothesis was formulated before 
the study began, but whether there is a reasonable prior probability based on evidence from 
other sources that the hypothesis is true (6, 7).

There are some definite advantages to formulating more than one hypothesis when planning 
a study. The use of multiple unrelated hypotheses increases the efficiency of the study, making 
it possible to answer more questions with a single research effort and to discover more of the 
true associations that exist in the population. It may also be a good idea to formulate several 
related hypotheses; if the findings are consistent, the study conclusions are made stronger. 
Studies in patients with heart failure have found that the use of angiotensin-converting enzyme 
inhibitors is beneficial in reducing cardiac admissions, cardiovascular mortality, and total mor-
tality. Had only one of these hypotheses been tested, the inferences from these studies would 
have been less definitive. Lunch may not be free, however, when multiple hypotheses are tested. 
Suppose that when these related and prestated hypotheses are tested, only one turns out to be 
statistically significant. Then the investigator must decide (and try to convince editors and read-
ers) whether the significant results, the nonsignificant results, or both sets of results are correct.

Primary and Secondary Hypotheses

Some studies, especially large randomized trials, specify some hypotheses as being  “secondary.” 
This usually happens when there is one primary hypothesis around which the study has been 

2Again, the exception is some genetic studies, in which millions or even billions of associations may be examined.
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designed, but the investigators are also interested in other research questions that are of lesser 
importance. For example, the primary outcome of a trial of zinc supplementation might be hos-
pitalizations or emergency department visits for upper respiratory tract infections; a secondary 
outcome might be self-reported days missed from work or school. If the study is being done to 
obtain approval for a pharmaceutical agent, the primary outcome is what will matter most to 
the regulatory body. Stating a secondary hypothesis in advance does increase the credibility of 
the results when that hypothesis is tested.

A good rule, particularly for clinical trials, is to establish in advance as many hypotheses as 
make sense, but specify just one as the primary hypothesis, which can be tested statistically 
without argument about whether to adjust for multiple hypothesis testing. More important, 
having a primary hypothesis helps to focus the study on its main objective and provides a clear 
basis for the main sample size calculation.

Many statisticians and epidemiologists are moving away from hypothesis testing, with its 
emphasis on P values, to using confidence intervals to report the precision of the study results 
(8–10). Indeed, some authors believe the entire process of basing sample size planning on hy-
potheses is misleading, in part because it depends on quantities that are either unknown (effect 
size) or arbitrary (a and b) (11). However, the approach we have outlined is a practical one, 
and remains standard in clinical research planning.

■ SUMMARY

 1. Sample size planning is an important part of the design of both analytic and descriptive 
studies. The sample size should be estimated early in the process of developing the research 
design, so that appropriate modifications can be made.

 2. Analytic studies and experiments need a hypothesis that specifies, for the purpose of 
subsequent statistical tests, the anticipated association between the main predictor and 
outcome variables. Purely descriptive studies, lacking the strategy of comparison, do not 
require a hypothesis.

 3. Good hypotheses are specific about how the population will be sampled and the variables 
measured, simple (there is only one predictor and one outcome variable), and formulated 
in advance.

 4. The null hypothesis, which proposes that the predictor variable is not associated with the 
outcome, is the basis for tests of statistical significance. The alternative hypothesis pro-
poses that they are associated. Statistical tests attempt to reject the null hypothesis of no 
association in favor of the alternative hypothesis that there is an association.

 5. An alternative hypothesis is either one-sided (only one direction of association will be 
tested) or two-sided (both directions will be tested). One-sided hypotheses should only be 
used in unusual circumstances, when only one direction of the association is clinically or 
biologically meaningful.

 6. For analytic studies and experiments, the sample size is an estimate of the number of 
subjects required to detect an association of a given effect size and variability at a speci-
fied likelihood of making type I (false-positive) and type II (false-negative) errors. The 
maximum likelihood of making a type I error is called α; that of making a type II error, b. 
The quantity (1 – b) is power, the chance of observing an association of a given effect size 
or greater in a sample if one is actually present in the population.

 7. It is often desirable to establish more than one hypothesis in advance, but the investiga-
tor should specify a single primary hypothesis as a focus and for sample size estimation. 
Interpretation of findings from testing multiple hypotheses in the sample, including 
unanticipated findings that emerge from the data, is based on a judgment about the prior 
probability that they represent real phenomena in the population.
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Chapter 5 introduced the basic principles underlying sample size calculations. This  chapter 
presents several cookbook techniques for using those principles to estimate the sample size 
needed for a research project. The first section deals with sample size estimates for an  analytic 
study or experiment, including some special issues that apply to these studies such as multi-
variate analysis. The second section considers studies that are primarily descriptive. Subse-
quent sections deal with studies that have a fixed sample size, strategies for maximizing the 
power of a study, and how to estimate the sample size when there appears to be insufficient 
information from which to work. The chapter concludes with common  errors to avoid.

At the end of the chapter, there are tables and formulas in the appendixes for several basic 
methods of estimating sample size. In addition, there is a calculator on our website (www. 
epibiostat.ucsf.edu/dcr/), and there are many sites on the Web that can provide instant in-
teractive sample size calculations; try searching for “sample size calculator.” Most statistical 
packages can also estimate sample size for common study designs.

■  SAMPLE SIZE TECHNIQUES FOR ANALYTIC STUDIES AND EXPERIMENTS

There are several variations on the recipe for estimating sample size in an analytic study or 
experiment, but they all have certain steps in common:

 1. State the null hypothesis and either a one- or two-sided alternative hypothesis.
 2. Select the appropriate statistical test from Table 6.1 based on the type of predictor variable 

and outcome variable in those hypotheses.
 3. Choose a reasonable effect size (and variability, if necessary).
 4. Set a and b. Specify a two-sided a unless the alternative hypothesis is clearly one-sided.
 5. Use the appropriate table or formula in the appendix, an online calculator, or a statistics 

package to estimate the sample size.

Even if the exact value for one or more of the ingredients is uncertain, it is important to 
estimate the sample size early in the design phase. Waiting until the last minute to prepare the 
sample size can lead to a rude awakening: It may be necessary to start over with new ingredi-
ents, which may mean redesigning the entire study. This is why this subject is covered early 
in this book.

Not all analytic studies fit neatly into one of the three main categories of sample size cal-
culation described in the following sections: use of the chi-squared test if both predictor and 
outcome are dichotomous, use of the t test if one is dichotomous and the other continuous, 
and use of the correlation coefficient if both are continuous. A few of the more common excep-
tions are discussed in the section called “Other Considerations and Special Issues” (page 60).

Estimating Sample Size and 
Power: Applications and Examples
Warren S. Browner, Thomas B. Newman, and Stephen B. Hulley

6
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TABLE 6.1  SIMPLE STATISTICAL TESTS FOR USE IN ESTIMATING SAMPLE SIZE*

 OUTCOME VARIABLE

PREDICTOR VARIABLE DICHOTOMOUS CONTINUOUS

Dichotomous Chi-squared test† t test

Continuous t test Correlation coefficient

analyze the data with another type of statistical test.
†The chi-squared test is always two-sided; a one-sided equivalent is the Z statistic.

The t Test

The t test (sometimes called “Student’s t test,” after the pseudonym of its developer) is com-
monly used to determine whether the mean value of a continuous variable in one group differs 
significantly from that in another group. For example, the t test would be appropriate to use 
when comparing the mean depression scores in patients treated with two different antidepres-
sants, or the mean body mass index among subjects who do and do not have diabetes. The t test 
assumes that the distribution (spread) of the variable in each of the two groups approximates 
a normal (bell-shaped) curve. However, the t test is remarkably robust, so it can be used for 
almost any distribution unless the number of subjects is small (fewer than 30 to 40) or there 
are extreme outliers.

Although the t test is usually used for comparing continuous outcomes, it can also be used to 
estimate the sample size for a dichotomous outcome (e.g., in a case–control study) if the study 
has a continuous predictor variable. In this situation, the t test compares the mean value of the 
predictor variable in the cases with that in the controls.

To estimate the sample size for a study in which mean values of a continuous outcome vari-
able will be compared with a t test (see Example 6.1), the investigator must

 1. State the null hypothesis and whether the alternative hypothesis is one- or two-sided.
 2. Estimate the effect size (E) as the difference in the mean value of the continuous variable 

between the study groups.
 3. Estimate variability as the standard deviation (S) of that variable.
 4. Calculate the standardized effect size (E/S), defined as the effect size divided by the stan-

dard deviation of the outcome variable.
 5. Set a and b.

The effect size and variability can often be estimated from previous studies in the literature 
and consultation with experts. Occasionally, a small pilot study will be necessary to estimate 
the standard deviation of the variable (also see the section “How to Estimate Sample Size When 
There Is Insufficient Information” on page 70). When an outcome variable is the change in a 
continuous measurement (e.g., change in weight during a study), the investigator should use 
the standard deviation of the change in that variable (not the standard deviation of the variable 
itself) in the sample size estimates. The standard deviation of the change in a variable is usu-
ally smaller than the standard deviation of the variable; therefore, the sample size will also be 
smaller.

Sometimes, an investigator cannot obtain any meaningful information about the standard de-
viation of a variable. In that situation, it’s worthwhile to use a quantity called the standardized 
effect size, which is a unitless quantity that makes it possible to estimate a sample size; it also 
simplifies comparisons among effect sizes of different variables. The standardized effect size is 
simply the effect size divided by the standard deviation of the variable. For example, a 10 mg/
dL difference in serum cholesterol level, which has a standard deviation in the population of 
about 40 mg/dL, would equal a standardized effect size of 0.25. The larger the standardized 
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EXAMPLE 6.1 Sample Size When Using the t Test

Problem: The research question is whether there is a difference in the efficacy of albuterol 
and ipratropium bromide for the treatment of asthma. The investigator plans a random-
ized trial of the effect of these drugs on FEV1 (forced expiratory volume in 1 second) 
after 2 weeks of treatment. A previous study has reported that the mean FEV1 in persons 
with treated asthma was 2.0 liters, with a standard deviation of 1.0 liter. The investiga-
tor would like to be able to detect a difference of 10% or more in mean FEV1 between 
the two treatment groups. How many patients are required in each group (albuterol and 
 ipratropium) at a (two-sided) = 0.05 and power = 0.80?

The ingredients for the sample size calculation are as follows:

 1. Null Hypothesis: Mean FEV1 after 2 weeks of treatment is the same in asthmatic 
 patients treated with albuterol as in those treated with ipratropium.

  Alternative Hypothesis (two-sided): Mean FEV1 after 2 weeks of treatment is  different 
in asthmatic patients treated with albuterol from what it is in those treated with 
ipratropium.

 2. Effect size = 0.2 liters (10% × 2.0 liters).
 3. Standard deviation of FEV1 = 1.0 liter.
 4. Standardized effect size = effect size ÷ standard deviation = 0.2 liters ÷ 1.0 liter = 0.2.
 5. a (two-sided) = 0.05; b = 1 – 0.80 = 0.20. (Recall that b = 1 – power.)

Looking across from a standardized effect size of 0.20 in the leftmost column of 
Table 6A and down from a (two-sided) = 0.05 and b = 0.20, 394 patients are required 
per group. This is the number of patients in each group who need to complete the study; 
even more will need to be enrolled to account for dropouts. This sample size may not be 
 feasible, and the investigator might reconsider the study design, or perhaps settle for only 
 being able to detect a larger effect size. See the section on the t test for paired samples 
( Example 6.8) for a potential solution.

effect size, the smaller the required sample size. For most studies, the standardized effect size 
will be >0.1. Effect sizes smaller than that are difficult to detect (they require very large sample 
sizes) and usually not very important clinically.

Appendix 6A gives the sample size requirements for various combinations of a and b for 
several standardized effect sizes. To use Table 6A, look down its leftmost column for the stan-
dardized effect size. Next, read across the table to the chosen values for a and b for the sample 
size required per group. (The numbers in Table 6A assume that the two groups being compared 
are of the same size; use the formula below the table, a statistics package, or an interactive Web-
based program if that assumption is not true.)

There is a convenient shortcut for approximating sample size using the t test, when more 
than about 30 subjects will be studied and the power is set at 0.80 (b = 0.2) and a (two-sided) 
is set at 0.05 (1). The formula is

Sample size (per equal-sized group) = 16 ÷ (standardized effect size)2.

For Example 6.1, the shortcut estimate of the sample size would be 16 ÷ 0.22 = 400 per group.

The Chi-Squared Test

The chi-squared (χ2) test can be used to compare the proportion of subjects in each of two 
groups who have a dichotomous outcome. For example, the proportion of men who develop 
coronary heart disease (CHD) while being treated with folate can be compared with the 
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proportion who develop CHD while taking a placebo. The chi-squared test is always two-sided; 
an equivalent test for one-sided hypotheses is the one-sided Z test.

In an experiment or cohort study, effect size is specified by the difference between P1, the 
proportion of subjects expected to have the outcome in one group (i.e., the risk of the out-
come), and P2, the proportion expected in the other group. For example, in a cohort study 
comparing the risk of developing end-stage renal disease among men and women with hyper-
tension, P1 would be the proportion of men who develop end-stage renal disease, and P2 would 
be the proportion of women who do so. Variability is a function of P1 and P2, so it need not be 
specified.

By contrast, for the purposes of calculating sample size for a case–control study, P1 and P2 
have different definitions. They refer to the proportions of cases and controls expected to have 
a particular value of a dichotomous predictor (e.g., the proportion of cases of end-stage renal 
disease who were men). Thus, in a case–control study, P1 represents the proportion of cases 
expected to have a particular predictor variable (i.e., the prevalence of that predictor), and P2 
represents the proportion of controls expected to have the predictor.

To estimate the sample size for a study that will be analyzed with the chi-squared test or Z 
test to compare two proportions (Example 6.2), the investigator must

 1. State the null hypothesis and decide whether the alternative hypothesis should be one- or 
two-sided.

 2. Estimate the effect size and variability in terms of P1, the proportion with the outcome in 
one group, and P2, the proportion with the outcome in the other group.

 3. Set a and b.

Appendix 6B gives the sample size requirements for several combinations of a and b, and a 
range of values of P1 and P2. To estimate the sample size, look down the leftmost column of 
Tables 6B.1 or 6B.2 for the smaller of P1 and P2 (if necessary, rounded to the nearest 0.05). 
Next, read across for the difference between P1 and P2. Based on the chosen values for a and b, 
the table gives the sample size required per group.

EXAMPLE 6.2 Calculating Sample Size When Using the Chi-Squared Test

Problem: The research question is whether subjects who practice Tai Chi have a lower 
risk of developing back pain than those who jog for exercise. A review of the literature 
suggests that the 2-year risk of back pain is about 0.30 in joggers. The investigator hopes 
to be able to show that Tai Chi reduces that risk by at least 0.10. At a (two-sided) = 0.05 
and power = 0.80, how many subjects will need to be studied to determine whether the 
2-year incidence of developing back pain is 0.20 (or less) in those who do Tai Chi?

Solution: The ingredients for the sample size calculation are as follows:

 1. Null Hypothesis: The incidence of back pain is the same in those who jog and those 
who practice Tai Chi.

  Alternative Hypothesis (two-sided): The incidence of back pain differs in those who 
jog and those who practice Tai Chi.

 2. P2 (incidence in those who jog) = 0.30; P1 (incidence in those who practice Tai Chi) = 
0.20. The smaller of these values is 0.20, and the difference between them (P1 – P2) is 
0.10.

 3. a (two-sided) = 0.05; b = 1 – 0.80 = 0.20.

Looking across from 0.20 in the leftmost column in Table 6B.1 and down from an 
 expected difference of 0.10, the middle number for a (two-sided) = 0.05 and b = 0.20 is 
the required sample size of 313 joggers and 313 Tai Chi practitioners to complete the study.
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Often the investigator specifies the effect size in terms of the relative risk (risk ratio) of the out-
come in two groups of subjects. For example, an investigator might study whether women who 
use oral contraceptives are at least twice as likely as nonusers to have a myocardial infarction. In a 
cohort study (or experiment), it is straightforward to convert back and forth between relative risk 
and the two proportions (P1 and P2), since the relative risk is just P1 divided by P2 (or vice versa).

For a case–control study, however, the situation is a little more complex because the relative 
risk must be approximated by the odds ratio (OR):

OR = 
[P1 × (1 − P2)]

[P2 × (1 − P1)]

The investigator must specify the odds ratio (OR) and P2 (the proportion of controls exposed 
to the predictor variable). Then P1 (the proportion of cases exposed to the predictor variable) is

P1 = 
OR × P2

(1 − P2) + (OR × P2)

For example, if the investigator expects that 10% of controls will be exposed to the oral con-
traceptives (P2 = 0.1) and wishes to detect an odds ratio of 3 associated with the exposure, then

P1 = 
(3 × 0.1)  = 

0.3
 = 0.25

(1 − 0.1) + (3 × 0.1) 1.2

The Correlation Coefficient

Although the correlation coefficient (r) is not used frequently in sample size calculations, it can 
be used when the predictor and outcome variables are both continuous. The correlation coef-
ficient is a measure of the strength of the linear association between the two variables. It varies 
between −1 and +1. Negative values indicate that as one variable increases, the other decreases 
(like blood lead level and IQ in children). The closer the absolute value of r is to 1, the stronger 
the association; the closer to 0, the weaker the association. Height and weight in adults, for 
example, are highly correlated in some populations, with r ≈ 0.9. Such high values, however, 
are uncommon; many biologic associations have much smaller correlation coefficients.

Correlation coefficients are common in some fields of clinical research, such as behavioral 
medicine, but using them to estimate the sample size has a disadvantage: Correlation coeffi-
cients have little intuitive meaning. When squared (r2), a correlation coefficient represents the 
proportion of the spread (variance) in an outcome variable that results from its linear associa-
tion with a predictor variable, and vice versa. That’s why small values of r, such as ≤0.3, may 
be statistically significant if the sample is large enough without being very meaningful clinically 
or scientifically, since they “explain” at most 9% of the variance.

An alternative—and often preferred—way to estimate the sample size for a study in which 
the predictor and outcome variables are both continuous is to dichotomize one of the two 
variables (say, at its median) and use the t test calculations instead. This has the advantage of 
expressing the effect size as a difference between two groups (interpreting correlation coeffi-
cients, which do not convey effect size, is more vague). To estimate sample size for a study that 
will be analyzed with a correlation coefficient (Example 6.3), the investigator must

 1. State the null hypothesis, and decide whether the alternative hypothesis is one or 
two-sided.

 2. Estimate the effect size as the absolute value of the smallest correlation coefficient (r) that 
the investigator would like to be able to detect. (Variability is a function of r and is already 
included in the table and formula.)

 3. Set a and b.
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EXAMPLE 6.3 Calculating Sample Size When Using the Correlation 
Coefficient in a Cross-Sectional Study

Problem: The research question is whether urinary cotinine levels (a measure of the  
intensity of current cigarette smoking) are correlated with bone density in smokers.  
A previous study found a modest correlation (r = –0.3) between reported smoking  
(in cigarettes per day) and bone density (in g/cm3); the investigator anticipates that uri-
nary cotinine levels will be at least as well correlated. How many smokers will need to be 
enrolled, at a (two-sided) = 0.05 and b = 0.10?

Solution: The ingredients for the sample size calculation are as follows:

 1. Null Hypothesis: There is no correlation between urinary cotinine level and bone den-
sity in smokers.

  Alternative Hypothesis: There is a correlation between urinary cotinine level and bone 
density in smokers.

 2. Effect size (r) = | – 0.3| = 0.3.
 3. a (two-sided) = 0.05; b = 0.10.

Using Table 6C, reading across from r = 0.30 in the leftmost column and down from a 
(two-sided) = 0.05 and b = 0.10, 113 smokers will be required.

In Appendix 6C, look down the leftmost column of Table 6C for the effect size (r). Next, 
read across the table to the chosen values for a and b, yielding the total sample size required. 
Table  6C yields the appropriate sample size when the investigator wishes to reject the null 
hypothesis that there is no association between the predictor and outcome variables (e.g., r = 0). 
If the investigator wishes to determine whether the correlation coefficient in the study differs 
from a value other than zero (e.g., r = 0.4), she should see the text below Table 6C for the ap-
propriate methodology.

■  OTHER CONSIDERATIONS AND SPECIAL ISSUES

Dropouts

Each sampling unit must be available for analysis; subjects who are enrolled in a study but in 
whom outcome status cannot be ascertained (such as dropouts) do not count in the sample 
size. If the investigator anticipates that any of her subjects will not be available for follow-up 
(as is very often the case), she should estimate the proportion that will be lost and increase the 
size of the enrolled sample accordingly. If, for example, the investigator estimates that 20% of 
her sample will be lost to follow-up, then the sample size should be increased by a factor of 
(1 ÷ [1 − 0.20]), or 1.25.

Categorical Variables

While there are mathematical reasons why estimating a sample size for ordinal variables using 
a test may not be appropriate, in practice ordinal variables can often be treated as continuous 
variables, especially if the number of categories is relatively large (six or more) and if averaging 
the values of the variable makes sense.

In other situations, the best strategy is to change the research hypothesis slightly by di-
chotomizing the categorical variable. As an example, suppose a researcher is studying whether 
speaking English as a second language is associated with the number of times that diabetic pa-
tients visit a podiatrist in a year. The number of visits is unevenly distributed: Many people will 
have no visits, some will make one visit, and only a few will make two or more visits. In this 
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situation, the investigator could estimate the sample size as if the outcome were dichotomous 
(no visits versus one or more visits).

Survival Analysis

When an investigator wishes to compare survival or other time-to-event data, such as which 
of two treatments is more effective in prolonging life in women with advanced breast cancer, 
survival analysis will be the appropriate technique for analyzing the data (2, 3). Although the 
outcome variable, say months of survival, appears to be continuous, the t test is not appropriate 
because what is actually being assessed is not time (a continuous variable) but the proportion 
of subjects (a dichotomous variable) still alive at each point in time. Similarly, an investigator 
might be comparing the rate of developing the outcome (per 100 person-years of follow-up) in 
two groups. A reasonable approximation can be made by simply estimating the proportions of 
subjects expected to ever have the outcome in the two groups and estimating the sample size 
with the chi-squared test. However, if the outcome is expected to occur in most of the subjects, 
such as death in a study of advanced breast cancer, a better strategy (because it minimizes the 
total sample size) is to estimate the sample size based on the proportions of subjects in each 
group who are expected to have the outcome at a point during follow-up when about half of the 
total outcomes have occurred. For example, in a study comparing disease-free survival in breast 
cancer patients treated with standard versus experimental treatment, in which about 60% of the 
subjects in the standard treatment group are expected to have died by 2 years, compared with 
40% of those who received an experimental treatment, the sample size can be estimated using 
“survival at 2 years” as the dichotomous outcome.

Clustered Samples

Some research designs involve the use of clustered samples, in which subjects are sampled by 
groups (Chapter 11). Consider, for example, a study of whether a continuing medical education 
intervention for clinicians improves the rate of smoking cessation among their patients. Suppose 
that 20 physician practices are randomly assigned to the group that receives the intervention and 
20 practices are assigned to a control group. One year later, the investigators plan to review the 
charts of a random sample of 50 patients who had been smokers at baseline in each practice to 
determine how many have quit smoking. Does the sample size equal 40 (the number of practices) 
or 2,000 (the number of patients)? The answer, which lies somewhere in between those two ex-
tremes, depends upon how similar the patients within a practice are (in terms of their likelihood 
of smoking cessation) compared with the similarity among all the patients. Estimating this quan-
tity often requires obtaining pilot data, unless another investigator has previously done a similar 
study. There are several techniques for estimating the required sample size for a study using clus-
tered samples (4–7), but they are challenging and usually require the assistance of a statistician.

Matching

For a variety of reasons, an investigator may choose to use a matched design (Chapter 9). The 
techniques in this chapter, which ignore any matching, nevertheless provide reasonable esti-
mates of the required sample size unless the exposure (in a matched case–control study) or 
outcome (in a matched cohort study) is strongly correlated with the matching variable. More 
precise estimates, which require the investigator to specify the correlation between exposures 
or outcomes in matched pairs, can be made using standard approaches (8), statistical software, 
or an interactive Web-based program.

Multivariate Adjustment and Other Special Statistical Analyses

When designing an observational study, an investigator may decide that one or more variables 
will confound the association between the predictor and outcome (Chapter 9), and plan to use 
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statistical techniques to adjust for these confounders when she analyzes her results. When this 
adjustment will be included in testing the primary hypothesis, the estimated sample size needs 
to take this into account.

Analytic approaches that adjust for confounding variables often increase the required sample 
size (9, 10). The magnitude of this increase depends on several factors, including the preva-
lence of the confounder, the strength of the association between the predictor and the con-
founder, and the strength of the association between the confounder and the outcome. These 
effects are complex and no general rule covers all situations.

Statisticians have developed multivariate methods such as linear regression and logistic 
regression that allow the investigator to adjust for confounding variables. One widely used 
statistical technique, Cox proportional hazards analysis, can adjust both for confounders and 
for differences in length of follow-up. If one of these techniques is going to be used to analyze 
the data, there are corresponding approaches for estimating the required sample size (3,11–14). 
Sample size techniques are also available for other designs, such as studies of potential genetic 
risk factors or candidate genes (15–17), economic studies (18–20), dose–response studies (21), 
or studies that involve more than two groups (22). Again, the Internet is a useful resource for 
these more sophisticated approaches (e.g., search for “sample size” and “logistic regression”).

It is usually easier, at least for novice investigators, to estimate the sample size assuming a 
simpler method of analysis, such as the chi-squared test or the t test. It’s also a good way to 
check the results obtained when using more sophisticated methods. Suppose, for example, an 
investigator is planning a case–control study of whether serum cholesterol level (a continuous 
variable) is associated with the occurrence of brain tumors (a dichotomous variable). Even if 
the eventual plan is to analyze the data with the logistic regression technique, a ballpark sample 
size can be estimated with the t test. It turns out that the simplified approaches usually produce 
sample size estimates that are similar to those generated by more sophisticated techniques. An 
experienced biostatistician should be consulted, however, if a grant proposal that involves sub-
stantial costs is being submitted for funding: Reviewers will expect you to use a sophisticated 
approach even if they realize that the sample size estimates are based on guesses about the risk 
of the outcome, the effect size, and so on. Having your sample size estimated by a statistician 
also conveys the message that you have access to the collaborators who will be needed to man-
age and analyze the study’s data. Indeed, a biostatistician will contribute in many other ways 
to the design and execution of the study. But she will surely appreciate working with a clini-
cal investigator who has thought about the issues and has made at least an initial attempt to 
estimate the sample size.

Equivalence and Non-Inferiority Trials

Sometimes the goal of a study is to rule out a substantial association between the predictor and 
outcome variables. An equivalence trial tests whether a new drug has pretty much the same 
efficacy as an established drug. This situation poses a challenge when planning sample size, 
because the desired effect size is zero or very small. A non-inferiority trial is a one-sided ver-
sion of this design that examines whether the new drug is at least not substantially worse than 
the established drug (Chapter 11).

Sample size calculations for these designs are complex (23–26) and the advice of an ex-
perienced statistician will be helpful. One acceptable method is to design the study to have 
substantial power (say, 0.90 or 0.95) to reject the null hypothesis when the effect size is small 
enough that it would not be clinically important (e.g., a difference of 5 mg/dL in mean fast-
ing glucose levels). If the results of such a well-powered study show “no effect” (i.e., the 95% 
confidence interval excludes the prespecified difference of 5 mg/dL), then the investigator 
can be reasonably sure that the two drugs have similar effects. One problem with equivalence 
and non-inferiority trials, however, is that the additional power and the small effect size often 
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require a very large sample size; of the two designs, non-inferiority trials have the advantage of 
being one-sided, permitting either a smaller sample size or a smaller alpha.

Another problem involves the loss of the usual safeguards that are inherent in the paradigm 
of the null hypothesis, which protects a conventional study that compares an active drug with a 
placebo, against type I errors (falsely rejecting the null hypothesis). The paradigm ensures that 
many problems in the design or execution of a study, such as using imprecise measurements 
or excessive loss to follow-up, make it harder to reject the null hypothesis. Investigators in a 
conventional study, who are trying to reject a null hypothesis, have a strong incentive to do 
the best possible study. For a non-inferiority study, however, in which the goal is to find no 
difference, those safeguards do not apply.

■  SAMPLE SIZE TECHNIQUES FOR DESCRIPTIVE STUDIES

Estimating the sample size for descriptive studies, including studies of diagnostic tests, is 
also based on somewhat different principles. Such studies do not have predictor and outcome 
variables, nor do they compare different groups statistically. Therefore, the concepts of power 
and the null and alternative hypotheses do not apply. Instead, the investigator calculates de-
scriptive statistics, such as means and proportions. Often, however, descriptive studies (What 
is the prevalence of depression among elderly patients in a medical clinic?) are also used to 
ask analytic questions (What are the predictors of depression among these patients?). In this 
situation, sample size should be estimated for the analytic study as well, to avoid the common 
problem of having inadequate power for what turns out to be the question of greater interest.

Descriptive studies commonly report confidence intervals, a range of values about the 
sample mean or proportion. A confidence interval is a measure of the precision of a sample esti-
mate. The investigator sets the confidence level, such as 95% or 99%. An interval with a greater 
confidence level (say 99%) is wider, and therefore more likely to include the true population 
value, than an interval with a lower confidence level (90%).

The width of a confidence interval depends on the sample size. For example, an investigator 
might wish to estimate the mean score on the U.S. Medical Licensing Examination in a group of 
medical students who were taught using an alternative Web-based curriculum. From a sample 
of 50 students, she might estimate that the mean score in the population of all students is 215, 
with a 95% confidence interval from 205 to 225. A smaller study, say with 20 students, might 
have about the same mean score but would almost certainly have a wider 95% confidence 
interval.

When estimating sample size for descriptive studies, the investigator specifies the desired 
level and width of the confidence interval. The sample size can then be determined from the 
tables or formulas in the appendix.

Continuous Variables

When the variable of interest is continuous, a confidence interval around the mean value 
of that variable is often reported. To estimate the sample size for that confidence interval 
 (Example 6.4), the investigator must

 1. Estimate the standard deviation of the variable of interest.
 2. Specify the desired precision (total width) of the confidence interval.
 3. Select the confidence level for the interval (e.g., 95%, 99%).

To use Appendix 6D, standardize the total width of the interval (divide it by the standard 
deviation of the variable), then look down the leftmost column of Table 6D for the expected 
standardized width. Next, read across the table to the chosen confidence level for the required 
sample size.
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Dichotomous Variables

In a descriptive study of a dichotomous variable, results can be expressed as a confidence inter-
val around the estimated proportion of subjects with one of the values. This includes studies of 
the sensitivity or specificity of a diagnostic test, which appear at first glance to be continuous 
variables but are actually dichotomous—proportions expressed as percentages (Chapter 12). 
To estimate the sample size for that confidence interval, the investigator must

 1. Estimate the expected proportion with the variable of interest in the population. (If more 
than half of the population is expected to have the characteristic, then plan the sample size 
based on the proportion expected not to have the characteristic.)

 2. Specify the desired precision (total width) of the confidence interval.
 3. Select the confidence level for the interval (e.g., 95%).

In Appendix 6E, look down the leftmost column of Table 6E for the expected proportion 
with the variable of interest. Next, read across the table to the chosen width and confidence 
level, yielding the required sample size.

Example 6.5 provides a sample size calculation for studying the sensitivity of a diagnostic 
test, which yields the required number of subjects with the disease. When studying the specific-
ity of the test, the investigator must estimate the required number of subjects who do not have 
the disease. There are also techniques for estimating the sample size for studies of receiver oper-
ating characteristic (ROC) curves (27), likelihood ratios (28), and reliability (29) (Chapter 12).

EXAMPLE 6.4 Calculating Sample Size for a Descriptive Study  
of a Continuous Variable

Problem: The investigator seeks to determine the mean hemoglobin level among third 
graders in an urban area with a 95% confidence interval of ± 0.3 g/dL. A previous study 
found that the standard deviation of hemoglobin in a similar city was 1 g/dL.

Solution: The ingredients for the sample size calculation are as follows:

 1. Standard deviation of variable (SD) = 1 g/dL.
 2. Total width of interval = 0.6 g/dL (0.3 g/dL above and 0.3 g/dL below). The 

 standardized width of interval = total width ÷ SD = 0.6 ÷ 1 = 0.6.
 3. Confidence level = 95%.

Reading across from a standardized width of 0.6 in the leftmost column of Table 6D 
and down from the 95% confidence level, the required sample size is 43 third graders.

EXAMPLE 6.5 Calculating Sample Size for a Descriptive Study  
of a Dichotomous Variable

Problem: The investigator wishes to determine the sensitivity of a new diagnostic test for 
pancreatic cancer. Based on a pilot study, she expects that 80% of patients with pancreatic 
cancer will have positive tests. How many such patients will be required to estimate a 
95% confidence interval for the test’s sensitivity of 0.80 ± 0.05?

Solution: The ingredients for the sample size calculation are as follows:

 1. Expected proportion = 0.20. (Because 0.80 is more than half, sample size is estimated 
from the proportion expected to have a falsely negative result, that is, 0.20.)
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■  WHAT TO DO WHEN SAMPLE SIZE IS FIXED

Especially when doing secondary data analysis, the sample size may have been determined 
before you design your study. Even when you are designing a study from scratch, it’s common 
to find that the number of participants who are available or affordable for study is limited. 
Indeed, most investigators, if they are being honest, will acknowledge that they often “work 
backwards” from a fixed or realistic sample size to determine the effect size they’ll have a rea-
sonable power to detect. That’s part of the reason why it’s silly to treat a sample size estimate 
as if it was carved into stone.

When an investigator must work backward from the fixed sample size (Example 6.6), she 
estimates the effect size that can be detected at a given power (usually 80%). Less commonly, 
she estimates the power to detect a given effect. The investigator can use the sample size tables 
in the chapter appendixes, interpolating when necessary, or use the sample size formulas in the 
appendixes for estimating the effect size.

A general rule is that a study should have a power of 80% or greater to detect a reasonable 
effect size. There is nothing magical about 80%: Sometimes an investigator gets lucky and finds 
a statistically significant result even when she had limited power to do so (even a power as low 
as 50% provides a 50-50 chance of observing a statistically significant effect in the sample that is 
actually present in the population). Thus it may be worthwhile to pursue studies that have less 
than 80% power if the cost of doing so is small, such as when doing an analysis of data that have 
already been collected. And there are some studies—for example, one showing that a novel 
treatment reduces pulmonary arterial pressures by more than 50% in patients with longstand-
ing refractory pulmonary hypertension—in which a sample size of two or three subjects would 
suffice to indicate that further study (on safety and effects on clinical outcomes) is warranted.

The investigator should keep in mind, however, that she might face the difficulty of in-
terpreting (and publishing) a study that failed to find an association because of insufficient 
power; the broad confidence intervals will reveal the possibility of a substantial effect in the 
population from which the small study sample was drawn. It’s also important to understand 
that an “under-powered” study that got “lucky” and had a statistically significant result may be 
criticized because reviewers are skeptical as to whether the investigator really intended to look 
for that particular association, or whether she tested scores of hypotheses and cherry-picked 
the one result that had a significant P value.

 2. Total width = 0.10 (0.05 below and 0.05 above).
 3. Confidence level = 95%.

Reading across from 0.20 in the leftmost column of Table 6E and down from a total 
width of 0.10, the middle number (representing a 95% confidence level) yields the re-
quired sample size of 246 patients with pancreatic cancer.

EXAMPLE 6.6 Calculating the Detectable Effect Size When Sample  
Size is Fixed

Problem: An investigator estimates that she will have access to 200 new mothers of twins 
during her fellowship. Based on a small pilot study, she estimates that about half of those 
women (i.e., 100) might be willing to participate in a study of whether a 6-week medita-
tion program reduces stress, as compared with a control group that receives a pamphlet 
describing relaxation. If the standard deviation of the stress score is expected to be 

(continued)
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■  STRATEGIES FOR MINIMIZING SAMPLE SIZE AND MAXIMIZING POWER

When the estimated sample size is greater than the number of subjects that can be studied real-
istically, the investigator should proceed through several steps. First, the calculations should be 
checked, as it is easy to make mistakes. Next, the “ingredients” should be reviewed. Is the effect 
size unreasonably small or the variability unreasonably large? Is a or b unreasonably small or 
is the confidence level too high or the interval unreasonably narrow?

These technical adjustments can be useful, but it is important to realize that statistical tests 
ultimately depend on the information contained in the data. Many changes in the ingredients, 
such as reducing power from 90% to 80%, do not improve the quantity or quality of the data 
that will be collected. There are, however, several strategies for reducing the required sample 
size or for increasing power for a given sample size that actually increase the information 
content of the collected data. Many of these strategies involve modifications of the research 
hypothesis; the investigator should carefully consider whether the new hypothesis still answers 
the research question that she wishes to study.

Use Continuous Variables

When continuous variables are an option, they usually permit smaller sample sizes than di-
chotomous variables. Blood pressure, for example, can be expressed either as millimeters of 
mercury (continuous) or as the presence or absence of hypertension (dichotomous). The for-
mer permits a smaller sample size for a given power or a greater power for a given sample size.

In Example 6.7, the continuous outcome addresses the effect of nutrition supplements on 
muscle strength among the elderly. The dichotomous outcome is concerned with its effects on 
the proportion of subjects who have at least a minimal amount of strength, which may be a 
more valid surrogate for potential fall-related morbidity.

5 points in both the control and the treatment groups, what size difference will the inves-
tigator be able to detect between the two groups, at a (two-sided) = 0.05 and b = 0.20?

Solution: In Table 6A, reading down from a (two-sided) = 0.05 and b = 0.20 (the 
rightmost column in the middle triad of numbers), 45 patients per group are required 
to detect a standardized effect size of 0.6, which is equal to 3 points (0.6 × 5 points). 
The investigator (who will have about 50 patients per group) will be able to detect 
a  difference of a little less than 3 points between the two groups.

EXAMPLE 6.6 Calculating the Detectable Effect Size When Sample  
Size is Fixed (continued)

EXAMPLE 6.7 Use of Continuous Versus Dichotomous Variables

Problem: Consider a placebo-controlled trial to determine the effect of nutrition supple-
ments on strength in elderly nursing home residents. Previous studies have established 
that quadriceps strength (as peak torque in newton-meters) is approximately normally 
distributed, with a mean of 33 N·m and a standard deviation of 10 N·m, and that about 
10% of the elderly have very weak muscles (strength <20 N·m). Nutrition supplements 
for 6 months are thought to be worthwhile if they can increase strength by 5 N·m as 
compared with the usual diet. This change in mean strength can be estimated, based on 
the distribution of quadriceps strength in the elderly, to correspond to a reduction in the 
proportion of the elderly who are very weak to about 5%.

One design might treat strength as a dichotomous variable: very weak versus not very 
weak. Another might use all the information contained in the measurement and treat 
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strength as a continuous variable. How many subjects would each design require at a 
(two-sided) = 0.05 and b = 0.20?

Solution: The ingredients for the sample size calculation using a dichotomous 
 outcome variable (very weak versus not very weak) are as follows:

 1. Null Hypothesis: The proportion of elderly nursing home residents who are very weak 
(peak quadriceps torque <20 N·m) after receiving 6 months of nutrition supplements 
is the same as the proportion who are very weak among those on a usual diet.

  Alternative Hypothesis: The proportion of elderly nursing home residents who are 
very weak (peak quadriceps torque <20 N·m) after receiving 6 months of nutrition 
supplements differs from the proportion among those on a usual diet.

 2. P1 (proportion very weak on usual diet) = 0.10; P2 (in supplement group) = 0.05. The 
smaller of these values is 0.05, and the difference between them (P1 – P2) is 0.05.

 3. a (two-sided) = 0.05; b = 0.20.

Using Table 6B.1, reading across from 0.05 in the leftmost column and down from an 
expected difference of 0.05, the middle number (for a [two-sided] = 0.05 and b = 0.20), 
this design would require 473 subjects per group.

The ingredients for the sample size calculation using a continuous outcome variable 
(quadriceps strength as peak torque) are as follows:

 1. Null Hypothesis: Mean quadriceps strength (as peak torque in N·m) in elderly nursing 
home residents after receiving 6 months of nutrition supplements is the same as mean 
quadriceps strength in those on a usual diet.

  Alternative Hypothesis: Mean quadriceps strength (as peak torque in N·m) in elderly 
nursing home residents after receiving 6 months of nutrition supplements differs from 
mean quadriceps strength in those on a usual diet.

 2. Effect size = 5 N·m.
 3. Standard deviation of quadriceps strength = 10 N·m.
 4. Standardized effect size = effect size ÷ standard deviation = 5 N·m ÷ 10 N·m = 0.5.
 5. a (two-sided) 0.05; b = 0.20.

Using Table 6A, reading across from a standardized effect size of 0.50, with a (two-
sided) = 0.05 and b = 0.20, this design would require about 64 subjects in each group. 
(In this example, the shortcut sample size estimate from page 57 of 16 ÷ (standardized 
effect size)2, or 16 ÷ (0.5)2, gives the same estimate of 64 subjects per group.) The bot-
tom line is that the use of a continuous outcome variable resulted in a substantially 
smaller sample size.

Use Paired Measurements

In some experiments or cohort studies with continuous outcome variables, paired 
measurements —one at baseline, another at the conclusion of the study—can be made in each 
subject. The outcome variable is the change between these two measurements. In this situa-
tion, a t test on the paired measurements can be used to compare the mean value of this change 
in the two groups. This technique often permits a smaller sample size because, by comparing 
each subject with herself, it removes the baseline between-subject part of the variability of the 
outcome variable. For example, the change in weight on a diet has less variability than the final 
weight, because final weight is highly correlated with initial weight. Sample size for this type of 
t test is estimated in the usual way (Example 6.8), except that the standardized effect size (E/S 
in Table 6A) is the anticipated difference in the change in the variable divided by the standard 
deviation of that change.
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This chapter always refers to two-sample t tests, which are used when comparing the mean values 
of continuous variables in two groups of subjects. A two-sample t test can be unpaired, if the vari-
able itself is being compared between two groups (Example 6.1), or paired if the variable is the 
change in a pair of measurements, say before and after an intervention (e.g., Example 6.8).

A third type of t test, the one-sample paired t test, compares the mean change in a pair of 
measurements within a single group to zero change. This type of analysis is reasonably com-
mon in time series designs (Chapter  11), a before–after approach to examining treatments 
that are difficult to randomize (for example, the effect of elective hysterectomy, a decision few 
women are willing to leave to a coin toss, on quality of life). However, it is a weaker design 
because the absence of a comparison group makes it difficult to know what would have hap-
pened had the subjects been left untreated. When planning a study that will be analyzed with 
a one-sample paired t test, the total sample size is just half of the sample size per group listed 
in Appendix 6A. For example, for a = 0.05 (two-sided) and b = 0.2, to detect a 0.5 standard 
deviation difference (E/S = 0.5) would require 64/2 = 32 subjects. Appendix 6F presents ad-
ditional information on the use and misuse of one- and two-sample t tests.

Use More Precise Variables

Because they reduce variability, more precise variables permit a smaller sample size in both 
analytic and descriptive studies. Even a modest change in precision can have a substantial ef-
fect on sample size. For example, when using the t test to estimate sample size, a 20% decrease 

EXAMPLE 6.8 Use of the t Test with Paired Measurements

Problem: Recall Example 6.1, in which the investigator studying the treatment of asthma 
is interested in determining whether albuterol can improve FEV1 by 200 mL compared 
with ipratropium bromide. Sample size calculations indicated that 394 subjects per group 
are needed, more than are likely to be available. Fortunately, a colleague points out that 
asthmatic patients have great differences in their FEV1 values before treatment. These 
between-subject differences account for much of the variability in FEV1 after treatment, 
therefore obscuring the effect of treatment. She suggests using a (two-sample) paired 
t test to compare the changes in FEV1 in the two groups. A pilot study finds that the 
standard deviation of the change in FEV1 is only 250 mL. How many subjects would be 
required per group, at a (two-sided) = 0.05 and b = 0.20?

Solution: The ingredients for the sample size calculation are as follows:

 1. Null Hypothesis: The change in mean FEV1 after 2 weeks of treatment is the same in 
asthmatic patients treated with albuterol as in those treated with ipratropium bromide.

  Alternative Hypothesis: The change in mean FEV1 after 2 weeks of treatment is 
 different in asthmatic patients treated with albuterol from what it is in those treated 
with ipratropium bromide.

 2. Effect size = 200 mL.
 3. Standard deviation of the outcome variable = 250 mL.
 4. Standardized effect size = effect size ÷ standard deviation = 200 mL ÷ 250 mL = 0.8.
 5. a (two-sided) = 0.05; b = 1 – 0.80 = 0.20.

Using Table 6A, this design would require about 26 participants per group, a much 
more reasonable sample size than the 394 per group in Example 6.1. In this example, 
the shortcut sample size estimate of 16 ÷ (standardized effect size)2, or 16 ÷ (0.8)2, gives 
a similar estimate of 25 subjects per group.
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in the standard deviation of the outcome variable results in a 36% decrease in the sample size. 
Techniques for increasing the precision of a variable, such as making measurements in dupli-
cate, are presented in Chapter 4.

Use Unequal Group Sizes

Because an equal number of subjects in each of two groups usually gives the greatest power 
for a given total number of subjects, Tables 6A, 6B.1, and 6B.2 in the appendixes assume equal 
sample sizes in the two groups. Sometimes, however, the distribution of subjects is not equal 
in the two groups, or it is easier or less expensive to recruit study subjects for one group than 
the other. It may turn out, for example, that an investigator wants to estimate sample size for a 
study comparing the 30% of the subjects in a cohort who smoke cigarettes with the 70% who 
do not. Or, in a case–control study, the number of persons with the disease may be small, but 
it may be possible to sample a much larger number of controls. In general, the gain in power 
when the size of one group is increased to twice the size of the other is considerable; tripling 
and quadrupling one of the groups provide progressively smaller gains. Sample sizes for un-
equal groups can be computed from the formulas found in the text to Appendixes 6A and 6B 
or from the sample size calculators in statistical software or on the Web.

Here is a useful approximation (30) for estimating sample size for case–control studies of 
dichotomous risk factors and outcomes using c controls per case (Example 6.9). If n represents 
the number of cases that would have been required for one control per case (at a given a, b, and 
effect size), then the approximate number of cases (n') with cn' controls that will be required is

n' = [(c + 1) ÷ 2c] × n

For example, with c = 2 controls per case, then [(2 + 1) ÷ (2 × 2)] × n = 3/4 × n, and only 
75% as many cases are needed. As c gets larger, n' approaches 50% of n (when c = 10, for ex-
ample, n' = 11/20 × n).

Use a More Common Outcome

When planning a study of a dichotomous outcome, the more frequently that outcome occurs, 
up to a frequency of about 0.5, the greater the power. So changing the definition of an outcome 
is one of the best ways to increase power: If an outcome occurs more often, there is more of a 
chance to detect its predictors. Indeed, power depends more on the number of subjects with a 
specified outcome than it does on the total number of subjects in the study. Studies with rare 
outcomes, like the occurrence of breast cancer in healthy women, require very large sample 
sizes to have adequate power.

One of the best ways to have an outcome occur more frequently is to enroll subjects at 
greater risk of developing that outcome (such as women with a family history of breast cancer). 

EXAMPLE 6.9 Use of Multiple Controls per Case  
in a Case–Control Study

Problem: An investigator is studying whether exposure to household insecticide is a risk 
factor for aplastic anemia. The original sample size calculation indicated that 25 cases 
would be required, using one control per case. Suppose that the investigator has access to 
only 18 cases. How should the investigator proceed?

Solution: The investigator should consider using multiple controls per case  (after 
all, she can find many patients who do not have aplastic anemia). By using three 
 controls per case, for example, the approximate number of cases that will be required is 
[(3 + 1) ÷ (2 × 3)] × 25 = 17.



70

EXAMPLE 6.10 Use of a More Common Outcome

Problem: Suppose an investigator is comparing the efficacy of an antiseptic gargle  versus 
a placebo gargle in preventing upper respiratory infections. Her initial calculations 
 indicated that her anticipated sample of 200 volunteer college students was inadequate, 
in part because she expected that only about 20% of her subjects would have an upper 
respiratory infection during the 3-month follow-up period. Suggest a few changes in the 
study plan.

Solution: Here are three possible solutions: (1) study a sample of pediatric interns and 
residents, who are likely to experience a much greater incidence of upper  respiratory 
infections than college students; or (2) do the study in the winter, when these  infections 
are more common; or (3) follow the sample for a longer period of time, say 6 or 
12 months. All of these solutions involve modification of the research hypothesis, but 
none of them seem sufficiently large to affect the overall research question about the 
 efficacy of antiseptic gargle.

Others are to extend the follow-up period, so that there is more time to accumulate outcomes, 
or to loosen the definition of what constitutes an outcome (e.g., by including ductal carcinoma 
in situ). All these techniques (Example 6.10), however, may change the research question, so 
they should be used with caution.

■  HOW TO ESTIMATE SAMPLE SIZE WHEN THERE IS INSUFFICIENT 
INFORMATION

Often the investigator finds that she is missing one or more of the ingredients for the sample 
size calculation and becomes frustrated in her attempts to plan the study. This is an especially 
frequent problem when the investigator is using an instrument of her design (such as a new 
questionnaire comparing quality of life in women with stress versus urge incontinence). How 
should she go about deciding what fraction of a standard deviation of the scores on her instru-
ment would be clinically significant?

The first strategy is an extensive search for previous and related findings on the topic and 
on similar research questions. Roughly comparable situations and mediocre or dated findings 
may be good enough. For example, are there data on quality of life among patients with other 
urologic problems, or with related conditions like having a colostomy? If the literature review 
is unproductive, she should contact other investigators about their judgment on what to ex-
pect, and whether they are aware of any unpublished results that may be relevant.

If there is still no information available, she may consider doing a small pilot study or ob-
taining a data set for a secondary analysis to obtain the missing ingredients before embarking 
on the main study. Indeed, a pilot study is highly recommended for almost all studies that 
involve new instruments, measurement methods, or recruitment strategies. It saves time in the 
end by enabling investigators to do a much better job planning the main study. Pilot studies 
are useful for estimating the standard deviation of a measurement, or the proportion of subjects 
with a particular characteristic. However, an alternative is to recognize that for continuous vari-
ables that have a roughly bell-shaped distribution, the standard deviation can be estimated as 
one-quarter of the difference between the high and low ends of the range of values that occur 
commonly, ignoring extreme values. For example, if most subjects are likely to have a serum 
sodium level between 135 and 143 mEq/L, the standard deviation of serum sodium is about 
2 mEq/L (1/4 × 8 mEq/L).

Another strategy, when the mean and standard deviation of a continuous or categorical vari-
able are in doubt, is to dichotomize that variable. Categories can be lumped into two groups, 
and continuous variables can be split at their mean or median. For example, dividing quality of 
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life into “better than the median” or “the median or less” avoids having to estimate its standard 
deviation in the sample, although one still has to estimate what proportions of subjects would 
be above the overall median in each of the two groups being studied. The chi-squared test can 
then be used to make a reasonable, albeit somewhat high, estimate of the sample size.

Often, however, the investigator must choose the detectable effect size based on a value 
that she considers to be clinically meaningful. In that situation, the investigator should vet 
her choice with colleagues in the field. For example, suppose that an investigator is studying a 
new invasive treatment for severe refractory gastroparesis, a condition in which at most 5% of 
patients improve spontaneously. If the treatment is shown to be effective, her gastroenterologist 
colleagues indicate that they would be willing to treat up to five patients to produce a sustained 
benefit in just one of them (because the treatment has substantial side effects and is expensive, 
they don’t think the number would be more than five). A number needed to treat (NNT) of 
5 corresponds to a risk difference of 20% (NNT = 1/risk difference), so the investigator should 
estimate the sample size based on a comparison of P1 = 5% versus P2 = 25% (i.e., 59 subjects 
per group at a power of 0.80 and a two-sided a of 0.05).

If all this fails, the investigator should just make an educated guess about the likely values of 
the missing ingredients. The process of thinking through the problem and imagining the find-
ings will often result in a reasonable estimate, and that is what sample size planning is about. 
This is usually a better option than just deciding, in the absence of any rationale, to design the 
study to have 80% power at a two-sided a of 0.05 to detect a standardized effect size of, say, 0.5 
between the two groups (n = 64, per group, by the way). Very few grant reviewers will accept 
that sort of entirely  arbitrary decision.

■  COMMON ERRORS TO AVOID

Many inexperienced investigators (and some experienced ones!) make mistakes when planning 
sample size. A few of the more common ones follow:

 1. A common error is estimating the sample size late during the design of the study. Do it early 
in the process, when fundamental changes can still be made.

 2. Dichotomous variables can appear to be continuous when they are expressed as a per-
centage or rate. For example, vital status (alive or dead) might be misinterpreted as con-
tinuous when expressed as percent alive. Similarly, in a survival analysis in which not all 
subjects die, a dichotomous outcome can appear to be continuous (e.g., median survival 
in months). For all of these, the outcome itself is actually dichotomous (a proportion) and 
the appropriate simple approach in planning sample size would be the chi-squared test.

 3. The sample size estimates the number of subjects with outcome data, not the number who 
need to be enrolled. The investigator should always plan for dropouts and subjects with 
missing data.

 4. The tables at the end of the chapter assume that the two groups being studied have equal 
sample sizes. Often that is not the case; for example, a cohort study of whether use of vi-
tamin supplements reduces the risk of sunburn would probably not enroll equal numbers 
of subjects who used, or did not use, vitamins. If the sample sizes are not equal, then the 
formulas that follow the tables or calculators on the Web or in statistical software should 
be used.

 5. When using the t test to estimate the sample size, the standard deviation of the outcome 
variable is a key factor. Therefore, if the outcome is change in a continuous variable, the 
investigator should use the standard deviation of that change rather than the standard de-
viation of the variable itself.

 6. Be aware of clustered data. If there appear to be two “levels” of sample size (e.g., one for 
physicians and another for patients), clustering is a likely problem and the tables in the 
appendices do not apply.
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 7. If you find yourself having difficulty estimating a sample size for your study, be sure 
that your research hypothesis meets the criteria discussed earlier in this chapter (simple, 
 specific, and stated in advance).

■  SUMMARY

 1. When estimating sample size for an analytic study, the following steps need to be taken:
(a) state the null and alternative hypotheses, specifying the number of sides;
(b)  select a statistical test that could be used to analyze the data, based on the types of pre-

dictor and outcome variables (chi-squared test if both are dichotomous, t test if one is 
dichotomous and one continuous, and correlation coefficient if both are continuous);

(c) estimate the effect size (and its variability, if necessary); and
(d)  specify appropriate values for a and b, based on the importance of avoiding type I and 

type II errors.
 2. Other considerations in calculating sample size for analytic studies include adjusting for 

potential dropouts; strategies for dealing with categorical variables, survival analysis, 
clustered samples, multivariate adjustment; and special statistical approaches to equiva-
lence and non-inferiority trials.

 3. The steps for estimating sample size for descriptive studies, which do not have hypoth-
eses, are to (a) estimate the proportion of subjects with a dichotomous outcome or the 
standard deviation of a continuous outcome; (b) specify the desired precision (width of 
the confidence interval); and (c) specify the confidence level (e.g., 95%).

 4. When sample size is predetermined, the investigator can work backward to estimate the 
detectable effect size or, less commonly, the study’s power.

 5. Strategies to minimize sample size include using continuous variables, more precise mea-
surements, paired measurements, and more common outcomes, as well as increasing the 
number of controls per case in case–control studies.

 6. When there seems to be not enough information to estimate the sample size, the investiga-
tor should review the literature in related areas and consult with colleagues to help choose 
an effect size that is clinically meaningful.

 7. Errors to avoid include estimating sample size too late, misinterpreting proportions ex-
pressed as percentages, not taking missing subjects and data into account, and not ad-
dressing clustered and paired data appropriately.



APPENDIX 6A
Sample Size Required per Group 
When Using the t Test to Compare 
Means of Continuous Variables

■  CALCULATING VARIABILITY

Variability is usually reported as either the standard deviation or the standard error of the mean 
(SEM). For the purposes of sample size calculation, the standard deviation of the variable is 
most useful. Fortunately, it is easy to convert from one measure to another: The standard devia-
tion is simply the standard error times the square root of N, where N is the number of subjects 
that makes up the mean. Suppose a study reported that the weight loss in 25 persons on a 
low-fiber diet was 10 ± 2 kg (mean ± SEM). The standard deviation would be 2 × √25 = 10 kg.

■  GENERAL FORMULA FOR OTHER VALUES

The general formula for other values of E, S, a, and b, or for unequal group sizes, is as follows. 
Let:

Za =  the standard normal deviate for a (If the alternative hypothesis is two-sided, Za = 2.58 
when a = 0.01, Za = 1.96 when a = 0.05, and Za = 1.645 when a = 0.10. If the alternative 
hypothesis is one-sided, Za = 1.645 when a = 0.05.)
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TABLE 6A  SAMPLE SIZE PER GROUP FOR COMPARING TWO MEANS

ONE-SIDED   ` =     0.005 0.025 0.05

TWO-SIDED  ` =     0.01 0.05 0.10

 E/S*     a = 0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20

 0.10 3,565 2,978 2,338 2,600 2,103 1,571 2,166 1,714 1,238

 0.15 1,586 1,325 1,040 1,157 935 699 963 762 551

 0.20 893 746 586 651 527 394 542 429 310

 0.25 572 478 376 417 338 253 347 275 199

 0.30 398 333 262 290 235 176 242 191 139

 0.40 225 188 148 164 133 100 136 108 78

 0.50 145 121 96 105 86 64 88 70 51

 0.60 101 85 67 74 60 45 61 49 36

 0.70 75 63 50 55 44 34 45 36 26

 0.80 58 49 39 42 34 26 35 28 21

 0.90 46 39 32 34 27 21 28 22 16

 1.00 38 32 26 27 23 17 23 18 14

*E/S is the standardized effect size, computed as E S
To estimate the sample size, read across from the standardized effect size, and down from the specified values of 
a and b t test, the total sample size is one-half of the 
number listed.
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Zb =  the standard normal deviate for b (Zb = 0.84 when b = 0.20, and Zb = 1.282 when b = 0.10)
q1 = proportion of subjects in group 1
q2 = proportion of subjects in group 2
N = total number of subjects required

Then:

N = [(1/q1 + 1/q2) S2 (Za + Zb)
2] ÷ E2.

Readers who would like to skip the work involved in hand calculations with this formula 
can get an instant answer from a calculator on our website (www.epibiostat.ucsf.edu/dcr/). 
( Because this formula is based on approximating the t statistic with a Z statistic, it will slightly 
underestimate the sample size when N is less than about 30. Table 6A uses the t statistic to 
estimate sample size.)

http://www.epibiostat.ucsf.edu/dcr/


APPENDIX 6B
Sample Size Required per Group 
When Using the Chi-Squared 
Statistic or Z Test to Compare 
Proportions of Dichotomous 
Variables

TABLE 6B.1 SAMPLE SIZE PER GROUP FOR COMPARING TWO PROPORTIONS
UPPER NUMBER: ` = 0.05 (ONE-SIDED) OR ` = 0.10 (TWO-SIDED); a = 0.20  
MIDDLE NUMBER: ` = 0.025 (ONE-SIDED) OR ̀  = 0.05 (TWO-SIDED); a = 0.20  
LOWER NUMBER: ` = 0.025 (ONE-SIDED) OR ̀  = 0.05 (TWO-SIDED); a = 0.10

SMALLER OF  
P1 AND P2*

DIFFERENCE BETWEEN P1 AND P2

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.05 381 129 72 47 35 27 22 18 15 13

473 159 88 59 43 33 26 22 18 16

620 207 113 75 54 41 33 27 23 19

0.10 578 175 91 58 41 31 24 20 16 14

724 219 112 72 51 37 29 24 20 17

958 286 146 92 65 48 37 30 25 21

0.15 751 217 108 67 46 34 26 21 17 15

944 270 133 82 57 41 32 26 21 18

1,252 354 174 106 73 53 42 33 26 22

0.20 900 251 121 74 50 36 28 22 18 15

1,133 313 151 91 62 44 34 27 22 18

1,504 412 197 118 80 57 44 34 27 23

0.25 1,024 278 132 79 53 38 29 23 18 15

1,289 348 165 98 66 47 35 28 22 18

1,714 459 216 127 85 60 46 35 28 23

0.30 1,123 300 141 83 55 39 29 23 18 15

1,415 376 175 103 68 48 36 28 22 18

1,883 496 230 134 88 62 47 36 28 23

0.35 1,197 315 146 85 56 39 29 23 18 15

1,509 395 182 106 69 48 36 28 22 18

2,009 522 239 138 90 62 47 35 27 22

0.40 1,246 325 149 86 56 39 29 22 17 14

1,572 407 186 107 69 48 35 27 21 17

2,093 538 244 139 90 62 46 34 26 21
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0.45 1,271 328 149 85 55 38 28 21 16 13

1,603 411 186 106 68 47 34 26 20 16

2,135 543 244 138 88 60 44 33 25 19

0.50 1,271 325 146 83 53 36 26 20 15 —

1,603 407 182 103 66 44 32 24 18 —

2,135 538 239 134 85 57 42 30 23 —

0.55 1,246 315 141 79 50 34 24 18 — —

1,572 395 175 98 62 41 29 22 — —

2,093 522 230 127 80 53 37 27 — —

0.60 1,197 300 132 74 46 31 22 — — —

1,509 376 165 91 57 37 26 — — —

2,009 496 216 118 73 48 33 — — —

0.65 1,123 278 121 67 41 27 — — — —

1,415 348 151 82 51 33 — — — —

1,883 459 197 106 65 41 — — — —

0.70 1,024 251 108 58 35 — — — — —

1,289 313 133 72 43 — — — — —

1,714 412 174 92 54 — — — — —

0.75 900 217 91 47 — — — — — —

1,133 270 112 59 — — — — — —

1,504 354 146 75 — — — — — —

0.80 751 175 72 — — — — — — —

944 219 88 — — — — — — —

1,252 286 113 — — — — — — —

0.85 578 129 — — — — — — — —

724 159 — — — — — — — —

958 207 — — — — — — — —

0.90 381 — — — — — — — — —

473 — — — — — — — — —

 620 — — — — — — — — —

The one-sided estimates use the Z statistic.

*P1 P2

case–control study, P1 represents the proportion of cases with the predictor variable; P2 the proportion of controls 
P1 and P2, and down the 

difference between P1 and P2

the specified values of a and b.

P1 and P2

TABLE 6B.1 SAMPLE SIZE PER GROUP FOR COMPARING  
TWO PROPORTIONS (CONTINUED)

UPPER NUMBER: ` = 0.05 (ONE-SIDED) OR ` = 0.10 (TWO-SIDED); a = 0.20  
MIDDLE NUMBER: ` = 0.025 (ONE-SIDED) OR ̀  = 0.05 (TWO-SIDED); a = 0.20  
LOWER NUMBER: ` = 0.025 (ONE-SIDED) OR ̀  = 0.05 (TWO-SIDED); a = 0.10

SMALLER OF  
P1 AND P2*

DIFFERENCE BETWEEN P1 AND P2

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
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TABLE 6B.2 SAMPLE SIZE PER GROUP FOR COMPARING TWO PROPORTIONS, 
THE SMALLER OF WHICH IS BETWEEN 0.01 AND 0.10

UPPER NUMBER: ` = 0.05 (ONE-SIDED) OR ` = 0.10 (TWO-SIDED); a = 0.20  
MIDDLE NUMBER: ` = 0.025 (ONE-SIDED) OR ̀  = 0.05 (TWO-SIDED); a = 0.20  
LOWER NUMBER: ` = 0.025 (ONE-SIDED) OR ̀  = 0.05 (TWO-SIDED); a = 0.10

SMALLER OF  
P1 AND P2

EXPECTED DIFFERENCE BETWEEN P1 AND P2

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.01 2,019 700 396 271 204 162 134 114 98 87

2,512 864 487 332 249 197 163 138 120 106

3,300 1,125 631 428 320 254 209 178 154 135

0.02 3,205 994 526 343 249 193 157 131 113 97

4,018 1,237 651 423 306 238 192 161 137 120

5,320 1,625 852 550 397 307 248 207 177 154

0.03 4,367 1,283 653 414 294 224 179 148 126 109

5,493 1,602 813 512 363 276 220 182 154 133

7,296 2,114 1,067 671 474 359 286 236 199 172

0.04 5,505 1,564 777 482 337 254 201 165 139 119

6,935 1,959 969 600 419 314 248 203 170 146

9,230 2,593 1,277 788 548 410 323 264 221 189

0.05 6,616 1,838 898 549 380 283 222 181 151 129

8,347 2,308 1,123 686 473 351 275 223 186 159

11,123 3,061 1,482 902 620 460 360 291 242 206

0.06 7,703 2,107 1,016 615 422 312 243 197 163 139

9,726 2,650 1,272 769 526 388 301 243 202 171

12,973 3,518 1,684 1,014 691 508 395 318 263 223

0.07 8,765 2,369 1,131 680 463 340 263 212 175 148

11,076 2,983 1,419 850 577 423 327 263 217 183

14,780 3,965 1,880 1,123 760 555 429 343 283 239

0.08 9,803 2,627 1,244 743 502 367 282 227 187 158

12,393 3,308 1,562 930 627 457 352 282 232 195

16,546 4,401 2,072 1,229 827 602 463 369 303 255

0.09 10,816 2,877 1,354 804 541 393 302 241 198 167

13,679 3,626 1,702 1,007 676 491 377 300 246 207

18,270 4,827 2,259 1,333 893 647 495 393 322 270

0.10 11,804 3,121 1,461 863 578 419 320 255 209 175

14,933 3,936 1,838 1,083 724 523 401 318 260 218

 19,952 5,242 2,441 1,434 957 690 527 417 341 285

The one-sided estimates use the Z statistic.



78

■  GENERAL FORMULA FOR OTHER VALUES

The general formula for calculating the total sample size (N) required for a study using the 
Z statistic, where P1 and P2 are defined above, is as follows (see Appendix 6A for definitions of 
Za and Zb). Let

q1 = proportion of subjects in group 1
q2 = proportion of subjects in group 2
N = total number of subjects
P = q1 P1 + q2 P2

Then

N = [Zα √P(1 − P)(1 / q1 + 1 / q2) + Zb √P1(1 − P1)(1 / q1) + P2(1 − P2)(1 / q2)]2

(P1 − P2)
2

Readers who would like to skip the work involved in hand calculations with this formula can 
get an instant answer from a calculator on our website (www.epibiostat.ucsf.edu/dcr/). (This 
formula does not include the Fleiss-Tytun-Ury continuity correction and therefore underes-
timates the required sample size by up to about 10%. Tables 6B.1 and 6B.2 do include this 
continuity correction.)

http://www.epibiostat.ucsf.edu/dcr/


APPENDIX 6C
Total Sample Size Required When 
Using the Correlation Coefficient (r)

TABLE 6C SAMPLE SIZE FOR DETERMINING WHETHER A CORRELATION 
 COEFFICIENT DIFFERS FROM ZERO
ONE-SIDED  ` = 0.005 0.025 0.05

TWO-SIDED ` = 0.01 0.05 0.1

a = 0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20

r*          

0.05 7,118 5,947 4,663 5,193 4,200 3,134 4,325 3,424 2,469

0.10 1,773 1,481 1,162 1,294 1,047 782 1,078 854 616

0.15 783 655 514 572 463 346 477 378 273

0.20 436 365 287 319 259 194 266 211 153

0.25 276 231 182 202 164 123 169 134 98

0.30 189 158 125 139 113 85 116 92 67

0.35 136 114 90 100 82 62 84 67 49

0.40 102 86 68 75 62 47 63 51 37

0.45 79 66 53 58 48 36 49 39 29

0.50 62 52 42 46 38 29 39 31 23

0.60 40 34 27 30 25 19 26 21 16

0.70 27 23 19 20 17 13 17 14 11

0.80 18 15 13 14 12 9 12 10 8

*To estimate the total sample size, read across from r
specified values of a and b.

■  GENERAL FORMULA FOR OTHER VALUES

The general formula for other values of r, a, and b is as follows (see Appendix 6A for defini-
tions of Za and Zb). Let

r = expected correlation coefficient
C = 0.5 × ln [(l + r)/( l – r)]
N = Total number of subjects required

Then

N = [(Za + Zb) ÷ C]2 + 3.

■  ESTIMATING SAMPLE SIZE FOR DIFFERENCE BETWEEN TWO CORRELATIONS

If testing whether a correlation, r1, is different from r2 (i.e., the null hypothesis is that r1 = r2; 
the alternative hypothesis is that r1 ≠ r2), let

C1 = 0.5 × ln [(l + r1)/(l – r1)]
C2 = 0.5 × ln [(l + r2)/(l – r2)]

Then

N = [(Za + Zb) ÷ (C1 – C2)]2 + 3.
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APPENDIX 6D
Sample Size for a Descriptive 
Study of a Continuous Variable

TABLE 6D SAMPLE SIZE FOR COMMON VALUES OF W/S*
 CONFIDENCE LEVEL

W/S 90% 95% 99%

0.10 1,083 1,537 2,665

0.15 482 683 1,180

0.20 271 385 664

0.25 174 246 425

0.30 121 171 295

0.35 89 126 217

0.40 68 97 166

0.50 44 62 107

0.60 31 43 74

0.70 23 32 55

0.80 17 25 42

0.90 14 19 33

1.00 11 16 27

*W/S is the standardized width of the confidence interval, computed as W  
S standardized width 
and down from the specified confidence level.

■  GENERAL FORMULA FOR OTHER VALUES

For other values of W, S, and a confidence level of (1 – a), the total number of subjects required 
(N) is

N = 4Za S
2 ÷ W2

(see Appendix 6A for the definition of Za).
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APPENDIX 6E
Sample Size for a Descriptive 
Study of a Dichotomous Variable

TABLE 6E SAMPLE SIZE FOR PROPORTIONS
UPPER NUMBER: 90% CONFIDENCE LEVEL  
MIDDLE NUMBER: 95% CONFIDENCE LEVEL  
LOWER NUMBER: 99% CONFIDENCE LEVEL 

TOTAL WIDTH OF CONFIDENCE INTERVAL (W)

EXPECTED 
PROPORTION (P)*

 
0.10

 
0.15

 
0.20

 
0.25

 
0.30

 
0.35

 
0.40

0.10 98 44 — — — — —

138 61 — — — — —

239 106 — — — — —

0.15 139 62 35 22 — — —

196 87 49 31 — — —

339 151 85 54 — — —

0.20 174 77 44 28 19 14 —

246 109 61 39 27 20 —

426 189 107 68 47 35 —

0.25 204 91 51 33 23 17 13

288 128 72 46 32 24 18

499 222 125 80 55 41 31

0.30 229 102 57 37 25 19 14

323 143 81 52 36 26 20

559 249 140 89 62 46 35

0.40 261 116 65 42 29 21 16

369 164 92 59 41 30 23

639 284 160 102 71 52 40

0.50 272 121 68 44 30 22 17

384 171 96 61 43 31 24

 666 296 166 107 74 54 42

*To estimate the sample size, read across the expected proportion (P
from the desired total width (W
for 90%, 95%, and 99% confidence levels.

■  GENERAL FORMULA FOR OTHER VALUES

The general formula for other values of P, W, and a confidence level of (1 – a), where P and W 
are defined above, is as follows. Let
Za =  the standard normal deviate for a two-sided a, where (1 – a) is the confidence level 

(e.g., since a = 0.05 for a 95% confidence level, Za = 1.96; for a 90% confidence level  
Za = 1.65, and for a 99% confidence level Za = 2.58).

Then the total number of subjects required is:

N = 4Za
2 P (l – P) ÷ W2
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APPENDIX 6F
Use and Misuse of t Tests

Two-sample t tests, the primary focus of this chapter, are used when comparing the mean 
values of a variable in two groups of subjects. The two groups can be defined by a predictor 
variable—active drug versus placebo in a randomized trial, or presence versus absence of a risk 
factor in a cohort study—or they can be defined by an outcome variable, as in a case–control 
study. A two-sample t test can be unpaired, if measurements obtained on a single occasion are 
being compared between two groups, or paired if the change in measurements made at two 
points in time, say before and after an intervention, are being compared between the groups. 
A third type of t test, the one-sample paired t test, compares the mean change in measurements 
at two points in time within a single group to zero or some other specified change.

Table 6F illustrates the misuse of one-sample paired t tests in a study designed for between-
group comparisons—a randomized blinded trial of the effect of a new sleeping pill on quality 
of life. In situations like this, some investigators have performed (and published!) findings with 
two separate one-sample t tests—one each in the treatment and placebo groups.

In the table, the P values designated with a dagger (†) are from one-sample paired t tests. 
The first P (0.05) shows a significant change in quality of life in the treatment group during the 
study; the second P value (0.16) shows no significant change in the control group. However, 
this analysis does not permit inferences about differences between the groups, and it would be 
wrong to conclude that there was a significant effect of the treatment.

The P values designated with a (*) represent the appropriate two-sample t test results. The 
first two P values (0.87 and 0.64) are two-sample unpaired t tests that show no statistically sig-
nificant between-group differences in the initial or final measurements for quality of life. The 
last P value (0.17) is a two-sample paired t test; it is closer to 0.05 than the P value for the end 
of study values (0.64) because the paired mean differences have smaller standard deviations. 
However, the improved quality of life in the treatment group (1.3) was not significantly differ-
ent from that in the placebo group (0.9), and the correct conclusion is that the study did not 
find the treatment to be effective.

TABLE 6F CORRECT (AND INCORRECT) WAYS TO ANALYZE PAIRED DATA
QUALITY OF LIFE, AS MEAN ± SD

TIME OF MEASUREMENT TREATMENT (N = 100) CONTROL (N = 100) P VALUE

Baseline 7.0 ± 4.5 7.1 ± 4.4 0.87*

8.3 ± 4.7 8.0 ± 4.6 0.64*

P value 0.05† 0.16†  

Difference 1.3 ± 2.1 0.9 ± 2.0 0.17*

†
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Observational studies have two primary purposes: descriptive, examining the distributions 
of predictors and outcomes in a population, and analytic, characterizing associations between 
these predictor and outcome variables. In this chapter we present two basic observational  
designs, which are categorized according to the time frame for making the measurements.

In a cross-sectional study, the investigator makes all of her measurements on a single 
 occasion or within a short period of time. She draws a sample from the population and looks 
at distributions of variables within that sample, sometimes designating them as predictors and 
outcomes based on biologic plausibility and historical information. For example, if she is inter-
ested in studying the relationship between body weight and blood pressure she could measure 
these variables at a single clinic visit for each study subject and examine whether subjects with 
higher body weights were more likely to have hypertension.

In a cohort study measurements take place over a period of time in a group of participants 
who have been identified at the beginning of the study (“the cohort”). Thus, the defining char-
acteristic of cohort studies is that a group assembled at the outset is followed longitudinally. 
For example the investigator could measure body weight and blood pressure on a cohort of 
study subjects at an initial clinic visit and then follow them for 5 years to determine the rela-
tionship between baseline weight and the incidence of hypertension. In this chapter we discuss 
prospective and retrospective cohort designs and multiple-cohort designs. We also address 
statistical analysis approaches, and the importance of optimizing cohort retention during 
follow-up.

■  CROSS-SECTIONAL STUDIES

In a cross-sectional study all the measurements are made at about the same time, with no 
follow-up period (Figure 7.1). Cross-sectional designs are well suited to the goal of describing 
variables and their distribution patterns. In the National Health and Nutrition Examination 
Survey (NHANES), for example, a sample designed to represent the entire U.S. population 
aged 1–74 was interviewed and examined in the early 1970s. This cross-sectional study was a 
major source of information about the health and habits of the U.S. population in the year it 
was carried out, providing estimates of such things as the prevalence of smoking in various de-
mographic groups. Subsequent cross-sectional NHANES surveys have been carried out periodi-
cally, and all NHANES data sets are available for public use (www.cdc.gov/nchs/nhanes.htm).

Cross-sectional studies can be used for examining associations, although the choice of which 
variables to label as predictors and which as outcomes depends on the cause-and-effect hypoth-
eses of the investigator rather than on the study design. This choice is easy for constitutional 
factors such as age, race, and sex; these cannot be altered by other variables and therefore are 
always predictors. For other variables, however, the choice can go either way. For example, in 
NHANES III there was a cross-sectional association between childhood obesity and hours spent 
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watching television (1). Whether to label obesity or television-watching as the predictor and 
the other as the outcome depends on the causal hypothesis of the investigator.

Unlike cohort studies, which have a longitudinal time dimension and can be used to 
estimate incidence (the proportion who develop a disease or condition over time), cross-
sectional studies provide information about prevalence, the proportion who have a disease 
or condition at one point in time. Prevalence matters to a clinician, who must estimate the 
likelihood that the patient sitting in her office has a particular disease; the greater the preva-
lence, the greater the “prior probability” of the disease (the probability before the results of 
various diagnostic tests are available; see Chapter 12). That’s why more patients with knee 
pain have osteoarthritis than palindromic rheumatism. Prevalence is also useful to health 
planners who want to know how many people have certain diseases so that they can allocate 
enough resources to care for them. When analyzing cross-sectional studies, the prevalence of 
the outcome can be compared in those with and without an exposure, yielding the relative 
prevalence of the outcome, the cross-sectional equivalent of relative risk (see Appendix 8A 
for examples).

Sometimes cross-sectional studies describe the prevalence of ever having done something or 
ever having had a disease or condition. In that case, it is important to make sure that follow-up 
time is the same in those exposed and unexposed.This is illustrated in Example 7.1, in which 
the prevalence of ever having tried smoking was studied in a cross-sectional study of children 
with differing levels of exposure to movies in which the actors smoke. Of course, children 
who had seen more movies were also older, and therefore had longer to try smoking, so it was 
 important to adjust for age in multivariate analyses (see Chapter 9).

Strengths and Weaknesses of Cross-Sectional Studies

A major advantage of cross-sectional studies is that there is no waiting around for the outcome 
to occur. This makes them fast and inexpensive, and avoids the problem of loss to follow-up. 
Another advantage is that a cross-sectional study can be included as the first step in a cohort 
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■ FIGURE 7.1 In a cross-sectional study, the steps 
are to:

-
-
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study or clinical trial at little or no added cost. The results define the demographic and clinical 
characteristics of the study group at baseline and can sometimes reveal cross-sectional associa-
tions of interest.

However, as previously noted, it’s often difficult to establish causal relationships from 
cross-sectional data. Cross-sectional studies are also impractical for the study of rare diseases, 
unless the sample is drawn from a population of diseased patients rather than the general 
population. A case series of this sort is better suited to describing the characteristics of the 
disease than to analyzing differences between these patients and healthy people, although 
informal comparisons with prior experience can sometimes identify very strong risk factors. 
In a case series of the first 1,000 patients with AIDS, for example, 727 were homosexual or 
bisexual males and 236 were injection drug users (3). It did not require a formal control 
group to conclude that these groups were at increased risk. Furthermore, within a sample of 
persons with a disease there may be associations of interest, e.g., the higher risk of Kaposi’s 
sarcoma among patients with AIDS who were homosexual than among those who were injec-
tion drug users.

Because cross-sectional studies measure only prevalence, rather than incidence, it is impor-
tant to be cautious when drawing inferences about the causes, prognosis, or natural history of 
a disease. A factor that is associated with prevalence of disease may be a cause of the disease 
but could also just be associated with duration of the disease. For example, the prevalence of 
chronic renal failure is affected not only by its incidence, but also by survival once it has oc-
curred. Given the observation that obesity is associated with greater survival among dialysis pa-
tients (4), a cross-sectional study of the predictors of chronic renal failure might overestimate 
the association between obesity and renal failure.

Serial Surveys

Occasionally, investigators perform a series of cross-sectional studies in the same population, 
say every 5 years. This design can be used to draw inferences about changing patterns over 
time. For example, Zito et al. (5), using annual cross-sectional surveys, reported that the preva-
lence of prescription psychotropic drug use among youth (<20 years old) increased more than 

EXAMPLE 7.1 Cross-Sectional Study

Sargent et al. (2) sought to determine whether exposure to movies in which the actors 
smoke is associated with smoking initiation. The steps in performing the study were to:

 1. Define selection criteria and recruit the population sample. The investigators did a 
random-digit-dial survey of 6,522 U.S. children aged 10 to 14 years.

 2. Measure the predictor and outcome variables. They quantified smoking in 532 popu-
lar movies and for each subject asked which of a randomly selected subset of 50 mov-
ies they had seen. Subjects were also asked about a variety of covariates such as age, 
race, gender, parent smoking and education, sensation-seeking (e.g., “I like to do 
dangerous things”), and self-esteem (e.g., “I wish I were someone else”). The outcome 
variable was whether the child had ever tried smoking a cigarette.

The prevalence of ever having tried smoking varied from 2% in the lowest quartile of 
movie smoking exposure to 22% in the highest quartile. After adjusting for age and other 
confounders, these differences were statistically significant; the authors estimated that 
38% of smoking initiation was attributable to exposure to movies in which the actors 
smoke.
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threefold between 1987 and 1996 in a mid-Atlantic Medicaid population. Serial cross-sectional 
surveys have a longitudinal time frame, but they are not the same as a cohort study, because 
a new sample is drawn each time. As a result, changes within individuals cannot be assessed, 
and findings may be influenced by people entering or leaving the population (and, thus, the 
samples) due to births, deaths, and migration.

■  COHORT STUDIES

Prospective Cohort Studies

Cohort was the Roman term for a group of soldiers that marched together, and in clinical re-
search a cohort is a group of subjects, specified at the outset and followed over time. In a pro-
spective cohort study, the investigator begins by assembling a sample of subjects (Figure 7.2). 
She measures characteristics in each subject that might predict the subsequent outcomes, and 
follows these subjects with periodic measurements of the outcomes of interest (Example 7.2).

Strengths and Weaknesses of Prospective Cohort Studies

A major advantage of the cohort design is that, unlike cross-sectional designs, it allows the cal-
culation of incidence—the number of new cases of a condition occuring over time (Table 7.1). 
Measuring levels of the predictor before the outcome occurs establishes the time sequence of 
the variables, which strengthens the process of inferring the causal basis of an association. The 
prospective approach also prevents the predictor measurements from being influenced by the 
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■ FIGURE 7.2
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outcome or knowledge of its occurrence and it allows the investigator to measure variables 
more completely and accurately than is usually possible retrospectively. This is important 
for predictors such as dietary habits that are difficult for a subject to remember accurately. 
When fatal diseases are studied retrospectively, predictor variable measurements about the 
decedent can only be reconstructed from indirect sources such as medical records or friends 
and relatives.

All cohort studies share the general disadvantage of observational studies (relative to clinical 
trials) that causal inference is challenging and interpretation often muddied by the influences 
of confounding variables (Chapter 9). A particular weakness of the prospective design is its 

EXAMPLE 7.2 Prospective Cohort Study

The classic Nurses’ Health Study examines incidence and risk factors for common dis-
eases in women. The steps in performing the study were to:

 1. Define selection criteria and assemble the cohort. In 1976, the investigators obtained 
lists of registered nurses aged 25 to 42 in the 11 most populous states and mailed 
them an invitation to participate in the study; those who agreed became the cohort.

 2. Measure predictor variables, including potential confounders. They mailed a ques-
tionnaire about weight, exercise, and other potential risk factors and obtained com-
pleted questionnaires from 121,700 nurses. They sent questionnaires periodically to 
ask about additional risk factors and update the status of some risk factors that had 
been measured previously.

 3. Follow-up the cohort and measure outcomes. The periodic questionnaires also in-
cluded questions about the occurrence of a variety of disease outcomes, which were 
validated by the investigators.

The prospective approach allowed investigators to make measurements at baseline 
and collect data on subsequent outcomes. The large size of the cohort and long period 
of follow-up provided substantial statistical power to study risk factors for cancers and 
other diseases.

For example, the investigators examined the hypothesis that gaining weight increases 
a woman’s risk of breast cancer after menopause (6). The women reported their weight 
at age 18 in an early questionnaire, and follow-up weights in later questionnaires. The 
investigators succeeded in following 95% of the women, and 1,517 breast cancers were 
confirmed during the next 12 years. Heavier women had a higher risk of breast cancer 
after menopause, and those who gained more than 20 kg since age 18 had a twofold  
increased risk of developing breast cancer (relative risk = 2.0; 95% confidence interval, 
1.4 to 2.8). Adjusting for potential confounding factors did not change the result.

TABLE 7.1  STATISTICS FOR EXPRESSING DISEASE FREQUENCY  
IN OBSERVATIONAL STUDIES

TYPE OF STUDY STATISTIC DEFINITION

Cross-sectional Prevalence Number of people who have a disease or condition 
at a given point in time

Number of people at risk

Cohort Incidence rate Number of people who get a disease or condition

Number of people at risk × time period at risk
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expense and inefficiency for studying rare outcomes. Even diseases we think of as relatively 
common, such as breast cancer, happen at such a low rate in any given year that large numbers 
of people must be followed for long periods of time to observe enough outcomes to produce 
meaningful results. Cohort designs are more efficient for dichotomous outcomes that are more 
common and immediate, and for continuous outcomes.

Retrospective Cohort Studies

The design of a retrospective cohort study (Figure 7.3) differs from that of a prospective one in 
that the assembly of the cohort, baseline measurements, and follow-up have all happened in the 
past. This type of study is only possible if adequate data about the predictors are available on a 
cohort of subjects that has been assembled for other purposes, such as an electronic clinical or 
administrative database (Example 7.3).

Strengths and Weaknesses of Retrospective Cohort Studies

Retrospective cohort studies have many of the strengths of prospective cohort studies, and 
they have the advantage of being much less costly and time-consuming. The subjects are al-
ready assembled, baseline measurements have already been made, and the follow-up period has 
already taken place. The main disadvantages are the limited control the investigator has over 
the approach to sampling and follow-up of the population, and over the nature and the quality 
of the baseline measurements. The existing data may be incomplete, inaccurate, or measured 
in ways that are not ideal for answering the research question.

Population

Sample

THE PAST THE PRESENT

Existing cohort with 
predictors that have

been measured

Measure
outcome(s) that
have occured

lost to follow-up

■ FIGURE 7.3
the steps are to:
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Multiple-Cohort Studies and External Controls

Multiple-cohort studies begin with two or more separate samples of subjects: typically, one 
group with exposure to a potential risk factor and one or more other groups with no expo-
sure or a lower level of exposure (Figure 7.4). After defining suitable cohorts with different 
levels of exposure to the predictor of interest, the investigator measures other predictor 
variables, follows up the cohorts, and assesses outcomes as in any other type of cohort study 
(Example 7.4).

The use of two different samples of subjects in a double-cohort design should not be con-
fused with the use of two samples in the case–control design (Chapter 8). In a double-cohort 

EXAMPLE 7.3 Retrospective Cohort Study

Pearce et al. used UK National Health Service Central Registry data to describe the risk of 
leukemia and brain tumors associated with head CT scans in childhood (7). The steps in 
performing the study were to:

 1. Identify a suitable existing cohort. The cohort consisted of 178,604 children and 
young adults aged <22 who received head CT scans between 1985 and 2002.

 2. Collect predictor variable data. The investigators reviewed the records to collect gen-
der, age, numbers, and types of radiology procedures and estimated radiation dose.

 3. Collect outcome data. To avoid inclusion of CT scans related to cancer diagnosis, the 
investigators recorded leukemia occurring at least 2 years after the first CT, and brain 
tumors at least 5 years after the first CT, through 2008.

Childhood CT scans significantly increased the risk of leukemia and brain cancer, and 
the increase was dose-related; cumulative doses of 50–60 mGy tripled the risk of both 
leukemia and brain cancer. However, the absolute increase in risk was low, one excess 
case of each outcome per 10,000 head scans. The investigators, while noting that the 
benefits of the CT scans likely outweighed these risks, urged that radiation doses from 
CT scans be kept as low as possible in children, and that alternative procedures that 
avoid ionizing radiation be considered whenever appropriate.

EXAMPLE 7.4 Multiple-Cohort Design

To determine whether substantial neonatal jaundice or dehydration has adverse effects on 
neurodevelopment, investigators from UCSF and Kaiser Permanente of Northern California 
(8, 9) undertook a triple-cohort study. The steps in performing the study were to:

 1. Identify cohorts with different exposures. The investigators used electronic databases 
to identify term and near-term newborns who
1. had a maximum total serum bilirubin level of ≥ 25 mg/dL, or
2. were readmitted for dehydration with a serum sodium of ≥ 150 mEq/L or weight 

loss of ≥ 12% from birth, or
3. were randomly selected from the birth cohort

 2. Collect outcome data. The investigators used electronic databases to search for diagno-
ses of neurological disorders and did full neurodevelopmental examinations at the age 
of 5 for consenting participants (blinded to which of the three cohorts the participant 
belonged to).

Neither hyperbilirubinemia nor dehydration was associated with adverse outcomes.
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study the two groups of subjects are chosen based on the level of a predictor, whereas 
in a case–control study the two groups are chosen based on the presence or absence of 
an outcome.

In a variation on the multiple-cohort design, the outcome rate in a cohort can be compared 
with outcome rates in census or registry data from different populations. For example, in a 
classic study of whether uranium miners had an increased incidence of lung cancer, Wagoner 
et al. (10) compared the incidence of respiratory cancer in 3,415 uranium miners with that of 
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white men who lived in the same states. The increased incidence of lung cancer observed in 
the miners helped establish occupational exposure to ionizing radiation as an important cause 
of lung cancer.

The multiple-cohort design may be the only feasible approach for studying rare exposures to 
potential occupational and environmental hazards. Using data from a census or registry as the 
external control group has the additional advantage of being population-based and economical. 
Otherwise, the strengths of this design are similar to those of other cohort studies.

The problem of confounding is accentuated in a multiple-cohort study because the cohorts 
are assembled from separate populations that can differ in important ways (besides exposure to 
the predictor variable) that influence the outcomes. Although some of these differences, such 
as age and race, can be matched or used to adjust the findings statistically, other characteristics 
may not be measurable and create problems in the interpretation of observed associations.

■  STATISTICAL APPROACH TO COHORT STUDIES

Risks, odds, and rates are estimates of the frequency of a dichotomous outcome in subjects 
who have been followed for a period of time. These three measures are closely related, shar-
ing the same numerator—the number of subjects who develop the dichotomous outcome. 
Implicit in these three measures is the concept of being at risk, which means that the subject 
did not already have the outcome of interest at the beginning of the study. In a prospective 
study of the predictors of diabetes, a woman who had diabetes at baseline would not be at 
risk, since she already had the outcome of interest. On the other hand, there are episodic 
diseases, like heart failure requiring admission to a hospital, in which the outcome of interest 
may be the “incident” occurrence of a new episode, even if it occurs in someone who already 
has the disease.

Consider a study of 1,000 people who were followed for 2 years to see who developed lung 
cancer, and among whom eight new cases occurred each year. Risk, odds, and rate are shown 
in Table 7.2.

Of the three measures, risk is the easiest to understand because of its everyday familiarity—
the risk of getting lung cancer in two years was 16 out of a thousand. Odds are harder to grasp 
intuitively—the odds of getting lung cancer were 16 to 984; fortunately, for rare outcomes 
(as in this case) the odds are quantitatively similar to risk and have no particular advantage. In 
studies comparing two groups the odds ratio is also similar to the risk ratio when the outcome is 

TABLE 7.2  CALCULATION OF RISK, ODDS, AND RATE FOR A STUDY OF 1,000 
 PEOPLE FOLLOWED FOR TWO YEARS, WITH EIGHT NEW CASES OF LUNG 
 CANCER EACH YEAR

STATISTIC FORMULA EXAMPLE

Risk N who develop the outcome

N at risk

  16   
= 0.016

1,000

Odds N who develop the outcome

N who do not develop the outcome

 16   
= 0.0163

984

Rate* N who develop the outcome

Person-time at risk

        16 cases         
= 0.008 cases / Person-year

1,992 person-years

*The denominator for the rate is the number at risk in the first year (1,000), plus the number at risk in the second (992).
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rare, and this fact has unique importance in two situations: It is the basis for logistic regression 
calculations, and it is used to approximate relative risk in case–control studies  (Appendix 8B). 
Rates, which take into account the accumulation of events over the course of time, are ex-
pressed as numbers of events divided by person-time at risk—the total amount of follow-up 
for each of the study subjects so long as that individual is alive, remains in the study, and has 
not yet had the outcome.

In some cohort studies significant loss to follow-up, unequal follow-up, or deaths or other 
events that preclude ascertainment of the outcome may occur. In these cases it is helpful 
to compare incidence rates between the groups—the number of outcomes divided by the 
person-time at risk. Each subject in the study contributes months or years of person-time 
from entry into the cohort until she either develops the outcome of interest or is “censored” 
due to loss to follow-up or death. The incidence rate in any group in the study is the number 
of outcomes in that group divided by the sum of that group’s person-time at risk. As is true 
for the risk ratio (also known as relative risk), the rate ratio can be estimated as the quotient 
of rates in people who do and do not have a particular risk factor. The Cox proportional 
 hazard model provides a method for multivariate analysis of data of this form (sometimes 
called “time to event” data); it allows estimation of hazard ratios, which are similar to rate 
ratios and have come into widespread use as the measure of association in Cox  regression 
analyses.

Other Cohort Study Issues

The hallmark of a cohort study is the need to define the cohort of subjects at the beginning of a 
period of follow-up. The subjects should be appropriate to the research question and available 
for follow-up. They should sufficiently resemble the population to which the results will be 
generalized. The number of subjects should provide adequate power.

The quality of the study will depend on the precision and accuracy of the measurements of 
predictor and outcome variables (Chapter 4). The ability to draw inferences about cause and 
effect will depend on the degree to which the investigator has measured all potential confound-
ers (Chapter 9), and the ability to generalize to subgroups of the population will depend on 
the degree to which the investigator has measured all sources of effect modification. Predictor 
variables may change during the study; whether and how frequently measurements should be 
repeated depends on cost, how much the variable is likely to change, and the importance to the 
research question of observing these changes. Outcomes should be assessed using standardized 
criteria, and when their assessment could be influenced by awareness of key risk factors, it is 
helpful if those making the assessments can be blinded to that predictor.

Follow-up of the entire cohort is important, and prospective studies should take a 
number of steps to achieve this goal (Table 7.3). Subjects who plan to move out of reach 
during the study or who will be difficult to follow for other reasons should be excluded 
at the outset. The investigator should collect information early on that she can use to find 
subjects who move or die, including the address, telephone number, and e-mail address of 
the subject, her personal physician, and at least two close friends or relatives who do not 
live in the same house. Mobile telephone numbers and personal e-mail addresses are par-
ticularly helpful, as they often remain unchanged when subjects, friends, or family move or 
change jobs. If feasible, obtaining the social security number will help in determining the 
vital status of those lost to follow-up, and obtaining hospital discharge information from 
the Social Security Administration for subjects who receive Medicare. Periodic contact with 
the subjects once or twice a year helps in keeping track of them, and may improve the time-
liness and accuracy of recording the outcomes of interest. Finding subjects for follow-up 
assessments sometimes requires persistent and repeated efforts by mail, e-mail, telephone, 
or even house calls.



95

■  SUMMARY

 1. In a cross-sectional study, the variables are all measured at a single point in time, with 
no structural distinction between predictors and outcomes. Cross-sectional studies yield 
weaker evidence for causality than cohort studies because the predictor variable is not 
shown to precede the outcome.

 2. Cross-sectional studies are valuable for providing descriptive information about preva-
lence, and have the advantage of avoiding the time, expense, and dropout problems of a 
follow-up design; they are often useful as the first step of a cohort study or experiment, and 
can be linked in independently sampled serial surveys to reveal population changes over 
time.

 3. Cross-sectional studies require a large sample size when studying uncommon diseases and 
variables in the general population, but can be useful in a case series of an uncommon disease.

 4. In cohort studies, a group of subjects identified at the outset is followed over time to de-
scribe the incidence or natural history of a condition and to discover predictors (risk fac-
tors) for various outcomes. The ability to measure the predictor before the outcome occurs 
establishes the sequence of events and controls bias in that measurement.

 5. Prospective cohort studies begin at the outset of follow-up and may require large numbers 
of subjects followed for long periods of time. The latter disadvantage can sometimes be 

TABLE 7.3  STRATEGIES FOR MINIMIZING LOSSES DURING FOLLOW-UP

During enrollment

1. Exclude those likely to be lost:
a. Planning to move
b. Uncertainty about willingness to return
c. Ill health or fatal disease unrelated to research question

2. Obtain information to allow future tracking:
a. Address, telephone number (mobile phone numbers are particularly useful), and e-mail ad-

dress of subject
b. Social Security/Medicare number
c. Name, address, telephone number, and e-mail address of close friends or relatives who do not 

live with the subject
d. Name, address, telephone number, and email address of physician(s)

During follow-up*

1. Periodic contact with subjects to collect information, provide results, and be supportive:
a. By telephone: may require calls during weekends and evenings
b. By mail: repeated mailings by e-mail or with stamped, self-addressed return cards
c. Other: newsletters, token gifts

2. For those who are not reached by phone or mail:
a. Contact friends, relatives, or physicians
b. Request forwarding addresses from postal service
c. Seek address through other public sources, such as telephone directories and the Internet, and 

ultimately a credit bureau search
d. For subjects receiving Medicare, collect data about hospital discharges from the Social Security 

Administration

At all times

1. Treat study subjects with appreciation, kindness, and respect, helping them to understand the 
 research question so they will want to join as partners in making the study successful.

*This assumes that participants in the study have given informed consent to collect the tracking information and 
for follow-up contact.
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overcome by identifying a retrospective cohort in which measurements of predictor vari-
ables have already occurred.

 6. The multiple-cohort design, which compares the incidence of outcomes in cohorts that 
differ in the level of a predictor variable (“the exposure”), is useful for studying the effects 
of rare and occupational exposures.

 7. Risks, odds, and rates are three ways to estimate the frequency of a dichotomous outcome 
during follow-up; among these, incidence rates, which take into account person-time of 
participants who remain alive and event-free in the study, are the basis for modern ap-
proaches to calculating multivariate hazard ratios using Cox proportional hazard models.

 8. Inferences about cause and effect are strengthened by measuring and adjusting for all con-
ceivable potential confounding variables. Bias in the assessment of outcomes is prevented 
by standardizing the measurements and blinding those assessing the outcome to the pre-
dictor variable values.

 9. The strengths of a cohort design can be undermined by incomplete follow-up of subjects. 
Losses can be minimized by excluding subjects at the outset who may not be available for 
follow-up, by collecting baseline information that facilitates tracking, and by staying in 
touch with all subjects regularly.
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Designing Case–Control Studies
Thomas B. Newman, Warren S. Browner, Steven R. Cummings,  

and Stephen B. Hulley

In Chapter 7 we introduced cohort studies, in which the sequence of the measurements is 
the same as the chronology of cause and effect: predictor variables are measured first, then 
outcomes are observed during follow-up. In contrast, in a case–control study the investigator 
works backward. She begins by choosing one sample of people with the outcome (the cases) 
and another sample of people without that outcome (the controls); she then compares the 
levels of predictor variables in the two samples to see which predictors are associated with 
the outcome. For example, a case–control study might involve assembling a group of cases 
of ocular melanoma and a sample of healthy controls, followed by gathering data from each 
group about previous exposure to arc welding to estimate how that exposure affects the risk of 
ocular melanoma. The case–control design is relatively inexpensive and uniquely efficient for 
studying rare diseases.

This chapter also presents several variations on the simple case–control design noted above. 
A nested case–control design compares the incident cases nested in a cohort study with controls 
drawn at random from the rest of the cohort; this design controls sampling and measurement 
bias and saves money if the predictors are expensive measurements that can be made on stored 
specimens or images collected at the outset of the cohort study. An incidence-density case–control 
design allows investigators to analyze risk relationships, taking into account changes over time in 
risk factor levels and loss to follow-up. And a nested case–cohort design allows a random sample 
of the entire cohort to serve as the control for several different sets of cases. The chapter ends 
with advice on choosing among the observational study designs discussed in Chapters 7 and 8.

■ CASE–CONTROL STUDIES

Because most diseases are relatively uncommon, both cohort and cross-sectional studies of gen-
eral population samples are expensive designs, requiring thousands of subjects to identify risk 
factors for a rare disease like stomach cancer. As noted in Chapter 7, a case series of patients 
with the disease can identify an obvious risk factor (such as injection drug use for AIDS), using 
prior knowledge of the prevalence of the risk factor in the general population. For most risk 
factors, however, it is necessary to assemble a reference group, so that exposure to the risk fac-
tor in subjects with the disease (cases) can be compared with exposure to the risk factor among 
subjects without the disease (controls).

Case–control studies are retrospective (Figure  8.1). The study identifies one group of 
subjects with the disease and another without it, then looks backward to find differences in 
predictor variables that may explain why the cases got the disease and the controls did not 
(Example 8.1).

Case–control studies began as epidemiologic studies to identify risk factors for diseases. For 
this reason, and because it makes the discussion easier to follow, we generally refer to “cases” as 
those with the disease. However, the case–control design can also be used to look at other uncom-
mon outcomes, such as disability among those who already have a disease. In addition, when 

8C H A P T E R
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■ FIGURE 8.1  In a case–control study, the steps 
are to:
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undesired outcomes are the rule rather than the exception, the cases in a case–control study may 
be the rare patients who have had a good outcome, such as recovery from a usually fatal disease.

Case–control studies are the “house red” on the research design wine list: more modest and 
a little riskier than the other selections, but much less expensive and sometimes surprisingly 
good. The design of a case–control study is challenging because of the increased opportunities 
for bias, but there are many examples of well-designed case–control studies that have yielded 
important results. These include the links between maternal diethylstilbestrol use and vaginal 
cancer in daughters (a classic study that provided a definitive conclusion based on just seven 
cases!) (1), and between prone sleeping position and sudden infant death syndrome (2),  
a simple result that has saved thousands of lives (3).
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Case–control studies cannot yield estimates of the incidence or prevalence of a disease 
because the proportion of study subjects who have the disease is determined by how many 
cases and how many controls the investigator chooses to sample, rather than by their propor-
tions in the population. Case–control studies do provide descriptive information on the charac-
teristics of the cases and, more important, an estimate of the strength of the association between 
each predictor variable and the outcome. These estimates are in the form of odds ratios, which 
approximate the relative risk if the risk of the disease in both exposed and unexposed subjects 
is relatively low (about 10% or less; see Appendix 8B).

Strengths of Case–Control Studies

Efficiency for Rare Outcomes

One of the major strengths of case–control studies is their rapid, high yield of information 
from relatively few subjects. Consider a study of the effect of circumcision on subsequent 
carcinoma of the penis. This cancer is very rare in circumcised men but is also rare in uncir-
cumcised men, whose lifetime cumulative incidence is about 0.16% (9). To do a cohort study 
with a reasonable chance (80%) of detecting even a very strong risk factor (say a relative risk 
of 50) would require following more than 6,000 men for many years, assuming that roughly 
equal proportions were circumcised and uncircumcised. A randomized clinical trial of circum-
cision at birth would require the same sample size, but the cases would occur at a median of 
67 years after entry into the study—it would take three generations of investigators to follow 
the subjects!

Now consider a case–control study of the same question. For the same chance of detecting 
the same relative risk, only 16 cases and 16 controls (and not much time or effort from the 
investigators) would be required. For diseases that are either rare or have long latent periods 
between exposure and disease, case–control studies are not only far more efficient than other 
designs, they are often the only feasible option.

EXAMPLE 8.1 Case–Control Study

Because intramuscular vitamin K is given routinely to newborns in the United States, a 
pair of studies reporting a doubling in the risk of childhood cancer among those who had 
received intramuscular vitamin K caused quite a stir (4, 5). To investigate this association 
further, German investigators (6)

 1. Selected the sample of cases. 107 children with leukemia from the German 
 Childhood Cancer Registry.

 2. Selected the sample of controls. 107 children matched by sex and date of birth and 
randomly selected from children living in the same town as the case at the time of 
diagnosis (from local government residential registration records).

 3. Measured the predictor variable. Reviewed medical records to determine which cases 
and controls had received intramuscular vitamin K in the newborn period.

The authors found 69 of 107 cases (64%) and 63 of 107 controls (59%) had been treated 
with vitamin K, for an odds ratio of 1.3 (95% confidence interval [CI], 0.7 to 2.3). (See 
Appendix 8A for the calculation.) Therefore, this study did not confirm the existence of 
an association between the receipt of vitamin K as a newborn and subsequent childhood 
leukemia. The point estimate and upper limit of the 95% CI leave open the possibility 
of a clinically important increase in leukemia in the population from which the samples 
were drawn, but several other studies, and an analysis using an additional control group 
in the cited study, also failed to confirm the association (7, 8).
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Usefulness for Generating Hypotheses

The retrospective approach of case–control studies, and their ability to examine a large number 
of predictor variables, makes them useful for generating hypotheses about the causes of a new 
outbreak of disease. For example, a case–control study of an epidemic of deaths from acute 
renal failure in Haitian children found an odds ratio of 53 for ingestion of locally manufactured 
acetaminophen syrup. Further investigation revealed that the renal failure was due to poison-
ing by diethylene glycol, which was found to contaminate the acetaminophen syrup (10), a 
problem that unfortunately has recurred (11).

Weaknesses of Case–Control Studies

Case–control studies have great strengths, but they also have major disadvantages. First, only 
one outcome can be studied (the presence or absence of the disease that was the criterion for 
drawing the two samples), whereas cohort and cross-sectional studies (and clinical trials) can 
study several outcome variables. Second, as mentioned, the information available in case– control 
studies is limited: There is no direct way to estimate the incidence or prevalence of the disease, 
nor the attributable or excess risk, unless the investigator also knows the exact population and 
time period from which the cases arose. But the biggest weakness of case–control studies is their 
susceptibility to bias. This bias comes chiefly from two sources: the separate sampling of the 
cases and controls, and the retrospective measurement of the predictor variables. These two 
problems and the strategies for dealing with them are the topic of the next two sections.

Sampling Bias and How to Control It

The sampling in a case–control study begins with the cases. Ideally, the sample of cases would 
include everyone who developed the disease under study, or a random selection from those 
cases. An immediate problem comes up, however: How do we know who has developed the 
disease and who has not? In cross-sectional and cohort studies the disease is systematically 
sought in all the study participants, but in case–control studies the cases must be sampled 
from patients in whom the disease has already been diagnosed and who are available for study. 
This sample may not be representative of all patients who develop the disease because those 
who are undiagnosed, misdiagnosed, unavailable for study, or dead are unlikely to be included 
(Figure 8.2).

■ FIGURE 8.2
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In general, sampling bias matters when the sample of cases is unrepresentative with respect 
to the risk factor being studied. Diseases that almost always require hospitalization and are 
straightforward to diagnose, such as hip fracture and traumatic amputation, can be sampled 
safely from diagnosed and accessible cases, at least in developed countries. On the other hand, 
conditions that may not come to medical attention are more difficult to study with case–control 
studies because of the selection that precedes diagnosis. For example, women seen in a gyne-
cologic clinic with first-trimester spontaneous abortions would probably differ from the entire 
population of women experiencing spontaneous abortions, many of whom do not seek medical 
attention. Thus women with a prior history of infertility would be over-represented in a clinic-
based sample, while those with poor access to prenatal care would be under-represented. If 
a predictor variable of interest is associated with gynecologic care in the population (such as 
past use of an intrauterine device [IUD]), sampling cases from the clinic could be an important 
source of bias. If, on the other hand, a predictor is unrelated to gynecologic care (such as blood 
type), there would be less likelihood of a clinic-based sample being unrepresentative.

Although it is important to think about these issues, the selection of cases is often limited to 
the accessible sources of subjects. The sample of cases may not be entirely representative, but it 
may be all that the investigator has to work with. The difficult decisions faced by an investigator 
designing a case–control study then relate to the more open-ended task of selecting appropriate 
controls. The general goal is to sample controls from the population who would have become a 
case in the study if they had developed the disease. Four strategies for sampling controls follow:

 Clinic- or hospital-based controls. One strategy to compensate for the possible selection bias 
caused by obtaining cases from a clinic or hospital is to select controls from the same facility 
or facilities. For example, in a study of past use of an IUD as a risk factor for spontaneous 
abortion, controls could be sampled from a population of women seeking care for other 
problems (e.g., vaginitis) at the same gynecologic clinic. Compared with a random sample 
of women from the same area, these controls would presumably better represent the popula-
tion of women who, if they had a spontaneous abortion, would have come to the clinic and 
become a case.

However, selection of an unrepresentative sample of controls to compensate for an 
unrepresentative sample of cases can be problematic. If the risk factor of interest causes 
a medical problem for which the controls seek care, the prevalence of the risk factor in 
the control group will be falsely high, diminishing or reversing the association between 
the risk factor and the outcome. If, for example, many women in the control group 
sought attention at the clinic for a medical condition associated with past use of an IUD 
(e.g., infertility from older models of IUDs), there would be an excess of former IUD users 
among the controls, reducing the size of the association between past IUD use and spon-
taneous abortion in the study.

Because hospital- and clinic-based control subjects often have conditions that are associ-
ated with the risk factor(s) being studied, these types of controls can produce misleading 
findings. Thus it is essential to consider whether the convenience of using hospital- or 
clinic-based controls is worth the possible threat to the validity of the study.

 Using population-based samples of cases and controls. Because of the rapid increase in 
the use of disease registries in geographic populations and within health plans, population-
based case–control studies are now possible for many diseases. Cases obtained from such 
registries are generally representative of the general population of patients in the area with 
the disease, thus simplifying the choice of a control group: It should be a representative 
sample of “non-cases” from the population covered by the registry. In Example  8.1, all 
residents of the town were registered with the local government, making selection of such a 
sample straightforward.

When registries are available, population-based case–control studies are the most desirable 
design. As a disease registry approaches completeness and the population it covers approaches 
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stability (no migration in or out), a population-based case–control study approaches a case–
control study that is nested within a cohort study or clinical trial (page 104) assuming that 
the controls can be identified and enrolled. Those latter tasks are relatively straightforward 
when the population has been enumerated and these records are available to investigators, 
as in the vitamin K and leukemia study described in Example 8.1. Lacking such registration 
records, a commonly used approach is random digit dialing of (landline) phone numbers with 
prefixes in the region covered by the registry. (When controls are selected this way, the cases 
who have no landline telephone need to be excluded.) With increasing numbers of house-
holds with mobile phones only, this approach has become problematic (12). Random-digit 
dialing including cell phone numbers is possible, but must be done carefully, immediately 
ending the call if the recipient is driving and avoiding calls for which the recipient might be 
charged (13).

It’s important to recognize, however, that bias can be introduced any time subjects need 
to be contacted to obtain information because some subjects (say, those who do not speak 
English, or who are hard of hearing) may be less likely to be included. A similar problem 
can occur any time informed consent is needed.

 Using two or more control groups. Because selection of a control group can be so tricky, 
particularly when the cases may not be a representative sample of those with disease, it is 
sometimes advisable to use two or more control groups selected in different ways. The Pub-
lic Health Service study of Reye’s syndrome and medications (14), for example, used four 
types of controls: emergency room controls (seen in the same emergency room as the case), 
inpatient controls (admitted to the same hospital as the case), school controls (attending the 
same school or day care center as the case), and community controls (identified by random-
digit dialing). The odds ratios for salicylate use in cases compared with each of these control 
groups were all at least 30 and highly statistically significant. The consistent finding of a 
strong association using control groups that would have different sampling biases strength-
ens the inference that there is a real association in the population.

Unfortunately, few associations have odds ratios anywhere near that large, and the biases 
associated with different strategies for selecting controls may cause the results using different 
control groups to conflict with one another, thereby revealing the inherent fragility of the 
case–control design for the research question at hand. When this happens, the investigator 
should seek additional information (e.g., the chief complaint of clinic-based controls) to try 
to determine the magnitude of potential biases from each of the control groups (Chapter 9). 
In any case it is better to have inconsistent results and conclude that the answer is not 
known than to have just one control group and draw the wrong conclusion.

 Matching. Matching is a simple method of ensuring that cases and controls are comparable 
with respect to major factors that are related to the disease but not of interest to the investiga-
tor. So many risk factors and diseases are related to age and sex, for example, that the study 
results may be unconvincing unless the cases and controls are comparable with regard to 
these two variables. One approach to avoiding this problem is to choose controls that match 
the cases on these constitutional predictor variables. However, matching does have substantial 
disadvantages, particularly if modifiable predictors such as income or serum cholesterol level 
are matched. The reasons for this and the alternatives that are often preferable to matching are 
discussed in Chapter 9.

The second major weakness of case–control studies is the risk of bias due to measurement 
error. This is caused by the retrospective approach to measuring the predictor variables: both 
cases and control may be asked to recall exposures that happened years before. Unfortunately, 
people’s memories for past exposures are imperfect. If they are similarly imperfect in cases and 
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TABLE 8.1 APPROACHES TO BLINDING IN A CASE–CONTROL STUDY

PERSON BLINDED BLINDING CASE–CONTROL STATUS BLINDING RISK FACTOR MEASUREMENT

Subject Possible if both cases and con-
trols have diseases that could 
plausibly be related to the risk 
factor

Include “dummy” risk factors and be 
suspicious if they differ between cases 
and controls

disease has already been publicized

Observer Possible if cases are not exter-
nally distinguishable from 
controls, but subtle signs and 
statements volunteered by the 
subjects may make it difficult

Possible if interviewer is not the 
investigator, but may be difficult to 
maintain

controls, the problem is called nondifferential misclassification of the exposure, which makes 
it more difficult to find associations. (In epidemiologic terms, the odds ratio is biased toward 1.) 
Of greater concern, however, being diagnosed with a disease may lead cases to remember or 
report their exposures differently from controls; this differential misclassification of exposure, 
called recall bias, has unpredictable effects on associations measured in a study.

For example, widespread publicity about the relationship between sun exposure and malig-
nant melanoma might lead cases diagnosed with that cancer to recall their history of sun expo-
sure differently from controls. Cockburn et al. (15) found some evidence of this in a clever 
study of twins discordant for melanoma: The matched odds ratio for sunbathing as a child was 
2.2 (95% CI 1.0 to 4.7) when the twin with melanoma was asked which twin had sunbathed 
more as a child, but only 0.8 (0.4 to 1.8) when the co-twin without melanoma was asked the 
same question. However, for some other questions, such as which twin tanned or burned more 
easily, there was no evidence of recall bias.

Recall bias cannot occur in a cohort study because the subjects are asked about expo-
sures before the disease has been diagnosed. A case–control study of malignant melanoma 
nested within a cohort with sun exposure data collected years earlier provided a direct test 
of recall bias: The investigators compared self-reported sun exposure in cases and controls 
both before and after the case was diagnosed with melanoma (16). The investigators found 
some inaccuracies in recollections of exposure in both cases and controls, but little evidence 
of recall bias (16). Thus, while it is important to consider the possibility of recall bias, it is 
not inevitable (17).

In addition to the strategies set out in Chapter  4 for controlling bias in measurements 
(standardizing the operational definitions of variables, choosing objective approaches, supple-
menting key variables with data from several sources, etc.), here are two specific strategies for 
avoiding bias in measuring exposures in case–control studies:

 Use data recorded before the outcome occurred. It may be possible, for example, to exam-
ine perinatal medical records in a case–control study of intramuscular vitamin K as a risk 
factor for cancer. This excellent strategy is limited to the extent that recorded information 
about the risk factor of interest is available and reliable. For example, information about 
vitamin K administration was often missing from medical records, and how that missing 
information was treated affected results of some studies of vitamin K and subsequent cancer 
risk (8).

 Use blinding. The general approach to blinding was discussed in Chapter 4, but there are 
some issues that are specific to designing interviews in case–control studies. In theory, both 
observers and study subjects could be blinded to the case–control status of each subject and 
to the risk factor being studied; thus, four types of blinding are possible (Table 8.1).
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Ideally, neither the study subjects nor the observers should know which subjects are cases 
and which are controls. In practice, this is often difficult. The subjects know whether they 
are sick or well, so they can be blinded to case–control status only if controls are also ill with 
diseases that they believe might be related to the risk factors being studied. Efforts to blind 
interviewers are hampered by the obvious nature of some diseases (an interviewer can hardly 
help noticing if the subject is jaundiced or has had a laryngectomy), and by the clues that inter-
viewers may discern in the subject’s responses.

Blinding to specific risk factors being studied is usually easier than blinding to case–control 
status. Case–control studies are often the first step in investigating an illness, so there may not 
be just one risk factor of particular interest. Thus, the study subjects and the interviewer can be 
kept in the dark about the study hypotheses by including “dummy” questions about plausible 
risk factors not associated with the disease. For example, in a study of honey consumption as 
a risk factor for infant botulism, equally detailed questions about yogurt and bananas could 
be included in the interview. This type of blinding does not prevent differential bias, but it 
allows an estimate of whether it is a problem: If the cases report more exposure to honey but 
no increase in the other foods, then differential measurement bias is less likely. This strategy 
would not work if the association between eating honey and infant botulism had previously 
been widely publicized, or if some of the dummy risk factors turned out to be real ones.

Blinding the observer to the case–control status of the study subject is a particularly good 
strategy for laboratory measurements such as blood tests and x-rays. Blinding under these 
circumstances is easy and should always be done, simply by having someone other than the 
individual who will make the measurement apply a coded identification label to each speci-
men (or patient). The importance of blinding was illustrated by 15 case–control studies com-
paring measurements of bone mass between hip fracture patients and controls; much larger 
differences were found in the studies that used unblinded measurements than in the blinded 
studies (18).

■ NESTED CASE–CONTROL, INCIDENCE-DENSITY NESTED CASE–CONTROL, 
AND CASE–COHORT STUDIES

A nested case–control design has a case–control study “nested” within a defined cohort  
(Figure 8.3). The cohort may already have been defined by the investigator as part of a formal 
cohort study, often including banking of specimens, images, and so on, to be analyzed in the future 
after outcomes occur. Alternatively, the investigator can design a nested case–control study de 
novo, in a cohort that is not already defined, in which case defining the cohort will be the first step.

The investigator begins by identifying a cohort of subjects at risk for the outcome that is 
large enough to yield sufficient numbers of cases to answer the research question, and that 
provides the ability to measure the exposure variable, either because specimens have been 
banked or medical records (or subjects) with exposure information are available. As described 
in Chapter 7, definition of the cohort will include the specific inclusion and exclusion criteria 
that define a population at risk. In addition, the date of entry into the cohort must be clear 
for each subject. This could be a fixed date (e.g., everyone meeting inclusion criteria who was 
enrolled in a health plan on January 1, 2008), or it could be a variable date on which a period 
at risk begins (e.g., the date of enrollment in a cohort study or the date of first myocardial 
infarction in a study of risk factors for recurrent myocardial infarction).

The investigator next describes the criteria that define the occurrence of the outcome of 
interest, which in all cases will be after the date of entry into the cohort and before the end of 
the defined follow-up period. If the outcome is rare, follow-up close to complete, and a single 
measurement of the exposure at baseline is sufficient, then it is simple. The investigator identi-
fies all the individuals in the cohort who developed the outcome by the end of follow-up (the 
cases) and then selects a random sample of the subjects who were also part of the cohort but did 
not develop the outcome (the controls). The investigator then measures the predictor variables 
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EXAMPLE 8.2 Simple Nested Case–Control Design

To determine whether higher levels of sex hormones increased the risk of breast cancer, 
Cauley (19) and colleagues conducted a nested case–control study. The basic steps in 
performing this study were to:

 1. Identify a cohort. The investigators used the Study of Osteoporotic Fractures (SOF) 
cohort. This was a good choice because serum samples of members of this cohort had 
been drawn by the same investigators during the baseline examination and put into fro-
zen storage at –190°C with the expectation that just such a study would be designed.

 2. Identify cases at the end of follow-up. Based on responses to follow-up question-
naires and review of death certificates, the investigators identified 97 subjects who had 
developed a first occurrence of breast cancer during 3.2 years of follow-up.

 3. Select controls. The investigators selected a random sample of 244 women in the 
cohort who did not develop breast cancer during that follow-up period.

 4. Measure predictors. Levels of sex hormones, including estradiol and testosterone, were 
measured in the samples of frozen serum from the baseline examination of cases and 
controls. The laboratory was blinded to whether the samples came from cases or controls.

Women who had high levels of either estradiol or testosterone had a threefold increase in 
the risk of a subsequent diagnosis of breast cancer compared with women who had very 
low levels of these hormones.

for cases and controls, and compares levels of the risk factor in cases to the levels in the sample 
of controls. This is a simple nested case–control study (Example 8.2).

If follow-up is variable or incomplete, or the exposure of interest varies over time, a single 
measurement of exposure at entry into the cohort in the cases and a random sample of controls 
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will not be sufficient. In that case it is better to design an incidence-density nested case–control 
study and sample the controls from risk sets, defined for each case as it occurs as the members 
of the cohort who were followed the same length of time as the case but had not yet become 
cases (Figure 8.4). As is the case for any other form of matching of controls to cases, this match-
ing on follow-up time needs to be accounted for in the analysis.

For example, if entry in the cohort was a fixed date (e.g., January 1, 2008), the controls for 
a case diagnosed on July 1, 2009, would be sampled from among the subjects who had not yet 
developed the outcome as of July 1, 2009. If the date of entry into the cohort was variable, con-
trols for a case diagnosed 18 months after entry would be sampled from among those who had 
not yet become a case after 18 months of follow-up. Depending on the research hypothesis of 
the investigator, values of the exposure at entry or at some point after entry could be compared 
between cases and controls.

This sampling according to risk sets introduces the complexity that the same subject may be 
selected as a control for a case that occurs early in follow-up and later become a case himself, 
perhaps after his value for his exposure variable changes. In effect, what this design does (with 
the help of appropriate statistical analysis) is sequentially consider chunks of person-time at 
risk, for each chunk using values of predictor variables to predict occurrence of cases in that 
chunk of person-time, with the boundaries of each chunk defined by the occurrence of the 
cases. This is called an incidence-density design (Example 8.3).

A nested case–cohort design is similar to the simple nested case–control design except 
that, instead of selecting controls who did not develop the outcome of interest, the investiga-
tor selects a random sample of all the members of the cohort, regardless of outcomes. A few 
subjects who are part of that random sample may have developed the outcome (the number is 
very small when the outcome is uncommon). An advantage of the case–cohort design is that a 

■ FIGURE 8.4 An incidence-density
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EXAMPLE 8.3 “Incidence-Density” Nested Case–Control Design

To investigate a possible association between the oral antidiabetes drug pioglitazone 
(Actos®) and bladder cancer, investigators from Montreal (20) performed a case–control 
study nested within the United Kingdom General Practice Research Database, which con-
tains complete primary care medical records for more than 10 million people enrolled in 
more than 600 general practices in the UK. The steps were:

 1. Identify the cohort and time period at risk. The investigators included adults with 
their first ever prescription for an oral antidiabetes drug between January 1, 1988, 
and December 31, 2009, who had been followed in the database for at least 1 year 
before that prescription and who were at least 40 years old at the time of that prescrip-
tion. The date of this first antidiabetes drug prescription was the date of entry into 
the cohort. Participants were followed until a diagnosis of bladder cancer, death from 
any cause, end of registration with the general practice, or end of the study period on 
December 31, 2009, whichever came first. Subjects with a previous history of bladder 
cancer were excluded.

 2. Identify the cases, including dates of occurrence. The investigators identified incident 
cases of bladder cancer using “Read codes” (a system for coding diagnoses validated 
in the general practice research database [21]). To account for the expectation that 
the effect of pioglitazone on cancer risk would not be expected to be immediate, 
they excluded cases occurring in the first year after cohort entry. They identified 
376 remaining bladder cancer cases.

 3. Sample controls from “risk sets” matched to each case. The investigators sampled up 
to 20 controls for each case, matched on year of birth, year of cohort entry, sex, and 
duration of follow-up, who had not been diagnosed with bladder cancer up to the date 
of diagnosis of the case. The total number of matched controls was 6,699 (average 
number of controls per case = 17.8).1

 4. Define and measure predictors. The primary predictor of interest was receipt of a pre-
scription of either pioglitazone or rosiglitazone, another antidiabetes drug in the same 
class as pioglitazone. The prescription needed to be at least 1 year before the date of 
diagnosis of the case in the risk set. Four exposure levels were defined: prescription 
for pioglitazone only, rosiglitazone only, both, or neither.

The authors (appropriately) used conditional logistic regression to analyze the data; this 
accounts for the matched nature of the data and, because of the risk-set sampling, allows 
estimation of adjusted rate ratios (22). They found adjusted rate ratios of 1.83 (95% CI 
1.10 to 3.05) for exclusive pioglitazone use, 1.14 (95% CI 0.78 to 1.68) for exclusive rosi-
glitazone use, and 0.78 (95% CI 0.18 to 3.29) for use of both. (The wide confidence inter-
val on the last group reflects a much smaller sample size [N = 2 cases and 56 controls]). 
They also found evidence of dose-response relationship between pioglitazone use and 
bladder cancer: The adjusted rate ratio for cumulative dose of 28 grams or more was 2.54 
(1.05–6.14), P for dose-response trend = 0.03.

1We will point out in Chapter 9 that the gain in power from sampling more than four controls per case is slight, but in 
this case the additional cost was low because electronic data were already available. Even with 20 controls per case the 
nested case–control approach is much more computationally efficient than a retrospective cohort study.

single random sample of the cohort can provide the controls for several case–control studies of 
different outcomes. In addition, the random sample of the cohort provides information on the 
overall prevalence of risk factors in the cohort.
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Strengths

Nested case–control and case–cohort studies are especially useful for costly measurements on 
serum and other specimens or images that have been archived at the beginning of the study and 
preserved for later analysis. Making expensive measurements on all the cases and a sample of 
the controls is much less costly than making the measurements on the entire cohort.

This design preserves all the advantages of cohort studies that result from collecting predic-
tor variables before the outcomes have happened. In addition, it avoids the potential biases of 
conventional case–control studies that cannot make measurements on fatal cases and that draw 
cases and controls from different populations.

Weaknesses

These designs share certain disadvantages of other observational designs: the possibilities that 
observed associations are due to the effect of unmeasured or imprecisely measured confound-
ing variables and that baseline measurements may be affected by silent preclinical disease.

Other Considerations

Nested case–control and case–cohort designs have been used less often than they should 
be. An investigator planning large prospective studies should consider preserving biologic 
samples (e.g., banks of frozen sera) or storing images or records that are expensive to analyze 
for subsequent nested case–control analyses. She should ensure that the conditions of stor-
age will preserve substances of interest for many years. It may also be useful to collect new 
samples or information during the follow-up period, which can also be used in the case–control 
comparisons.

■ CASE-CROSSOVER STUDIES

The case-crossover design is a variant of the case–control design that is useful for studying 
the short-term effects of intermittent exposures. As with ordinary case–control studies, these 
retrospective studies begin with a group of cases: people who have had the outcome of inter-
est. However, unlike traditional case–control studies, in which the exposures of the cases are 
compared with exposures of a group of controls, in case-crossover studies each case serves as 
her own control. Exposures of the cases at the time (or right before) the outcome occurred are 
compared with exposures of those same cases at one or more other points in time.

For example, McEvoy et al. (23) studied cases who were injured in car crashes and reported 
owning or using a mobile phone. Using phone company records, they compared mobile phone 
usage in the 10 minutes before the crash with usage when the subjects were driving at the same 
time of day 24 hours, 72 hours, and 7 days before the crash. They found that mobile phone 
usage was more likely in the 10 minutes before a crash than in the comparison time periods, 
with an odds ratio of about 4. The analysis of a case-crossover study is like that of a matched 
case–control study, only the control exposures are exposures of the case at different time peri-
ods, rather than exposures of the matched controls. This is illustrated in Appendix 8A, scenario 
number 4. Case-crossover designs have been used in large populations to study time-varying 
exposures like levels of air pollution; associations have been found with myocardial infarction 
(24, 25), emergency room visits for respiratory disease (26), and even infant mortality (27).

■ CHOOSING AMONG OBSERVATIONAL DESIGNS

The pros and cons of the main observational designs presented in the last two chapters are 
summarized in Table 8.2. We have already described these issues in detail and will make only 
one final point here. Among all these designs, none is best and none is worst; each has its place 
and purpose, depending on the research question and the circumstances.
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TABLE 8.2 ADVANTAGES AND DISADVANTAGES OF THE MAJOR 
OBSERVATIONAL DESIGNS

DESIGN ADVANTAGES DISADVANTAGES*

Cross-sectional

Relatively short duration
A good first step for a cohort study 
or clinical trial
Yields prevalence of multiple predic-
tors and outcomes

events
Not feasible for rare predictors or 
rare outcomes

Cohort Designs

All

Number of outcome events grows  
over time
Yields incidence, relative risk,  
excess risk

Less feasible for rare outcomes

Prospective 
cohort and measurements

Avoids bias in measuring predictors

Follow-up can be lengthy
Often expensive

Retrospective 
cohort

Follow-up is in the past
Relatively inexpensive

Less control over subject selection 
and measurements

Useful when distinct cohorts have dif-
ferent or rare exposures

Bias and confounding from sampling 
distinct populations

Case–Control

Useful for rare outcomes
Short duration, small sample size
Relatively inexpensive

Bias and confounding from sampling 
two populations

Limited to one outcome variable

or excess risk unless nested within a 
cohort

Hybrid Designs

Nested Advantages of a retrospective  
cohort design, and less costly if 
 measurement of predictors is 
expensive

to bias if not previously measured 
or based on banked specimens or 
images stored previously; usually 

Incidence-
density nested 

Allows investigators to analyze risk 
relationships taking into account 
changes over time in risk factor levels 
and loss to follow-up

 factor levels and incidence of cases 
over time during follow-up; usually 

Nested 
use a single control group for mul-

-
ent outcomes

Case-crossover Cases serve as their own con-
trols, reducing random error and 
confounding

only immediate, short-term effects

*All these observational designs have the disadvantage (compared with randomized trials) of being susceptible to 
the influence of confounding variables—see Chapter 9.
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■ SUMMARY

 1. In a case–control study, the prevalence of a risk factor in a sample of subjects who have 
the outcome of interest (the cases) is compared with the prevalence in a sample that does 
not (the controls). This design, in which people with and without the disease are sampled 
separately, is relatively inexpensive and uniquely efficient for studying rare diseases.

 2. One problem with case–control studies is their susceptibility to sampling bias. Four 
approaches to reducing sampling bias are (a) to sample controls and cases in the same 
(admittedly unrepresentative) way; (b) to do a population-based study; (c) to use several 
control groups, sampled in different ways; and (d) to match the cases and controls.

 3. The other major problem with case–control studies is their retrospective design, which 
makes them susceptible to measurement bias affecting cases and controls differentially. 
Such bias can be reduced by using measurements of the predictor made prior to the out-
come and by blinding the subjects and observers.

 4. The best way to avoid both sampling and measurement bias is to design a nested case–
control study in which random samples of cases and controls are drawn from a larger 
cohort study at its conclusion. In addition to controlling both of these biases, expensive 
baseline measurements on serum, images, and so on, can be made at the end of the study 
on a relatively small number of study subjects.

 5. The incidence-density case–control design allows investigators to analyze risk relation-
ships, taking into account changes over time in risk factor levels and in the availability of 
follow-up.

 6. The nested case–cohort design uses a random sample of the entire cohort in place of the 
non-cases; this can serve as a control group for studying more than one outcome, and 
provides direct information on the overall prevalence of risk factors in the cohort.

 7. Case-crossover studies are a variation on the matched case–control design in which obser-
vations at two or more points in time allow each case to serve as her own control.



APPENDIX 8A
Calculating Measures 
of Association
 1. Cross-sectional study. Reijneveld (28) did a cross-sectional study of maternal smoking as 

a risk factor for infant colic. Partial results are shown below:

TABLE 8A.1

OUTCOME VARIABLE

INFANT COLIC NO INFANT COLIC TOTAL

(a) (b) (a + b)

smoke
(c) (d) (c + d)

Total a + c) b + d) a + b + c + d)

Prevalence of colic with smoking mothers = a a + b) = =
Prevalence of colic with nonsmoking mothers = c c + d) = =
Prevalence of colic overall = (a + c a + b + c + d) = =

Relative prevalence2 =  
8.2% 
4.3%  

= 1.9

Excess prevalence2 = 8.2% – 4.3% = 3.9%

In other words, colic was almost twice (1.9 times) as common, and occurred almost 4% more 
often, among children of smoking mothers.

 2. Case–control study. The research question for Example 8.1was whether there is an associa-
tion between intramuscular vitamin K and risk of childhood leukemia. The findings were 
that 69/107 leukemia cases and 63/107 controls had received vitamin K. A 2 × 2 table of 
these findings is as follows:

TABLE 8A.2

OUTCOME VARIABLE: DIAGNOSIS

 
CONTROL

a) b)

c) d)

Total

Relative risk ≈ odds ratio = 
ad 
bc

 = 69 × 44
63 × 38  

= 1.27

111

2Relative prevalence and excess prevalence are the cross-sectional analogs of relative risk and excess risk.
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Because the disease (leukemia in this instance) is rare, the odds ratio provides a good estimate 
of the relative risk. Thus, leukemia was about 1.3 times more likely after receipt of vitamin K, 
but this was not statistically significant.3

 3. Matched case–control study. 
  (To illustrate the similarity between analysis of a matched case–control study and a 

case-crossover study, we will use the same example for both.) The research question is 
whether mobile telephone use increases the risk of car crashes among mobile telephone 
owners. A traditional matched case–control study might consider self-reported frequency 
of using a mobile telephone while driving as the risk factor. Then the cases would be 
people who had been in crashes and they could be compared with controls who had not 
been in crashes, matched by age, sex, and mobile telephone prefix to the cases. The cases 
and controls would then be asked whether they ever use a mobile telephone while driving. 
(To simplify, for this example, we dichotomize the exposure and consider people as either 
“users” or “nonusers” of mobile telephones while driving.) We then classify each case/con-
trol pair according to whether both are users, neither is a user, or the case was a user but 
not the control, or the control was a user but not the case. If we had 300 pairs, the results 
might look like this:

TABLE 8A.3

CASES (WITH CRASH INJURIES)

USER NONUSER TOTAL

User

Nonuser

Total

Table 8A.3 shows that there were 90 pairs where the case ever used a mobile phone while driv-
ing, but not the matched control, and 40 pairs where the matched control but not the case was a 
“user.” Note that this 2 × 2 table is different from the 2 × 2 table from the unmatched vitamin 
K study in question 2, in which each cell in the table is the number of people in that cell. In 
the 2 × 2 table for a matched case–control study the number in each cell is the number of pairs 
of subjects in that cell; the total N in Table 8A.3 is therefore 600 (300 cases and 300 controls). 
The odds ratio for such a table is simply the ratio of the two types of discordant pairs; in the 
Table 8.A.3 the OR = 90/40 = 2.25. This implies that users of mobile phones had more than 
double the odds of being in a crash.

 4. Case-crossover study. Now consider the case-crossover study of the same question. Data 
from the study by McEvoy et al. are shown below.

TABLE 8A.4

CRASH TIME PERIOD

NOT USING TOTAL

Not using

Total

3The authors actually did a multivariate, matched analysis, as was appropriate for the matched design, but in this case 
the simple, unmatched odds ratio was almost the same as the one reported in the study.
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For the case-crossover study, each cell in the table is a number of subjects, not a number of 
pairs, but each cell represents two time periods for that one subject: the time period just before 
the crash and a comparison time period 7 days before. Therefore, the 5 in the upper left cell 
means there were 5 drivers involved in crashes who were using a mobile phone just before they 
crashed, and also using a mobile phone during the comparison period 7 days before, while the 
27 just below the 5 indicates that there were 27 drivers involved in crashes who were using a 
phone just before crashing, but not using a phone during the comparison period 7 days before. 
Similarly, there were 6 drivers involved in crashes who were not using their phone at the time 
of the crash, but were using them in the comparison time period 7 days before. The odds ratio 
is the ratio of the numbers of discordant time periods, in this example 27/6 = 4.5, meaning 
that driving during time periods of mobile phone use is associated with 4.5-fold higher odds of 
a crash than driving during time periods when not using a mobile phone.



APPENDIX 8B
Why the Odds Ratio Can Be Used 
as an Estimate for Relative Risk  
in a Case–Control Study
The data in a case–control study represent two samples: The cases are drawn from a population 
of people who have the disease and the controls from a population of people who do not have 
the disease. The predictor variable (risk factor) is measured, and the results can be summarized 
in a 2 × 2 table like the following one:

Cases Controls

Risk factor present a b

Risk factor absent c d

If this 2 × 2 table represented data from a cohort study, then the incidence of the disease 
in those with the risk factor would be a/(a + b) and the relative risk would be simply [a/(a + 
b)]/[c/(c + d)]. However, it is not appropriate to compute either incidence or relative risk in 
this way in a case–control study because the two samples are not drawn from the population 
in the same proportions. Usually, there are roughly equal numbers of cases and controls in the 
study samples but many fewer cases than controls in the population. Instead, relative risk in a 
case–control study can be approximated by the odds ratio, computed as the cross-product of 
the 2 × 2 table, ad/cb.

This extremely useful fact is difficult to grasp intuitively but easy to demonstrate algebra-
ically. Consider the situation for the full population, represented by a′, b′, c′, and d′.

Disease No Disease

Risk factor present a′ b′

Risk factor absent c′ d′

Here it is appropriate to calculate the risk of disease among people with the risk factor as a′/
(a′ + b′), the risk among those without the risk factor as c′/(c′ + d′), and the relative risk as 
[a′/(a′ + b′)]/[c′/(c′ + d′)]. We have already discussed the fact that a′/(a′ + b′) is not equal to 
a/(a + b). However, if the disease is relatively uncommon in both those with and without the 
risk factor (as most are), then a′ is much smaller than b′, and c′ is much smaller than d′. This 
means that a′/(a′ + b′) is closely approximated by a′/ b′ and that c′/(c′ + d′) is closely approxi-
mated by c′/d′. Therefore, the relative risk of the population can be approximated as follows:

a′/(a′ + b′) 
c′/(c′ + d′)   ≈ 

a′/ b′ 
c′/ d′

The latter term is the odds ratio of the population (literally, the ratio of the odds of disease in 
those with the risk factor, a′/b′, to the odds of disease in those without the risk factor, c′/d′). 
This can be rearranged as the cross-product:

a′ 
c′( ) d′ 

c′( )  
=

 
a′ 
c′( ) d′ 

b′( )
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However, a′/c′ in the population equals a/c in the sample if the cases are representative of all 
cases in the population (i.e., have the same prevalence of the risk factor). Similarly, b′/d′ equals 
b/d if the controls are representative.

Therefore, the population parameters in this last term can be replaced by the sample param-
eters, and we are left with the fact that the odds ratio observed in the sample, ad/bc, is a close 
approximation of the relative risk in the population, [a′/(a′ + b′)]/[c′/(c′ + d′)], provided that 
the disease is rare.
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C H A P T E R

Most observational studies are designed to suggest that a predictor may be a cause of an 
outcome, for example, that eating broccoli may reduce the risk of colon cancer. (Exceptions 
are studies of diagnostic and prognostic tests, discussed in Chapter 12.) Causal associations 
between a predictor and an outcome are important because they can provide insights into the 
underlying biology of a disease, identify ways to reduce or prevent its occurrence, and even 
suggest potential treatments.

However, not every association that is found in an observational study represents cause–effect. 
Indeed, there are four other general explanations for an association between a predictor and an out-
come in an observational study (Table 9.1). Two of these, chance and bias, create spurious associa-
tions between the predictor and the outcome in the study sample that do not exist in the population. 
Two others, effect–cause and confounding, create real associations in the population, but these asso-
ciations are not causal in the direction of interest. Establishing that cause–effect is the most likely 
explanation for an association requires demonstrating that these other explanations are unlikely.

We typically quantify the causal effect of a predictor variable on an outcome using a mea-
sure of association, such as a risk ratio or odds ratio. For example, suppose that a study reveals 
that coffee drinking has a risk ratio of 2.0 for myocardial infarction (MI). One possibility— 
presumably the one that the investigator found most interesting—is that drinking coffee 
doubles the risk of MI. Before reaching this conclusion, however, the four rival explanations 
must be considered and dismissed.

With chance and bias, coffee drinking was associated with a doubled risk of MI in the study, 
but that association is not actually present in the population. Thus, chance and bias are expla-
nations for spurious (i.e., not real) associations in a study.

The other two alternatives—effect–cause and confounding—are true biological phenom-
ena, which means that coffee drinkers in the population really do have twice the risk of MI. 
 However, that increased risk is not due to a cause–effect relationship. In one situation, the 
association is due to effect–cause: having an MI causes people to drink more coffee. (This is 
just cause and effect in reverse.) The final possibility, confounding, occurs when a third factor, 
such as personality type, causes both coffee drinking and MI.

In the remainder of the chapter, we will discuss strategies for estimating and minimizing the 
likelihood of these four alternative explanations for finding an association in an observational 
study. These strategies can be used while designing a study or when analyzing its results. While 
this book emphasizes research design, understanding the analytic options can influence the 
choice of design, so both topics will be considered in this chapter.

■  SPURIOUS ASSOCIATIONS DUE TO CHANCE

Suppose that in reality there is no association between coffee drinking and MI among  members 
of a population, 45% of whom drink coffee. If we were to select 20 cases with MI and 20 con-
trols, we would expect that about 9 people in each group (45% of 20) would drink coffee. 

Enhancing Causal Inference  
in Observational Studies
Thomas B. Newman, Warren S. Browner, and Stephen B. Hulley
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However, by chance alone, we might enroll 12 coffee drinkers among the 20 MI cases, but only 
6 in the 20 controls. If that happened, we would observe a spurious association between coffee 
consumption and MI in our study.

Chance is sometimes called random error, because it has no underlying explanation. When 
an association due to random error is statistically significant, it’s known as a type I error 
(Chapter 5).

Strategies for reducing random error are available in both the design and analysis phases 
of research (Table 9.2). Design strategies, such as increasing the precision of measurements 
and increasing the sample size, are discussed in Chapters 4 and 6, respectively. The analysis 
strategy of calculating P values and confidence intervals helps the investigator quantify the 
magnitude of the observed association in comparison with what might have occurred by chance 

TABLE 9.1  THE FIVE EXPLANATIONS FOR AN OBSERVED DOUBLING OF THE 
RISK OF MI ASSOCIATED WITH COFFEE DRINKING

EXPLANATION
TYPE OF 
ASSOCIATION

WHAT’S REALLY GOING  
ON IN THE POPULATION? CAUSAL MODEL

1. Chance (random 
error)

Spurious
not related.

—

2. Bias (systematic 
error)

Spurious
not related.

—

3. Effect–cause Real →

Real A third factor causes both      Factor X 

5. Cause–effect Real  →

TABLE 9.2  STRENGTHENING THE INFERENCE THAT AN ASSOCIATION IS DUE  
TO CAUSE–EFFECT BY REDUCING AND EVALUATING THE LIKELIHOOD OF  
SPURIOUS ASSOCIATIONS

TYPE OF SPURIOUS 
ASSOCIATION

DESIGN PHASE (HOW TO PREVENT 
THE RIVAL EXPLANATION)

ANALYSIS PHASE (HOW TO EVALUATE 
THE RIVAL EXPLANATION)

Chance (due to 
random error)

Increase sample size and other  
 

 (Chapters 4 and 6)

Calculate P values and confidence 
 intervals and interpret them in the 
 context of prior evidence (Chapter 5)

Bias (due to 
 systematic error)

Carefully consider the potential 
 consequences of each difference 
 between the research question and 

study plan if necessary

Check consistency with other stud-

Collect additional data that will allow  
assessment of the extent of possible  
biases

Analyze additional data to see if 
 potential biases have actually occurred

 
the predictor of interest as inclusion  your predictor variable
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alone. For example, a P value of 0.10 indicates that chance alone could cause a difference at 
least as large as the investigators observed about 10% of the time. Even more useful than P val-
ues, confidence intervals show the possible values for statistics describing an association that 
fall within the range of random error estimated in the study.

■  SPURIOUS ASSOCIATIONS DUE TO BIAS

Many kinds of bias—systematic error—have been identified, and dealing with some of them is 
a major topic of this book. Along with the specific strategies described in Chapters 3, 4, 7 and 
8, we now add a general approach to reducing the likelihood of bias.

Minimizing Bias

As was discussed in Chapter  1, there are almost always differences between the original 
research question and the one that is actually answered by the study. Those differences reflect 
the compromises that were made for the study to be feasible, as well as mistakes in the design 
or execution of the study. Bias occurs when those differences cause the answer provided by the 
study to differ from the right answer to the research question. Strategies for minimizing bias 
are available in both the design and analysis phases of research (Table 9.2).

Design phase. Begin by writing the research question next to the study plan, as in Figure 9.1. 
Then think through the following three concerns as they pertain to the research question:
 1. Do the samples of study subjects (e.g., cases and controls, or exposed and unexposed 

subjects) represent the population(s) of interest?
 2. Do the measurements of the predictor variables represent the predictors of interest?
 3. Do the measurements of the outcome variables represent the outcomes of interest?

For each question answered “No” or “Maybe not,” consider whether the bias applies 
similarly to one or both groups studied (e.g., cases and controls, or exposed and unexposed 
subjects) and whether the bias is likely to be large enough to affect the answer to the research 
question.

To illustrate this with our coffee and MI example, consider a case–control study in which 
the control subjects are sampled from patients hospitalized for diseases other than MI. If 
many of these patients have chronic illnesses that led them to reduce their coffee intake, the 
sample of controls will not represent the target population from which the MI cases arose: 
There will be a shortage of coffee drinkers. And if esophageal spasm, which can be exacer-
bated by coffee, is misdiagnosed as MI, a spurious association between coffee and MI could 
be found because the measured outcome (diagnosis of MI) did not accurately represent the 
outcome of interest (actual MI).

The next step is to think about possible strategies for preventing each potential bias, 
such as selecting more than one control group in a case–control study (Chapter 8) or the 
strategies for reducing measurement bias described in Chapter 4. In each case, judgments 
are required about the likelihood of bias and how easily it could be prevented with changes 
in the study plan. If the bias is easily preventable, revise the study plan and ask the three 
questions again. If the bias is not easily preventable, decide whether the study is still worth 
doing by judging the likelihood of the potential bias and the degree to which it will distort 
the association you are trying to estimate.

Potential biases may either be unavoidable or costly to prevent, or it may be uncertain to 
what extent they will be a problem. In either case, the investigator should consider designing 
the study to collect additional data that will allow an assessment of the seriousness of the 
biases. For example, if the investigator is concerned that the cases in a study of pancreatic 
cancer may over-report recent exposures to toxic chemicals (perhaps because these indi-
viduals are searching desperately for an explanation for why they have pancreatic cancer), 
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■ FIGURE 9.1 Minimizing bias by carefully considering differences between the research 
question and the study plan.

they could also be asked about exposures (such as coffee drinking!) that previous studies 
have shown have no effect on the risk of pancreatic cancer. If the investigator is concerned 
that a questionnaire does not accurately capture coffee drinking (perhaps because of poorly 
worded questions), she could assign a blinded interviewer to question a subset of the cases 
and controls to determine the agreement with their questionnaire responses. Similarly, if 
she is concerned that rather than causing MI, coffee increases survival among MI patients 
(which could lead to coffee drinkers being over-represented in a sample of MI survivors), 
the investigator could identify MI patients who died and interview their surviving spouses 
about their previous coffee-drinking habits.

 Analysis phase. Once the data have been collected, the goal shifts from minimizing bias to 
assessing its likely severity. The first step is to analyze data that have been collected for that 
purpose. For example, an investigator anticipating imperfect memory of coffee-drinking 
habits may have included questions about how sure the cases and controls are of their 
answers. The association between coffee drinking and MI could then be examined after 
stratifying on certainty about coffee intake, to see whether the association is stronger among 
those more certain of their exposure history.

The investigator can also look at the results of other studies. If the conclusions are consis-
tent, the association is less likely to be due to bias. This is especially true if the other studies 
have used different designs and are therefore unlikely to share the same biases. However, in 
many situations the potential biases turn out not to be a major problem. The decision on how 
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vigorously to pursue additional information and how best to discuss these issues in  reporting 
the study are matters of judgment for which it is helpful to seek advice from colleagues.

■  REAL ASSOCIATIONS OTHER THAN CAUSE–EFFECT

In addition to chance and bias, the two types of associations that are real but do not represent 
cause–effect must be considered (Table 9.3).

Effect–Cause

One possibility is that the cart has come before the horse—the outcome has caused the predic-
tor. Effect–cause is often a problem in cross-sectional and case–control studies: Does a seden-
tary lifestyle cause obesity, or vice versa? Effect–cause can also be a problem in case-crossover 
studies. For example, in the study of mobile phone use and motor vehicle accidents described 
in Chapter 8 (1), a car crash could cause the driver to make a mobile phone call reporting the 
crash, rather than the crash having been caused by an inattentive driver. To address this pos-
sibility, the investigators asked drivers about phone use before and after the crash, and verified 
the responses using phone records.

Effect–cause is less commonly a problem in cohort studies of disease causation because 
risk factor measurements can be made among subjects who do not yet have the disease. Even 
in cohort studies, however, effect–cause is possible if the disease has a long latent period and 
those with subclinical disease cannot be identified at baseline. For example, Type II diabetes 
is associated with subsequent risk of pancreatic cancer. Some of this association may well be 
effect–cause, because pancreatic cancer could affect the pancreatic islet cells that secrete insu-
lin, thus causing diabetes. Consistent with effect–cause, the risk of pancreatic cancer is highest 
just after diabetes is diagnosed (2). The association diminishes with the duration of diabetes, 
but some association persists even 4 years or more after the onset of diabetes (2–4) suggesting 
that at least some of the relationship may be cause–effect.

This example illustrates a general approach to ruling out effect–cause: looking for a dimi-
nution in the association with increasing time between the presumed cause and its effect. A 
second approach is to assess the biologic plausibility of effect–cause versus cause–effect. In this 
example effect-cause was plausible because pancreatic cancer could damage the pancreas, but 
the observation that having diabetes for more than 10 years is associated with an increased risk 
of a variety of other cancers as well as pancreatic cancer (4) increases the biologic plausibility 
of diabetes causing pancreatic cancer, rather than being only one of its effects.

TABLE 9.3  STRENGTHENING THE INFERENCE THAT AN ASSOCIATION HAS 
A CAUSE–EFFECT BASIS: RULING OUT OTHER REAL ASSOCIATIONS

TYPE OF REAL 
ASSOCIATION

DESIGN PHASE (HOW TO PREVENT 
THE RIVAL EXPLANATION)

ANALYSIS PHASE (HOW TO EVALUATE 
THE RIVAL EXPLANATION)

Effect–cause (the out-
come is actually the 
cause of the predictor)

which came first

 sequence of the variables

(Ultimate solution: do a 
 randomized trial)

 association immediately after the 
exposure to the predictor with 

variable causes both the 
predictor and outcome)
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Confounding

The other rival explanation in Table 9.3 is confounding, which occurs when a third factor is a 
real cause of the outcome and the predictor of interest is associated with, but not a cause of, this 
third factor. For example, if certain personality traits cause people to drink more coffee and also 
to be at higher risk of MI, these personality traits will confound the association between coffee 
and MI. If this is the actual explanation, then the association between coffee and MI does not 
represent cause–effect, although it is perfectly real: Coffee drinking is an innocent bystander 
in terms of causation.

In order to be a confounder, a variable must be associated with the predictor of interest and also 
be a cause of the outcome. Confounding can be even more complicated, and sometimes, yet 
another factor is involved. For example, work environment could cause people to drink coffee 
and to smoke cigarettes, which is a risk factor for MI. Appendix 9A gives a numeric example 
of how differences in cigarette smoking could lead to an apparent association between coffee 
drinking and MI.

What if coffee drinking caused smoking and smoking caused MI? In that case, smoking is 
called a mediator of the (causal) association between coffee drinking and MI, not a confounder. 
In general, it is best to avoid controlling for factors that lie along the causal path between a 
predictor and an outcome.

Aside from bias, confounding is often the only likely alternative explanation to cause–effect 
and the most important one to try to rule out. It is also the most challenging; much of the rest 
of this chapter is devoted to strategies for coping with confounders. It is worth noting, however, 
that all of these strategies involve judgments, and that no amount of epidemiologic or statistical 
sophistication can substitute for understanding the underlying biology.

■  COPING WITH CONFOUNDERS IN THE DESIGN PHASE

Most strategies for coping with confounding variables require that an investigator measure 
them, so it is helpful to begin by listing the variables (like age and sex) that may be associated 
with the predictor variable and also cause the outcome. The investigator must then choose 
among design and analysis strategies for controlling the influence of these potential confound-
ing variables.

The first two design phase strategies (Table  9.4), specification and matching, involve 
changes in the sampling scheme. Cases and controls (in a case–control study) or exposed and 
unexposed subjects (in a cohort study) can be sampled in such a way that they have compa-
rable values of the confounding variable. This removes the confounder as an explanation for 
any association that is observed between predictor and outcome. A third design phase strategy, 
using opportunistic study designs, is only applicable to selected research questions for which 
the right conditions exist. However, when applicable, these designs can resemble randomized 
trials in their ability to reduce or eliminate confounding not only by measured variables, but 
by unmeasured variables as well.

Specification

The simplest strategy is to design inclusion criteria that specify a value of the potential con-
founding variable and exclude everyone with a different value. For example, the investigator 
studying coffee and MI could specify that only nonsmokers be included in the study. If an asso-
ciation were then observed between coffee and MI, it obviously could not be due to smoking.

Specification is an effective strategy, but, as with all restrictions in the sampling scheme, it 
has disadvantages. First, even if coffee does not cause MIs in nonsmokers, it may cause them in 
smokers. This phenomenon—an effect of coffee on MI that is different in smokers from that in 
nonsmokers—is called effect modification (also known as an interaction); see Appendix 9A.Thus, 
specification limits the generalizability of information available from a study, in this instance 
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compromising our ability to generalize to smokers. A second disadvantage is that if smoking is 
highly prevalent among the patients available for the study, the investigator may not be able to 
recruit a large enough sample of nonsmokers. These problems can become serious if specifica-
tion is used to control too many confounders or to control them too narrowly. Sample size and 
generalizability would be major problems if a study were restricted to lower-income, nonsmok-
ing, 70- to 74-year-old men.

Matching

In a case–control study, matching can be used to prevent confounding by selecting cases and 
controls who have the same (matching) values of the confounding variable(s). Matching and 
specification both prevent confounding by allowing comparison only of cases and controls who 
share similar levels of the confounder. Matching differs from specification, however, in preserv-
ing generalizability, because subjects at all levels of the confounder can be studied.

Matching is usually done individually (pair-wise matching). To control for smoking in a 
study of coffee drinking as a predictor of MI, for example, each case (a subject with an MI) 
would be individually matched to one or more controls who smoked roughly the same amount 
as the case (e.g., 10 to 20 cigarettes/day). The coffee drinking of each case would then be com-
pared with the coffee drinking of the matched control(s).

An alternative approach to pair-wise matching is to match in groups (frequency matching). 
For each level of smoking, the cases with that amount of smoking are counted, and an appro-
priate number of controls with the same level of smoking are selected. If the study called for 
two controls per case and there were 20 cases who smoked 10 to 20 cigarettes/day, the investi-
gators would select 40 controls who smoked this amount, matched as a group to the 20 cases.

TABLE 9.4  DESIGN PHASE STRATEGIES FOR COPING WITH CONFOUNDERS

STRATEGY ADVANTAGES DISADVANTAGES

Specification

the research question at hand

Matching

and sex

confounders that are difficult to 
measure

the number of cases and controls in 
each stratum

 controls in a case–control study

outset of study and has an irreversible 
effect on analysis

variables are predictors and which are 
confounders

matched variables as predictors or as 

-

power)

multiple-cohort studies

“Opportunistic” 
study designs inference

alternative to a randomized trial

where predictor variable is randomly 

 instrumental variable exists
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Matching is most commonly used in case–control studies, but it can also be used with 
 multiple-cohort designs. For example, to investigate the effects of service in the 1990–1991 Gulf 
War on subsequent fertility in male veterans, Maconochie et al. (5) compared men deployed to 
the Gulf region during the war with men who were not deployed, but were frequency-matched 
by service, age, fitness to be deployed, and so on. They found a slightly higher risk of reported 
infertility (OR ~1.5) and a longer time to conception in the Gulf War veterans.

 Matching is an effective way to prevent confounding by constitutional factors like age, 
sex, and race that are strong determinants of outcome, not susceptible to intervention, and 
unlikely to be intermediaries on a causal path.

 Matching can be used to control confounders that cannot be measured and controlled in 
any other way. For example, matching siblings (or, better yet, twins) with one another can 
control for a whole range of genetic and familial factors that would be impossible to mea-
sure. Matching for clinical center in a multicenter study can control for unspecified differ-
ences among the populations or staff at geographically dispersed centers.

 Matching may increase the precision of comparisons between groups (and therefore the 
power of the study to find a real association) by balancing the number of cases and controls 
at each level of the confounder. This may be important if the available number of cases is 
limited or if the cost of studying the subjects is high. However, the effect of matching on 
precision is modest and not always favorable (see “overmatching,” p. 125). In general, the 
desire to enhance precision is a less important reason to match than the need to control 
confounding.

 Finally, matching may be used primarily as a sampling convenience, to narrow down an oth-
erwise impossibly large number of potential controls. For example, in a study of marijuana use 
as a risk factor for testicular germ cell tumors, investigators asked cases (men with testicular 
tumors) to suggest friends of similar age without tumors to be in the control group (6). This 
convenience, however, also runs the risk of overmatching.

 Matching requires additional time and expense to identify a match for each subject. In case–
control studies, for example, the more matching criteria there are, the larger the pool of con-
trols that must be searched to match each case. The possible increase in statistical power from 
matching must therefore be weighed against the increase in power that might be obtained by 
enrolling more cases.

 When matching is used as a sampling strategy, the decision to match must be made at the 
beginning of the study. It is therefore irreversible. This precludes further analysis of the 
effect of the matched variables on the outcome. It also can create a serious error if the match-
ing variable is not a constitutional variable like age or sex, but an intermediary in the causal 
path between the predictor and outcome. For example, if an investigator wishing to inves-
tigate the effects of alcohol intake on risk of MI matched on serum high-density lipoprotein 
(HDL) levels, she would miss any beneficial effects of alcohol that are mediated through 
an increase in HDL. Although the same error can occur with the analysis phase strategies, 
matching builds the error into the study in a way that cannot be undone; with the analysis 
phase strategies the error can be avoided by altering the analysis.

 Correct analysis of pair-matched data requires special analytic techniques (matched 
 analyses) that compare each subject only with her match, and not with other subjects who 
have differing levels of confounders. This means cases for whom a match cannot be found 
cannot be included. In the study of marijuana use and germ cell tumors, 39 of the 187 cases 
did not provide a friend control (6). The authors had to exclude these 39 cases from the 
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matched analysis. The use of unmatched analytic techniques on matched data can lead to 
incorrect results (generally biased toward no effect) because the assumption that the groups 
are sampled independently is violated.

 A final disadvantage of matching is the possibility of overmatching, which occurs when 
the matching variable is associated with the predictor but turns out not to be a confounder 
because it is not associated with the outcome. Overmatching can reduce the power of a 
case–control study, because the matched analysis discards matched case–control sets with 
the same level of exposure (Appendix 8A.3). In the marijuana and germ cell tumor study, for 
example, use of friend controls may have reduced the power by increasing the concordance 
in exposures between cases and their matched controls: Friends might tend to have similar 
patterns of marijuana use.

Opportunistic Studies

Occasionally, there are opportunities to control for confounding variables in the design 
phase, even without measuring them; we call these “opportunistic” designs because they uti-
lize unusual opportunities for controlling confounding. One example, useful when studying 
the immediate effects of short-term exposures, is the case-crossover study (Chapter  8)—all 
potential confounding variables that are constant over time (e.g., sex, race, social class, genetic 
factors) are controlled because each subject is compared only with herself in a different time 
period.

Another opportunistic design involves a natural experiment, in which subjects are either 
exposed or not exposed to a particular risk factor through a process that, in effect, acts ran-
domly (7). For example, Lofgren et al. (8) studied the effects of discontinuity of in-hospital care 
by taking advantage of the fact that patients admitted after 5:00 PM to their institution were 
alternately assigned to senior residents who either maintained care of the patients or trans-
ferred them to another team the following morning. They found that patients whose care was 
transferred had 38% more laboratory tests ordered (P = 0.01) and 2-day longer median length 
of stay (P = 0.06) than those kept on the same team. Similarly, Bell and Redelmeier (9) studied 
the effects of nursing staffing by comparing outcomes for patients with selected diagnoses who 
were admitted on weekends to those admitted on weekdays. They found higher mortality from 
all three conditions they predicted would be affected by reduced weekend staffing ratios, but 
no increase in mortality for patients hospitalized for other conditions.

As genetic differences in susceptibility to an exposure are elucidated, a strategy called 
Mendelian randomization (10) becomes an option. This strategy works because, for common 
genetic polymorphisms, the allele a person receives is determined at random within families, 
and not linked to most confounding variables. For example, some farmers who dip sheep in 
insecticides (to kill ticks, lice, etc.) have health complaints, such as headache and fatigue, that 
might be due to that occupational insecticide exposure. Investigators (11) took advantage of 
a polymorphism in the paraoxonase-1 gene, which leads to enzymes with differing ability to 
hydrolyze the organophosphate insecticide (diazinonoxon) used in sheep dip. They found that 
exposed farmers with health complaints were more likely to have alleles associated with reduced 
paraoxonase-1 activity than similarly exposed but asymptomatic farmers. This finding provided 
strong evidence of a causal relationship between exposure to sheep dip and health problems.

Natural experiments and Mendelian randomization are examples of a more general approach 
to enhancing causal inference in observational studies, the use of instrumental variables. These 
are variables associated with the predictor of interest, but not independently associated with the 
outcome. Whether someone is admitted on a weekend, for example, is associated with staffing 
levels, but was thought not to be otherwise associated with mortality risk (for the diagnoses 
studied), so admission on a weekend can be considered an instrumental variable. Similarly, 
activity of the paraoxonase-1 enzyme is associated with possible toxicity due to dipping sheep, 
but not otherwise associated with ill health. Other examples of instrumental variables are draft 
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lottery numbers to investigate delayed effects on mortality of military service during the Vietnam 
War era (12); and whether long-term survival for early-stage kidney cancer depends on how 
far someone lives from a urologist who does partial nephrectomies versus one who only does 
radical nephrectomies (13).

■  COPING WITH CONFOUNDERS IN THE ANALYSIS PHASE

The Design phase strategies specification and matching require deciding at the outset of the 
study which variables are confounders, and the investigators cannot subsequently estimate 
the effects of those confounders on an outcome. By contrast, analysis phase strategies keep 
the  investigator’s options open, so that she can change her mind about which variables to 
 control for at the time of analysis.

Sometimes there are several predictor variables, each of which may act as a confounder to 
the others. For example, although coffee drinking, smoking, male sex, and personality type are 
associated with MI, they are also associated with each other. The goal is to determine which of 
these predictor variables are independently associated with MI and which are associated with 
MI only because they are associated with other (causal) risk factors. In this section, we discuss 
analytic methods for assessing the independent contribution of predictor variables in observa-
tional studies. These methods are summarized in Table 9.5.1

Stratification

Like specification and matching, stratification ensures that only cases and controls (or exposed 
and unexposed subjects) with similar levels of a potential confounding variable are compared. 
It involves segregating the subjects into strata (subgroups) according to the level of a potential 
confounder and then examining the relation between the predictor and outcome separately in 
each stratum. Stratification is illustrated in Appendix 9A. By considering smokers and nonsmokers 
separately (“stratifying on smoking”), the confounding effects of smoking can be removed.

Appendix 9A also illustrates effect modification, in which stratification reveals that the asso-
ciation between predictor and outcome varies with (is modified by) the level of a third factor. 

Effect modification introduces additional complexity, because a single measure of association 
no longer can summarize the relationship between predictor and outcome. By chance alone, 
the estimates of association in different strata will rarely be precisely the same, and it is only 
when the estimates vary markedly that the findings suggest effect modification. Clinically sig-
nificant effect modification is uncommon, and before concluding that it is present it is neces-
sary to assess its statistical significance, and, especially if many subgroups have been examined 
(increasing the likelihood of at least one being statistically significant due to chance), to see if it 
can be replicated in another population. Biologic plausibility, or the lack thereof, may also con-
tribute to the interpretation. The issue of effect modification also arises for subgroup analyses 
of clinical trials (Chapter 11), and for meta-analyses when homogeneity (similarity) of studies 
is being considered (Chapter 13).

Stratification has the advantage of flexibility: by performing several stratified analyses, the 
investigator can decide which variables appear to be confounders and ignore the remainder. 
This can be done by combining knowledge about the likely directions of causal relationships 
with analyses determining whether the results of stratified analyses substantially differ from 
those of unstratified analyses (see Appendix 9A). Stratification also has the advantage of being 
reversible: No choices need be made at the beginning of the study that might later be regretted.

1Similar questions arise in studies of diagnostic tests (Chapter 12), but in those situations the goal is not to determine a 
causal effect, but to determine whether the test being studied adds substantial predictive power to information already 
available at the time it was done.
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TABLE 9.5  ANALYSIS PHASE STRATEGIES FOR COPING WITH CONFOUNDERS

STRATEGY ADVANTAGES DISADVANTAGES

Stratification

which variables to stratify upon after 
data collection

size needed for each stratum

measured

Statistical 
adjustment

-
trolled simultaneously

can be fully used  confounder-outcome relationship)

of effect (if model does not fit 
 predictor–outcome relationship)

-

measured

Propensity 
scores  controlled simultaneously

can be fully used
-

is used, does not require model 
assumptions

impossible

measured

size

The principal disadvantage of stratified analysis is the limited number of variables that can 
be controlled simultaneously. For example, possible confounders in the coffee and MI study 
might include age, personality type, systolic blood pressure, serum cholesterol, and cigarette 
smoking. To stratify on these five variables with only three strata for each would require 
35 = 243 strata! With this many strata there will be some strata with no cases or no controls, 
and these strata cannot be used.

To maintain a sufficient number of subjects in each stratum, a variable is often divided into 
broader strata. When the strata are too broad, however, the confounder may not be adequately 
controlled. For example, if the preceding study stratified age using only two strata (e.g., <50 
and ≥50 years), some residual confounding would still be possible if within each age stratum 
the subjects drinking the most coffee were older and therefore at higher risk of MI.

Adjustment

Several statistical techniques are available to adjust for confounders. These techniques model 
the nature of the associations among the variables to isolate the effects of predictor variables and 
confounders. For example, a study of the effect of lead levels on the intelligence quotient (IQ) 
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in children might examine parental education as a potential confounder. Statistical adjustment 
might model the relation between parents’ years of schooling and the child’s IQ as a straight 
line, in which each year of parent education is associated with a fixed increase in child IQ. The 
IQs of children with different lead levels could then be adjusted to remove the effect of parental 
education using the approach described in Appendix 9B.

Often, an investigator wants to adjust simultaneously for several potential confounders—
such as age, sex, race, and education. This requires using multivariate adjustment techniques, 
such as multivariable linear or logistic regression, or Cox proportional hazards analysis. These 
techniques have another advantage: They enable the use of all the information in continuous 
variables. It is easy, for example, to adjust for a parent’s education level in 1-year intervals, 
rather than stratifying into just a few categories. In addition, interaction terms can be used to 
model effect modification among the variables.

There are, however, disadvantages of multivariate adjustment. Most important, the 
model may not fit. Computerized statistical packages have made these models so acces-
sible that the investigator may not stop to consider whether their use is appropriate for the 
predictor and outcome variables in the study.3 Taking the example in Appendix 9B, the 
investigator should examine whether the relation between the parents’ years of schooling 
and the child’s IQ is actually linear. If the pattern is very different (e.g., the slope of the line 
becomes steeper with increasing education) then attempts to adjust IQ for parental educa-
tion using a linear model will be imperfect and the estimate of the independent effect of 
lead will be incorrect.

Second, the resulting statistics are often difficult to understand. This is particularly a prob-
lem if transformations of variables (e.g., parental education squared) or interaction terms are 
used. Investigators should spend the necessary time with a statistician (or take the necessary 
courses) to make sure they can explain the meaning of coefficients or other highly derived sta-
tistics they plan to report. As a safety precaution, it is a good idea always to start with simple, 
stratified analyses, and to seek help understanding what is going on if more complicated analy-
ses yield substantially different results.

Propensity Scores

Propensity scores can be particularly useful for observational studies of treatment efficacy to 
control confounding by indication—the problem that patients for whom a treatment is indi-
cated (and prescribed) are often at higher risk, or otherwise different, from those who do not 
get the treatment. Recall that in order to be a confounder, a variable must be associated with 
both the predictor and outcome. Instead of adjusting for all factors that predict outcome, use 
of propensity scores involves creating a multivariate model to predict receipt of the treatment. 
Each subject can then be assigned a predicted probability of treatment—a “propensity score.” 
This single score can be used as the only confounding variable in a stratified or mutlivariable 
analysis.

Alternatively, subjects who did and did not receive the treatment can be matched by pro-
pensity score, and outcomes compared between matched pairs. Unlike use of matching as a 
design-phase (sampling) strategy, propensity matching resembles other analysis phase strate-
gies in being reversible. However, matched propensity analyses fail for subjects who cannot be 
matched because their propensity scores are close to 0 or 1. While this reduces sample size, it 
may be an advantage because in these unmatchable subjects the propensity score analysis has 
identified a lack of comparability between groups and inability to control for confounding that 
might not have been apparent with other methods of multivariable analysis.

3One of our biostatistician colleagues has quipped that trying to design a user-friendly, intuitive statistical software 
package is like trying to design a car so that a child can reach the pedals.
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Analyses using propensity scores have several advantages. The number of potential con-
founding variables that can be modeled as predictors of an intervention is usually greater 
than the number of variables that can be modeled as predictors of an outcome, because the 
number of people treated is generally much greater than the number who develop the outcome 
(2,310 compared with 276 in the Example 9.1). Another reason that more confounders can be 
included is that there is no danger of “overfitting” the propensity model—interaction terms, 
quadratic terms, and multiple indicator variables can all be included (15). Finally, investigators 
are usually more confident in identifying the determinants of treatment than the determinants 
of outcome, because the treatment decisions were made by clinicians based on a limited num-
ber of patient characteristics.

Of course, like other multivariate techniques, use of propensity scores still requires that 
potential confounding variables be identified and measured. A limitation of this technique 
is that it does not provide information about the relationship between any of the confound-
ing variables and outcome—the only result is for the predictor (usually, a treatment) that 
was modeled. However, because this is an analysis phase strategy, it does not preclude 
doing more traditional multivariate analyses as well, and both types of analysis are usually 
done.

■  OTHER PITFALLS IN QUANTIFYING CAUSAL EFFECTS

Conditioning on a Shared Effect

The bias caused by conditioning on a shared effect is kind of tricky, and it is sometimes skipped 
in introductory textbooks because most explanations of it use abstract diagrams and notation. 
By contrast, we will first give a few examples of how it might occur, and then try to explain 
what the name means.

Consider a study of people who have lost at least 15 pounds in the previous year. An investi-
gator finds that the subjects who have been dieting have a lower risk of cancer than those who 
have not been dieting. Do you think dieting prevented cancer in these subjects?

If you stop and think, you’ll probably answer no, because cancer also causes weight loss. 
You can imagine that if someone loses weight for no apparent reason it is much more likely to 
signify a cancer than if someone loses weight while dieting. Among people who have lost weight, 
if the weight loss was not caused by dieting, it is more likely to have been caused by something 
more ominous. The investigators created an inverse association between dieting and cancer by 
conditioning on (restricting attention to) a shared effect (weight loss, which is caused by both 
dieting and cancer).

Here’s another example. Among low birth weight babies, those whose mothers smoked 
during pregnancy have lower infant mortality than those whose mothers did not smoke (16). 
Should we encourage more mothers to smoke during pregnancy? Definitely not! The reason 
for this observation is that smoking causes low birth weight, but so do other things, especially 
prematurity. So among low birth weight babies, if the low birth weight was not caused by smok-
ing, it is more likely to have been caused by prematurity. The investigators created an inverse 

EXAMPLE 9.1 Propensity Analysis

Gum et al. (14) prospectively studied 6,174 consecutive adults undergoing stress 
 echocardiography, 2,310 of whom (37%) were taking aspirin and 276 of whom died in 
the 3.1-year follow-up period. In unadjusted analyses, aspirin use was not associated 
with mortality (4.5% in both groups). However, when 1,351 patients who had received 
aspirin were matched to 1,351 patients with the same propensity to receive aspirin but 
who did not, mortality was 47% lower in those treated (P = 0.002).
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association between smoking and prematurity (and its associated mortality risk) by condition-
ing on (restricting attention to) a shared effect (low birth weight, which is caused by both 
smoking and prematurity).

Now the phrase “conditioning on a shared effect” makes sense. Conditioning is an epide-
miologic term that means looking at associations between predictor and outcome variables 
“conditioned on” (i.e., at specified levels of) some attribute. A shared effect refers to an attri-
bute (like losing weight, or being a low birth weight baby) that has several causes. Bias due to 
conditioning on a shared effect can occur if the investigator treats something caused by the risk 
factor being studied as an inclusion criterion, a matching variable, or a possible confounding 
variable.

Underestimation of Causal Effects

To this point, our emphasis has been on evaluating the likelihood of alternative explanations for 
an association, in order to avoid concluding that an association is real and causal when it is not. 
However, another type of error is also possible—underestimation of causal effects. Chance, bias, 
and confounding can also be reasons why a real association might be missed or underestimated.

We discussed chance as a reason for missing an association in Chapter 5, when we reviewed 
type II errors and the need to make sure the sample size will provide adequate power to find 
real associations. After a study has been completed, however, the power calculation is no longer 
a good way to quantify uncertainty due to random error. At this stage a study’s hypothetical 
power to detect an effect of a specified size is less relevant than the actual findings, expressed 
as the observed estimate of association (e.g., risk ratio) and its 95% confidence interval (17).

Bias can also distort estimates of association toward no effect. In Chapter 8, the need for 
blinding in ascertaining risk factor status among cases and controls was to avoid differential 
measurement bias, for example, differences between the cases and controls in the way ques-
tions were asked or answers interpreted that might lead observers to get the answers they 
desire. Because observers might desire results in either direction, differential measurement bias 
can bias results to either overestimate or underestimate causal effects. Non-differential bias, on 
the other hand, will generally lead to underestimation of associations.

Confounding can also lead to attenuation of real associations. For example, suppose coffee 
drinking actually protected against MI, but was more common in smokers. If smoking were not 
controlled for, the beneficial effects of coffee might be missed—coffee drinkers might appear 
to have the same risk of MI as those who did not drink coffee, when their higher prevalence 
of smoking should have caused their risk to be higher. This type of confounding, in which 
the effects of a beneficial factor are hidden by its association with a cause of the outcome, is 
sometimes called suppression (18). It is a common problem for observational studies of treat-
ments, because treatments are often most indicated in those at higher risk of a bad outcome. 
The result, noted earlier, is that a beneficial treatment can appear to be useless (as aspirin did 
in Example 9.1) or even harmful until the confounding by indication is controlled.

■  CHOOSING A STRATEGY

What general guidelines can be offered for deciding whether to cope with confounders dur-
ing the design or analysis phases, and how best to do it? The use of specification to control 
confounding is most appropriate for situations in which the investigator is chiefly interested in 
specific subgroups of the population; this is really just a special form of the general process of 
establishing criteria for selecting the study subjects (Chapter 3). However, for studies in which 
causal inference is the goal, there’s the additional caution to avoid inclusion criteria that could 
be caused by predictor variables you wish to study (i.e., conditioning on a shared effect).

An important decision to make in the design phase of the study is whether to match. Match-
ing is most appropriate for case–control studies and fixed constitutional factors such as age, 
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race, and sex. Matching may also be helpful when the sample size is small compared with the 
number of strata necessary to control for known confounders, and when the confounders are 
more easily matched than measured. However, because matching can permanently compromise 
the investigator’s ability to observe real associations, it should be used sparingly, particularly 
for variables that may be in the causal chain. In many situations the analysis phase strategies 
(stratification, adjustment, and propensity scores) are just as good for controlling confound-
ing, and have the advantage of being reversible—they allow the investigator to add or subtract 
covariates to explore different causal models.

Although not available for all research questions, it is always worth considering the possibil-
ity of an opportunistic study design. If you don’t stop and consider (and ask your colleagues 
about) these studies, you might miss a great opportunity to do one.

The final decision to stratify, adjust, or use propensity scores need not be made until after 
the data are collected; in many cases the investigator may wish to do all of the above. However, 
it is important during study design to consider which factors may later be used for adjustment, 
in order to know which variables to measure. In addition, because different analysis phase 
strategies for controlling confounding do not always yield the same results, it is best to specify 
a primary analysis plan in advance. This may help investigators resist the temptation of select-
ing the strategy that provides the most desired results.

Evidence Favoring Causality

The approach to enhancing causal inference has largely been a negative one thus far—how to 
rule out the four rival explanations in Table 9.1. A complementary strategy is to seek character-
istics of associations that provide positive evidence for causality, of which the most important 
are the consistency and strength of the association, the presence of a dose–response relation, 
and biologic plausibility.

When the results are consistent in studies of various designs, it is less likely that chance or 
bias is the cause of an association. Real associations that represent effect–cause or confound-
ing, however, will also be consistently observed. For example, if cigarette smokers drink more 
coffee and have more MIs in the population, studies will consistently observe an association 
between coffee drinking and MI.

The strength of the association is also important. For one thing, stronger associations give 
more significant P values, making chance a less likely explanation. Stronger associations also 
provide better evidence for causality by reducing the likelihood of confounding. Associations 
due to confounding are indirect (i.e., via the confounder) and therefore are generally weaker 
than direct cause–effect associations. This is illustrated in Appendix 9A: The strong associations 
between coffee and smoking (odds ratio = 16) and between smoking and MI (odds ratio = 4) led 
to a much weaker association between coffee and MI (odds ratio = 2.25).

A dose–response relation provides positive evidence for causality. The association between 
cigarette smoking and lung cancer is an example: Moderate smokers have higher rates of cancer 
than do nonsmokers, and heavy smokers have even higher rates. Whenever possible, predictor 
variables should be measured continuously or in several categories, so that any dose–response 
relation that is present can be observed. Once again, however, a dose–response relation can be 
observed with effect–cause associations or with confounding.

Finally, biologic plausibility is an important consideration for drawing causal inference—if 
a causal mechanism that makes sense biologically can be proposed, evidence for causality is 
enhanced, whereas associations that do not make sense given our current understanding of 
biology are less likely to represent cause–effect. For example, in the study of marijuana use as 
a risk factor for germ cell tumors, use of marijuana less than once a day was associated with 
lower risk than no use (6). It is hard to explain this biologically.

It is important not to overemphasize biologic plausibility, however. Investigators seem to be 
able to come up with a plausible mechanism for virtually any association and some associations 
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originally dismissed as biologically implausible, such as a bacterial etiology for peptic ulcer 
disease, have turned out to be real.

■  SUMMARY

 1. The design of observational studies should anticipate the need to interpret associations. 
The inference that the association represents a cause–effect relationship (often the goal 
of the study) is strengthened by strategies that reduce the likelihood of the four rival 
explanations—chance, bias, effect–cause, and confounding.

 2. The role of chance (random error) can be minimized by designing a study with adequate 
sample size and precision to assure low type I and type II error rates. Once the study is 
completed, the effect of random error can be judged from the width of the 95% confidence 
interval and the consistency of the results with previous evidence.

 3. Bias (systematic error) arises from differences between the population and phenomena 
addressed by the research question and the actual subjects and measurements in the study. 
Bias can be minimized by basing design decisions on a judgment as to whether these dif-
ferences will lead to a wrong answer to the research question.

 4. Effect–cause is made less likely by designing a study that permits assessment of temporal 
sequence, and by considering biologic plausibility.

 5. Confounding, which may be present when a third variable is associated with the predictor 
of interest and is a cause of the outcome, is made less likely by the following strategies, 
most of which require potential confounders to be anticipated and measured:
a. Specification or matching in the design phase, which alters the sampling strategy to 

ensure that only groups with similar levels of the confounder are compared. These strat-
egies should be used judiciously because they can irreversibly limit the information 
available from the study.

b. Analysis phase strategies that accomplish the same goal and preserve options for inves-
tigating causal paths:

Stratification, which in addition to controlling for confounding can reveal effect 
modification (“interaction”), a different magnitude of predictor–outcome associa-
tion at different levels of a third variable.
Adjustment, which can permit the impact of many predictor variables to be con-
trolled simultaneously.
Propensity scores, which enhance the power for addressing confounding by indica-
tion in observational studies of treatment efficacy.

 6. Investigators should be on the lookout for opportunistic observational designs, including 
natural experiments, Mendelian randomization, and other instrumental variable designs, 
that offer a strength of causal inference that can approach that of a randomized clinical 
trial.

 7. Investigators should avoid conditioning on shared effects in the design phase by not 
selecting subjects based on covariates that might be caused by the predictor, and in the 
analysis phase by not controlling for these covariates.

 8. Causal inference can be enhanced by positive evidence, notably the consistency and 
strength of the association, the presence of a dose–response relation, and biologic 
plausibility.
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The entries in these tables are numbers of subjects in this hypothetical case–control study

 Panel 1.  If we look at the entire group of study subjects, there appears to be an association 
between coffee drinking and MI:

Smokers and Nonsmokers Combined

Coffee

No coffee

 Odds ratios (OR) for MI associated with coffee
in smokers and nonsmokers combined    

 = 
90 × 90

60 × 60 
 = 2.25

 Panel 2.  However, this could be due to confounding, as shown by the tables stratified on smok-
ing which show that coffee drinking is not associated with MI in either smokers or 
nonsmokers:

Smokers

Coffee

No coffee

Nonsmokers

Coffee

No coffee

 Odds ratios for MI associated with coffee:

 OR in smokers = 
80 × 10

20 × 40 
 = 1 OR in nonsmokers = 

10 × 80

40 × 20 
 = 1

Smoking is a confounder because it is strongly associated with coffee drinking 
(below, left panel) and with MI (below, right panel): These tables were obtained by 
rearranging numbers in Panel 2.

Coffee No Coffee

Smokers

Nonsmokers
 
Odds ratio for coffee drinking  Odds ratio for MI associated with 

associated with smoking = 
120 × 120

30 × 30 
 = 16 smoking = 

100 × 100

50 × 50 
 = 4

Coffee and No Coffee Combined

Smokers

Nonsmokers
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 Panel 3.  The association between coffee drinking and MI in Panel 1 could also represent effect 
modification, if stratification on smoking revealed that the association between coffee  
drinking and MI differs in smokers and nonsmokers. In the table below, the OR of 
2.25 for the association between coffee drinking and MI in smokers and nonsmokers 
combined is due entirely to a strong association in smokers. When effect modifica-
tion is present, the odds ratios in different strata are different, and must be reported 
separately:

Smokers

Coffee 15

No coffee 33

OR in smokers = 
50 × 33

15 × 10 
 = 11

Nonsmokers

Coffee 45

No coffee 57

OR in nonsmokers = 
40 × 57

45 × 50 
 = 1

 Odds ratios for MI associated with coffee:

Bottom Line: The overall association between coffee drinking and MI in Panel 1 could be hiding 
the presence of confounding by smoking, which would be revealed by stratification on smoking 
(Panel 2). Or it could be hiding the presence of effect modification by smoking, which would 
also be revealed by stratification on smoking (Panel 3). It could also represent cause-effect, 
which would be supported (though not proven) if stratification on smoking did not alter the 
association between coffee drinking and MI. Finally (and most realistically), if could be a result 
of some mixture of all of the above.



APPENDIX 9B
A Simplified Example  
of Adjustment
Suppose that a study finds two major predictors of the intelligence quotient (IQ) of children: 
the parental education level and the child’s blood lead level. Consider the following hypotheti-
cal data on children with normal and high lead levels:

 
Parental Education

 
of Child

Normal lead level

Note that the parental education level is also associated with the child’s blood lead level. The 
question is, “Is the difference in IQ between children with normal and high lead levels more 
than can be accounted for on the basis of the difference in parental education?” To answer 
this question we look at how much difference in IQ the difference in parental education levels 
would be expected to produce. We do this by plotting parental educational level versus IQ in 
the children with normal lead levels (Figure 9.2).4

The diagonal dashed line in Figure 9.2 shows the relationship between the child’s IQ and 
parental education in children with normal lead levels; there is an increase in the child’s IQ of 5 
points for each 2 years of parental education. Therefore, we can adjust the IQ of the normal lead 
group to account for the difference in mean parental education by sliding down the line from 

120

115

110

105

100

95

90
6 8 10 12 14 16

Years of parental education

Mean IQ,
High lead

B

A′

A IQ difference due to
parental education

IQ difference
due to lead

Mean IQ, Normal lead,
adjusted for parental education

C
hi

ld
’s

 IQ

Mean IQ,
Normal lead

■ FIGURE 9.2 Hypothetical graph of child’s IQ as a linear function (dashed line) of years of 
parental education.

4This description of analysis of covariance (ANCOVA) is simplified. Actually, parental education is plotted against the 
child’s IQ in both the normal and high lead groups, and the single slope that fits both plots the best is used. The model 
for this form of adjustment therefore assumes linear relationships between education and IQ in both groups, and that 
the slopes of the lines in the two groups are the same.
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point A to point A'. (Because the group with normal lead levels had 2 more years of parental 
education on the average, we adjust their IQs downward by 5 points to make them comparable 
in mean parental education to the high lead group.) This still leaves a 10-point difference in 
IQ between points A and B, suggesting that lead has an independent effect on IQ of this mag-
nitude. Therefore, of the 15-point difference in IQ of children with low and high lead levels, 
5 points can be accounted for by their parents’ different education levels and the remaining 10 
are attributable to the lead exposure.
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C H A P T E R

In a clinical trial, the investigator applies an intervention and observes the effect on one or 
more outcomes. The major advantage of a trial over an observational study is the ability to 
demonstrate causality. Randomly assigning the intervention minimizes the influence of con-
founding variables, and blinding its administration minimizes the possibility that the apparent 
effects of the intervention are due to differential use of other treatments in the intervention and 
control groups or to biased ascertainment or adjudication of the outcome.

However, a clinical trial is generally expensive and time-consuming, addresses a narrow 
question, and sometimes exposes participants to potential harm. For these reasons, trials are 
best reserved for relatively mature research questions, when observational studies and other 
lines of evidence suggest that an intervention might be effective and safe but stronger evidence 
is required before it can be approved or recommended. Not every research question is ame-
nable to the clinical trial design—it is not feasible to study whether drug treatment of high-
LDL cholesterol in children will prevent heart attacks many decades later and it is not ethical 
to randomize people to smoke real or sham cigarettes to determine the effect on lung cancer. 
But clinical trial evidence on the efficacy and safety of clinical interventions should be obtained 
whenever possible.

This chapter focuses on designing the classic randomized blinded trial: choosing the inter-
vention and control conditions, defining outcomes and adverse effects, selecting participants, 
measuring baseline and outcome variables, and evaluating approaches to randomizing and 
blinding. In the next chapter we will cover alternative trial designs, and implementation and 
analysis issues.

■  SELECTING THE INTERVENTION AND CONTROL CONDITIONS

The classic randomized trial is a parallel, between-group design that includes a group that 
receives an intervention to be tested, and a control group that receives either no active treat-
ment (preferably a placebo) or a comparison treatment. The investigator applies the inter-
vention and control, follows both groups over time, and compares the outcome between the 
intervention and control groups (Figure 10.1).

Choice of Intervention

The choice of intervention is the critical first step in designing a clinical trial. Investigators 
should consider several issues as they design the intervention, including the dosage, duration, 
and frequency of the intervention that best balances efficacy and safety. It is also important to 
consider the feasibility of blinding, whether to treat with one or a combination of interven-
tions, acceptability to participants, and generalizability to the way the treatment will be used 
in practice. If important decisions are uncertain, such as which dose best balances efficacy and 
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safety, it is generally best to postpone major or costly trials until preliminary studies have been 
completed to help resolve the issue.

The best balance between efficacy and safety depends on the intervention and the condition 
being studied. On the one hand, efficacy is generally the paramount consideration in designing 
interventions to treat illnesses that cause severe symptoms or death. Therefore, it may be best to 
choose the highest tolerable dose for treatment of metastatic cancer. On the other hand, safety 
should be the primary criterion for designing interventions to treat symptomatic conditions 
that rarely result in disease progression or death. Preventive therapy for healthy people should 
meet stringent tests of safety: If it is effective, the treatment will prevent the condition in a few 
persons, but everyone treated will be at risk of the adverse effects of the therapy. In this case, it 
is generally best to choose the dose that maximizes efficacy with a very low risk of side effects. 
If the best dose is not certain based on prior animal and human research findings, there may be 
a need for additional trials that compare the effects of multiple doses on intermediate markers 
or clinical outcomes (see phase II trials, Chapter 11).

Sometimes an investigator may decide to compare several doses or levels of intensity with 
a single control group. For example, at the time the Multiple Outcomes of Raloxifene Evalua-
tion Trial was designed, it was not clear which dose of raloxifene (60 or 120 mg) was best, so 
the trial tested two doses for preventing vertebral fractures (1). This is sometimes a reasonable 
strategy, but it has costs: a larger and more expensive trial, and the complexity of dealing with 
multiple hypotheses (Chapter 5).

For some treatments the dose is adjusted to optimize the effect for each individual patient. 
In these instances, it may be best to design an intervention so that the dose of active drug is 
titrated to achieve a clinical outcome such as reduction in the hepatitis C viral load. To main-
tain blinding, corresponding changes should be made (by someone not otherwise involved 
in the trial) in the “dose” of placebo for a randomly selected or matched participant in the 
placebo group.

Sample

Population

Apply blinded intervention
Measure adherence

Loss to
follow-up

Loss to
follow-up

Apply blinded control
Measure adherence

Measure outcome(s)

Measure outcome(s)

Measure predictors

Store specimens
(optional)

■ FIGURE 10.1 In a randomized blinded trial, the steps are to
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Trials to test single interventions are generally much easier to plan and implement than 
those testing combinations of treatments. However, many medical conditions, such as HIV 
infection or congestive heart failure, are treated with combinations of drugs or therapies. The 
most important disadvantage of testing combinations of treatments is that the result cannot 
provide clear conclusions about any one element of the interventions. In one of the Women’s 
Health Initiative trials, for example, postmenopausal women were treated with estrogen plus 
progestin therapy or placebo. The intervention increased the risk of several outcomes, includ-
ing breast cancer; however, it was unclear whether the effect was due to the estrogen or the 
progestin (2). In general, it is preferable to design trials that have only one major difference 
between any two study groups.

The investigator should consider how receptive participants will be to the proposed inter-
vention, and whether it can be blinded. Another consideration is how well the intervention can 
be incorporated in practice. Simple interventions are generally better than complicated ones 
(patients are more likely to take a pill once a day than subcutaneous injections two or three 
times a day). Complicated interventions with qualitative aspects, such as multifaceted counsel-
ing about changing behavior, may not be feasible to incorporate in general practice because 
they are difficult to replicate, time-consuming, and costly. Such interventions are less likely to 
have public health impact, even if a trial proves that they are effective.

Choice of Control

The best control group receives no active treatment in a way that can be blinded, which for 
medications generally requires a placebo that is indistinguishable from active treatment. This 
strategy compensates for any placebo effect of the active intervention (i.e., through suggestion 
or expectation) so that any outcome difference between study groups can be ascribed to a 
 specific effect of the intervention.

The cleanest comparison between the intervention and control groups occurs when 
there are no co-interventions—medications, therapies, or behaviors (other than the study 
intervention) that alter the risk of developing the outcome of interest. For example, in a 
randomized trial evaluating a yoga intervention compared to usual care to prevent diabetes, 
study staff may urge participants to exercise and to lose weight. These are potentially effec-
tive  co-interventions that may reduce the risk of developing diabetes. If participants in both 
groups use effective co-interventions, the rate of outcomes will be decreased, power will 
be reduced, and the sample size will need to be larger or the trial longer. If use of effective 
co-interventions differs between the intervention and control groups, the outcome will be 
biased. In the absence of effective blinding, the protocol must include plans to obtain data 
to allow statistical adjustment for differences between the groups in the rate of use of such 
co-interventions during the trial. However, measuring co-interventions may be difficult, 
and adjusting for such postrandomization differences should be viewed as a secondary or 
explanatory analysis because it violates the intention-to-treat principle (Chapter 11).

Often it is not possible to withhold treatments other than the study intervention. For 
example, in a trial of a new drug to reduce the risk of myocardial infarction in persons with 
known coronary heart disease (CHD), the investigators cannot ethically prohibit or discourage 
participants from taking medical treatments that are indicated for persons with known CHD, 
such as aspirin, statins, and beta-blockers. One solution is to give standard care drugs to all 
participants in the trial; although this approach reduces the overall event rate and therefore 
increases the required sample size, it tests the most relevant clinical question: whether the new 
intervention improves the outcome when given in addition to standard care.

When the treatment to be studied is a new drug that is believed to be a good alternative to 
standard care, one option is to design a non-inferiority or equivalence trial in which the new 
treatment is compared with the one that is already proven to be effective (see Chapter 11).



140

■  CHOOSING OUTCOME MEASUREMENTS

The definition of the specific outcomes of the trial influences many other design components, 
as well as the cost and feasibility of the trial. Trials should usually include several outcomes 
to increase the richness of the results and possibilities for secondary analyses. However, one 
of these should be designated as the primary outcome that reflects the main question, allows 
calculation of the sample size, and sets the priority for efforts to implement the study.

Clinical outcomes provide the best evidence about whether and how to use treatments or 
preventive interventions. However, for outcomes that are uncommon, such as the occurrence 
of cancer, trials must generally be large, long, and expensive. As noted in Chapter 6, outcomes 
measured as continuous variables, such as quality of life, can generally be studied with fewer 
participants and than dichotomous outcomes. However the most important clinical outcome is 
sometimes unavoidably dichotomous, such as recurrence of cancer.

Intermediate markers, such as bone density, are measurements that are related to the 
clinical outcome. Trials that use intermediate outcomes can further our understanding of 
pathophysiology and provide information for choosing the best dose or frequency of treatment 
in trials with clinical outcomes. The clinical relevance of trials with intermediate outcomes 
depends on how accurately changes in these markers, especially changes that occur due to 
treatment, represent changes in the risk of clinical outcomes. Intermediate markers can be 
considered surrogate markers for the clinical outcome to the extent that treatment-induced 
changes in the marker consistently predict how treatment changes the clinical outcome (3). 
Generally, a good surrogate marker measures changes in an intermediate factor in the main 
pathway that determines the clinical outcome.

HIV viral load is a good surrogate marker because treatments that reduce the viral load 
consistently reduce morbidity and mortality in patients with HIV infection. In contrast, bone 
mineral density (BMD) is a poor surrogate marker (3). It reflects the amount of mineral in a 
section of bone, but treatments that improve BMD sometimes have little or no effect on fracture 
risk, and the magnitude of increase in BMD is not consistently related to how much the treat-
ment reduces fracture risk (4). The best evidence that a biological marker is a good surrogate 
comes from randomized trials of the clinical outcome (fractures) that also measure change in 
the potential surrogate marker (BMD) in all participants. If the marker is a good surrogate, then 
statistical adjustment for changes in the marker will account for much of the effect of treatment 
on the outcome (3).

Number of Outcome Variables

It is often desirable to have several outcome variables that measure different aspects of the 
phenomena of interest. In the Heart and Estrogen/Progestin Replacement Study (HERS), coro-
nary heart disease events were chosen as the primary endpoint. Coronary revascularization, 
hospitalization for unstable angina or congestive heart failure, stroke, transient ischemic attack, 
venous thromboembolic events, and all-cause mortality were also ascertained and adjudicated 
to provide a more detailed description of the cardiovascular effects of hormone therapy (5). 
However, a single primary outcome (CHD events) was designated for the purpose of planning 
the sample size and duration of the study and to avoid the problems of interpreting tests of 
multiple hypotheses (Chapter 5).

Composite Outcomes

Some trials define outcomes that are composed of a number of different events or measures. 
For example, many trials of interventions to reduce the risk of coronary heart disease include 
several specific coronary events in the outcome, such as myocardial infarction, coronary death, 
and coronary revascularization procedures. This may be reasonable if each of these outcomes 
is clinically important, the treatment works by similar mechanisms for each condition, and the 
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intervention is expected to reduce the risk of each event. In addition, a composite outcome 
generally provides greater power than a single outcome because there will be more events. 
However, composite outcomes that include events that are not as clinically meaningful or 
occur much more commonly than others in the composite can result in misleading findings. 
For example, if hospitalization for evaluation of chest pain is added to the composite coronary 
outcome, this event will dominate the composite if such hospitalizations occur much more 
commonly than myocardial infarction, coronary death, or revascularization. An intervention 
that alters the composite may then be reported to reduce the risk of “coronary events,” when 
in reality it only reduces the risk of hospitalization for chest pain.

Composite outcomes must be carefully designed. If treatment produces only a small effect 
on one outcome, especially if that outcome is relatively common, it may add little statistical 
power or even increase the sample size required to detect an effect. For example, if stroke is 
added to a composite “cardiovascular outcome,” the intervention might reduce the risk of 
coronary events, have no impact, or even increase the risk of stroke and therefore be found to 
have no effect on the composite cardiovascular outcome.

Adverse Effects

The investigator should include outcome measures that will detect the occurrence of adverse 
effects that may result from the intervention. Revealing whether the beneficial effects of an 
intervention outweigh the adverse ones is a major goal of most clinical trials, even those that 
test apparently innocuous treatments like a health education program. Adverse effects may 
range from relatively minor symptoms, such as a mild transient rash, to serious and fatal 
complications. The rate of occurrence, effect of treatment, and sample size requirements for 
detecting adverse effects is generally different from those required for detecting benefits. Unfor-
tunately, rare side effects will usually be impossible to detect even in large trials and are only 
discovered (if at all) by large observational studies or case reports after an intervention is in 
widespread clinical use.

In the early stages of testing a new treatment when potential adverse effects are unclear, 
investigators should ask broad, open-ended questions about all types of potential adverse 
effects. In large trials, assessment and coding of all potential adverse events can be very expen-
sive and time-consuming, often with a low yield of important results. Investigators should 
consider strategies for minimizing this burden while preserving an adequate assessment of 
potential harms of the intervention. For example, in very large trials, common and minor 
events, such as upper respiratory infections and gastrointestinal upset, might be recorded in a 
subset of the participants. It may not be necessary to record adverse effects that are not serious 
if previous studies have found no differences in the incidence of minor symptoms. In addi-
tion to these open-ended questions, specific queries should be designed to discover important 
adverse events that are expected because of previous research or clinical experience. For exam-
ple, because myositis is a reported side effect of treatment with statins, the signs and symptoms 
of myositis should be queried in any trial of a new statin.

Adverse effects that are reported as symptoms or clinical terms must be coded and cat-
egorized for analysis. MedDRA (www.ich.org/products/meddra.html) and SNOMED (https://
www.nlm.nih.gov/research/umls/) are commonly used dictionaries of terms that are grouped 
in several ways, as symptoms, specific diagnoses, and according to organ system. For example, 
an adverse event recorded as “fever and cough” and an adverse event recorded as “bronchi-
tis,” will be grouped with other conditions, like pneumonia, as a “respiratory infection” and, 
at a higher level, as an adverse effect in the respiratory system. These classification schemes 
provide a good general summary of adverse effects and are reasonably accurate for diseases 
that are specifically diagnosed, such as fractures. However, they may miss important adverse 
events that are described by several terms if these terms are not grouped together. For exam-
ple, in a trial of denosumab for prevention of osteoporotic fractures, MedDRA coded cases 

http://www.ich.org/products/meddra.html
https://www.nlm.nih.gov/research/umls/
https://www.nlm.nih.gov/research/umls/
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of cellulitis separately from cases of erysipelas (two names for the same type of infection). 
When combined, 12 serious cases of cellulitis occurred with denosumab versus 1 with placebo 
(P <0.001) (6).

Adverse effects are also generally classified by severity. Serious adverse events (SAEs) 
are defined as death or life-threatening events, events requiring or extending hospitalization, 
disability or permanent damage, birth defects, and other important medical events that may 
require medical or surgical intervention to prevent one of the other outcomes (www.fda.gov/
Safety/MedWatch/HowToReport/ucm053087.htm). Serious adverse events generally must be 
promptly reported to institutional review boards and to the sponsor of the trial.

When data from a trial is used to apply for regulatory approval of a new drug, the trial design 
must satisfy regulatory expectations for reporting adverse events (http://www.fda.gov/Drugs/
InformationOnDrugs/ucm135151.htm). Certain disease areas, such as cancer, have estab-
lished methods for classifying adverse events (http://ctep.cancer.gov/protocolDevelopment/ 
electronic_applications/ctc.htm).

■  SELECTING THE PARTICIPANTS

Chapter 3 discussed how to specify entry criteria defining a target population that is appro-
priate to the research question and an accessible population that is practical to study, how to 
design an efficient and scientific approach to selecting participants, and how to recruit them. 
Here we cover issues that are especially relevant to clinical trials.

Define Entry Criteria

In a clinical trial, inclusion and exclusion criteria have the goal of identifying a population in 
which it is feasible, ethical, and relevant to study the impact of the intervention on outcomes. 
Inclusion criteria should produce a sufficient number of participants who have a high enough 
rate of the primary outcome to achieve adequate power to find an important effect of the inter-
vention on the outcome. On the other hand, criteria should also maximize the generalizability 
of findings from the trial and the ease of recruitment. For example, if the outcome of interest 
is an uncommon event, such as breast cancer, it is usually necessary to recruit high-risk par-
ticipants in order to reduce the sample size and follow-up time to feasible levels. On the other 
hand, narrowing the inclusion criteria to high-risk women limits the generalizability of the 
results and makes it more difficult to recruit enough participants into the trial.

To plan the right sample size, the investigator must have reliable estimates of the rate of the 
primary outcome in people who might be enrolled. These estimates can be based on data from 
vital statistics, longitudinal observational studies, or rates observed in the untreated group in 
trials with inclusion criteria similar to those in the planned trial. For example, expected rates of 
pancreatic cancer in adults can be estimated from cancer registry data. The investigator should 
keep in mind, however, that screening and healthy volunteer effects generally mean that event 
rates among those who qualify and agree to enter clinical trials are lower than in the general 
population; it may be preferable to obtain rates of pancreatic cancer from the placebo group of 
other trials with similar inclusion criteria.

Including persons with a high risk of the outcome can decrease the number of participants 
needed for the trial. If risk factors for the outcome have been established, then the selection 
criteria can be designed to include participants who have a minimum estimated risk of the out-
come of interest. The Raloxifene Use for The Heart trial, designed to test the effect of raloxifene 
for prevention of cardiovascular disease (CVD) and breast cancer, enrolled women who were 
at increased risk of CVD based on a combination of risk factors (7). Another way to increase 
the rate of events is to limit enrollment to people who already have the disease. The Heart and 
Estrogen/Progestin Replacement Study included 2,763 women who already had coronary heart 
disease (CHD) to test whether estrogen plus progestin reduced the risk of new CHD events (5). 

http://www.fda.gov/Safety/MedWatch/HowToReport/ucm053087.htm
http://www.fda.gov/Safety/MedWatch/HowToReport/ucm053087.htm
http://www.fda.gov/Drugs/InformationOnDrugs/ucm135151.htm
http://www.fda.gov/Drugs/InformationOnDrugs/ucm135151.htm
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This approach was much less costly than the Women’s Health Initiative trial of the same research 
question in women without CHD, which required about 17,000 participants (8).

Although probability samples of general populations confer advantages in observational 
studies, this type of sampling is generally not feasible or necessary for randomized trials. Inclu-
sion of participants with diverse characteristics will increase the confidence that the results of a 
trial apply broadly. However, unless there are biological or genetic differences between popula-
tions that influence the effect of a treatment, it is generally true that results of a trial done in a 
convenience sample (e.g., women with CHD who respond to advertisements) will be similar to 
results obtained in probability samples of eligible people (all women with CHD). Occasionally, 
the efficacy of treatment depends on characteristics of the subjects; this is termed effect modifi-
cation or interaction (see Chapter 11) For example, some osteoporosis treatments substantially 
reduce the risk of fracture in women with very low bone density (T-scores below –2.5) with 
little or no effect in women with higher bone density (P = 0.02 for interaction) (9, 10). In this 
case, including only women with very low bone density in a trial may increase the effect size 
and reduce the sample size for a trial of similar treatments.

Stratification of participants by a characteristic, such as racial group, allows investigators to 
enroll a desired number of participants with a characteristic that may have an influence on the 
effect of the treatment or its generalizability. Recruitment to a stratum can be closed when the 
goal for participants with that characteristic has been reached. However, since most trials are 
not designed with sufficient sample size to test for heterogeneity in the effects of the interven-
tion among such subgroups, this strategy may be of limited practical value.

Exclusion criteria should be parsimonious because unnecessary exclusions may make it 
more difficult to recruit the necessary number of participants, diminish the generalizability of 
the results, and increase the complexity and cost of recruitment. There are five main reasons 
for excluding people from a clinical trial (Table 10.1).

TABLE 10.1  REASONS FOR EXCLUDING PEOPLE FROM A CLINICAL TRIAL

REASON

EXAMPLE: A TRIAL OF RALOXIFENE (A SELECTIVE 
ESTROGEN RECEPTOR MODULATOR) VERSUS 
PLACEBO TO PREVENT HEART DISEASE

1. A study treatment may be harmful.

active treatment
Prior venous thromboembolic event  (raloxifene 

events)

control
Recent estrogen receptor–positive breast 
 cancer (treatment with a selective estrogen 
 receptor modulator is effective, and a  standard 
of care)

 coronary heart disease

respond to treatment
Patient with valvular heart disease, which 

 anti-atherogenic effects of raloxifene

 interfere with the intervention raloxifene)

Poor adherence during the run-in period 

Plans to move before trial ends and won’t be 
available for final outcome measures 
Short life expectancy because of a serious illness

5. Practical problems with participating in the 
protocol.

Impaired mental state that prevents accurate 
answers to questions
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Potential participants should be excluded if the treatment or control is unsafe. The active 
treatment may be unsafe in people who are susceptible to known or suspected adverse effects 
of the active treatment. For example, myocardial infarction is a rare adverse effect of treat-
ment with sildenafil (Viagra), so trials of this drug to treat painful vasospasm in patients with 
Raynaud’s disease should exclude patients who have CHD (11). Conversely, being assigned to 
the inactive group or to placebo may be unsafe for some participants. For example, in women 
with vertebral fractures, bisphosphonates are known to reduce the risk of subsequent frac-
tures, making it unacceptable to enter them in a placebo-controlled trial of a new treatment 
for osteoporosis unless bisphosphonates are provided for all participants. Persons in whom the 
active treatment is unlikely to be effective should be excluded, as well as those who are unlikely 
to be adherent to the intervention or unlikely to complete follow-up. Occasionally, practical 
problems such as impaired mental status that makes it difficult to follow instructions justify 
exclusion. Investigators should carefully weigh potential exclusion criteria that apply to many 
people (e.g., diabetes or upper age limits) as these may have a large impact on the feasibility 
and costs of recruitment and the generalizability of results.

Design an Adequate Sample Size and Plan the Recruitment Accordingly

Trials with too few participants to detect important effects are wasteful, unethical, and may 
produce misleading conclusions (12). Estimating the sample size is therefore one of the most 
important early parts of planning a trial (Chapter 6), and should take into account the fact that 
outcome rates in clinical trials are commonly lower than estimated due to healthy volunteer 
biases. In addition, recruitment for a trial is often more difficult than recruitment for an obser-
vational study because participants have to be willing to be randomized, often to a placebo or 
“experimental” drug. For these reasons, the investigator should plan for a generous sample 
from a large accessible population, and enough time and money to enroll the desired sample 
size when (as often happens) the barriers to doing so turn out to be greater than expected.

■  MEASURING BASELINE VARIABLES

To facilitate contacting participants who are lost to follow-up, it is important to record the 
names, phone numbers, addresses, and e-mail addresses of two or three friends or relatives 
who will always know how to reach the participant. If permissible, it is also valuable to record 
Social Security numbers or other national ID numbers. These can be used to determine the 
vital status of participants (through the National Death Index) or to detect key outcomes using 
health records (e.g., health insurance systems). However, this “protected health information” 
must be kept confidential and should not accompany data that are sent to a coordinating center 
or sponsoring institution.

Describe the Participants

Investigators should collect information on risk factors or potential risk factors for the outcome 
and on participant characteristics that may affect the efficacy of the intervention. These mea-
surements also provide a means for checking on the comparability of the randomized study 
groups at baseline and provide information to assess the generalizability of the findings. The 
goal is to make sure that differences in baseline characteristics do not exceed what might be 
expected from the play of chance, suggesting a technical error or bias in carrying out the ran-
domization. In small trials that are prone to sizeable maldistributions of baseline characteristics 
across randomized groups by chance alone, measurement of important predictors of the out-
come permits statistical adjustment of the randomized comparison to reduce the influence of 
these chance maldistributions. Measuring predictors of the outcome also allows the investiga-
tor to examine whether the intervention has different effects in subgroups classified by baseline 
variables (effect modification, see Chapter 11).
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Measure Baseline Value of the Outcome Variable

If outcomes include change in a variable, the outcome variable must be measured at the begin-
ning of the study in the same way that it will be measured at the end. In studies that have a 
continuous outcome variable (effects of cognitive behavioral therapy on depression scores) the 
best measure is generally a change in the outcome over the course of the study. This approach 
usually minimizes the variability in the outcome between study participants and offers more 
power than simply comparing values at the end of the trial. In studies that have a dichotomous 
outcome (incidence of CHD, for example) it may be important to demonstrate by history and 
electrocardiogram that the disease is not present at the outset. It may also be useful to measure 
secondary outcome variables, and outcomes of planned ancillary studies, at baseline.

Be Parsimonious

Having pointed out multiple uses for baseline measurements, we should stress that the design 
of a clinical trial does not require that any be measured, because randomization minimizes 
the problem of confounding by factors that are present at the outset. Making a lot of measure-
ments adds expense and complexity. In a randomized trial that has a limited budget, time and 
money are usually better spent on things that are vital to the integrity of the trial, such as the 
adequacy of the sample size, the success of randomization and blinding, and the completeness 
of adherence and follow-up. Yusuf et al. have promoted the use of large trials with very few 
measurements (13).

Bank Specimens

Storing images, sera, DNA, etc. at baseline will allow subsequent measurement of changes 
caused by the treatment, markers that predict the outcome, and factors such as genotype that 
might identify people who respond well or poorly to the treatment. Stored specimens can also 
be a rich resource to study other research questions not directly related to the main outcome.

■  RANDOMIZING AND BLINDING

The fourth step in Figure 10.1 is to randomly assign the participants to two groups. In the sim-
plest design, one group receives an active treatment intervention and the other receives a pla-
cebo. Random assignment assures that age, sex, and other prognostic baseline characteristics 
that could confound an observed association (even those that are unknown or unmeasured) 
will be distributed equally, except for chance variation, among the randomized groups at base-
line. Blinding is important to maintain comparability of the study groups during the trial and 
to assure unbiased outcome ascertainment.

Randomization

Because randomization is the cornerstone of a clinical trial, it is important that it be done 
correctly. The two most important features are that the procedure truly allocates treatments 
 randomly and that the assignments are tamperproof so that neither intentional nor uninten-
tional factors can influence the randomization.

It is important that the participant complete the baseline data collection, be found eligible 
for inclusion, and give consent to enter the study before randomization. He is then randomly 
assigned by computerized algorithm or by applying a set of random numbers. Once a list of the 
random order of assignment to study groups is generated, it must be applied to participants in 
strict sequence as they enter the trial.

It is essential to design the random assignment procedure so that members of the research 
team cannot influence the allocation. For example, for trials done at one site, random treatment 
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assignments can be placed in advance in a set of sealed envelopes by someone who will not 
be involved in opening the envelopes. Each envelope must be numbered (so that all can be 
accounted for at the end of the study), opaque (to prevent transillumination by a strong light), 
and otherwise tamperproof. When a participant is randomized, his name and the number of 
the next unopened envelope are first recorded in the presence of a second staff member and both 
staff sign the envelope; then the envelope is opened and the treatment group contained therein 
assigned to the participant and recorded on a log.

Multicenter trials typically use a separate tamperproof randomization facility that the trial 
staff contact when an eligible participant is ready to be randomized. The staff member provides 
the name and study ID of the new participant. This information is recorded and the treatment 
group is then randomly assigned based on a computer program that provides a treatment assign-
ment number linked to the interventions. Treatment can also be randomly assigned by computer 
programs at a single research site as long as these programs are tamperproof. Rigorous precau-
tions to prevent tampering with randomization are needed because investigators sometimes find 
themselves under pressure to influence the randomization process (e.g., for an individual who 
seems particularly suitable for an active treatment group in a placebo-controlled trial).

Consider Special Randomization Techniques

The preferred approach is typically simple randomization of individual participants to each 
intervention group. Trials of small to moderate size will have a small gain in power if spe-
cial randomization procedures are used to balance the number of participants in each group 
(blocked randomization) and the distribution of baseline variables known to predict the out-
come (stratified blocked randomization).

Blocked randomization is a commonly used technique to ensure that the number of par-
ticipants is equally distributed among the study groups. Randomization is done in “blocks” 
of predetermined size. For example, if the block size is six, randomization proceeds normally 
within each block of six until three persons are randomized to one of the groups, after which 
participants are automatically assigned to the other group until the block of six is completed. 
This means that in a study of 30 participants exactly 15 will be assigned to each group, and in a 
study of 33 participants, the disproportion could be no greater than 18:15. Blocked randomiza-
tion with a fixed block size is less suitable for nonblinded studies because the treatment assign-
ment of the participants at the end of each block could be anticipated and manipulated. This 
problem can be minimized by varying the size of the blocks randomly (ranging, for example, 
from blocks of four to eight) according to a schedule that is not known to the investigator.

Stratified blocked randomization ensures that an important predictor of the outcome is 
more evenly distributed between the study groups than chance alone would dictate. In a trial 
of the effect of a drug to prevent fractures, having a prior vertebral fracture is such a strong 
predictor of outcome that it may be best to ensure that similar numbers of people who have 
vertebral fractures are assigned to each group. This can be achieved by carrying out blocked 
randomization separately by “strata”—those with and without vertebral fractures. Stratified 
blocked randomization can slightly enhance the power of a small trial by reducing the variation 
in outcome due to chance disproportions in important baseline predictors. It is of little benefit 
in large trials (more than 1,000 participants) because random assignment ensures nearly even 
distribution of baseline variables.

An important limitation of stratified blocked randomization is the small number of baseline 
variables, not more than two or three, that can be balanced by this technique. A technique for 
addressing this limitation is adaptive randomization, which uses a “biased coin” to alter the 
probability of assigning each new participant so that, for example, someone with a high risk 
score based on any number of baseline prognostic variables would be slightly more likely to 
join the study group that is at lower overall risk based on all participants randomized to that 
point. Disadvantages of this technique include the difficulty of explaining the likelihood of 



 147

assignment to study groups to potential participants during informed consent and the com-
plexity of implementation, with an interactive computerized system that recomputes the biased 
coin probabilities with each randomization.

Usually, the best decision is to assign equal numbers to each study group, as this maximizes 
power for any given total sample size., However,the attenuation in power of even a 2:1 dispro-
portion is quite modest (14)), and unequal allocation of participants to treatment and control 
groups may sometimes be appropriate (15):

 Increasing the ratio of active to control treatment can make the trial more attractive to 
potential participants, such as those with HIV infection who would like the greater chance 
of receiving active treatment if they enroll;

 Decreasing the ratio of active to control participants can make the trial affordable when the 
intervention is very expensive (as in the Women’s Health Initiative low-fat diet trial (16)).

 Increasing the proportion assigned to the group serving as a control for several active treat-
ment groups will increase the power of each comparison by increasing the precision of the 
control group estimate (as in the Coronary Drug Project trial (17)).

Randomization of matched pairs is a strategy for balancing baseline confounding variables 
that requires selecting pairs of participants who are matched on important characteristics like 
age and sex, then randomly assigning one member of each pair to each study group. A drawback 
of randomizing matched pairs is that it complicates recruitment and randomization, requiring 
that an eligible participant wait for randomization until a suitable match has been identified. 
In addition, matching is generally not necessary in large trials in which random assignment 
balances the groups on baseline variables. However, an attractive version of this design can be 
used when the circumstances permit a contrast of treatment and control effects in two parts of 
the same individual. In the Diabetic Retinopathy Study, for example, each participant had one 
eye randomly assigned to photocoagulation treatment while the other served as a control (18).

Blinding

Whenever possible, the investigator should design the interventions in such a fashion that the 
study participants, staff who have contact with them, persons making measurements, and those 
who ascertain and adjudicate outcomes do not know the study group assignment. When it is 
not possible to blind all of these individuals, it is highly desirable to blind as many as  possible 
(always, for example, blinding personnel making outcome measurements). In a randomized 
trial, blinding is as important as randomization. Randomization minimizes the influence 
of confounding variables at the time of randomization, but it has no impact on  differences 
that develop between the groups during follow-up (Table  10.2). Blinding minimizes post-
randomization sources of bias, such as co-interventions and biased outcome ascertainment and 
adjudication.

The use of blinding to prevent bias caused by co-interventions—medications, therapies, 
or behaviors other than the study intervention that change the risk of developing the out-
come of interest—has been discussed (p. 139). The second important purpose of blinding is 
to minimize biased ascertainment and  adjudication of outcomes. In an unblinded trial, the 
investigator may be tempted to look more carefully for outcomes in the untreated group or to 
diagnose the outcome more frequently. For example, in an unblinded trial of statin therapy, the 
investigators may be more likely to ask participants in the active treatment group about muscle 
pain or tenderness and to order tests to make the diagnosis of myositis. Blinding of subjects is 
particularly important when outcomes are based on self-reported symptoms.

After a possible outcome event has been ascertained, it may require adjudication. For 
example, if the outcome of the trial is myocardial infarction, investigators typically collect data 
on symptoms, EKG findings, and cardiac enzymes. Experts blinded to treatment group then 
use these data and specific definitions to adjudicate whether or not a myocardial infarction has 
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occurred. Results of the Canadian Cooperative Multiple Sclerosis trial illustrate the importance 
of blinding for unbiased outcome adjudication (19). Persons with multiple sclerosis were ran-
domly assigned to combined plasma exchange, cyclophosphamide and prednisone, or to sham 
plasma exchange and placebo medications. At the end of the trial, the severity of multiple 
sclerosis was assessed using a structured examination by neurologists blinded to treatment 
assignment and again by neurologists who were unblinded. Therapy was not effective based on 
the assessment of the blinded neurologists, but was statistically significantly effective based on 
the assessment of the unblinded neurologists. The unblinded neurologists were not purpose-
fully trying to bias the outcome of the trial, but there is a strong human desire to see patients 
improve after treatment, especially if the treatment is painful or potentially harmful. Blinding 
minimizes such biased outcome adjudication.

Blinded assessment of outcome may be less important if the outcome of the trial is a “hard” 
outcome such as death, or automated measurements about which there is little or no oppor-
tunity for biased assessment. Most other outcomes, such as cause of death, disease diagnosis, 
physical measurements, questionnaire scales, and self-reported conditions, are susceptible to 
biased ascertainment and adjudication.

After a trial is over, it may be a good idea to assess whether the participants and investigators 
were unblinded by asking them to guess which treatment the participant was assigned to. If 
a higher-than-expected proportion guesses correctly, the published discussion of the findings 
should include an assessment of the potential biases that partial unblinding may have caused.

What to Do When Blinding Is Impossible

In some cases blinding is difficult or impossible, either for technical or ethical reasons. For 
example, it is difficult to blind participants if they are assigned to an educational, dietary, or 
exercise intervention. Surgical interventions often cannot be blinded because it may be uneth-
ical to perform sham surgery in the control group. However, surgery is always associated with 
some risk, so it is very important to determine if the procedure is truly effective. For example, 
a recent randomized trial found that arthroscopic debridement of the cartilage of the knee was 
no more effective than arthroscopy with sham debridement for relieving osteoarthritic knee 
pain (20). In this case, the risk to participants in the control group might be outweighed if the 
results of the trial prevented thousands of patients from undergoing an ineffective procedure.

TABLE 10.2  IN A RANDOMIZED BLINDED TRIAL, RANDOMIZATION MINIMIZES 
CONFOUNDING AT BASELINE AND BLINDING MINIMIZES CO-INTERVENTIONS 
AND BIASED OUTCOME ASCERTAINMENT AND ADJUDICATION

EXPLANATION FOR  
ASSOCIATION

STRATEGY TO RULE OUT RIVAL 
EXPLANATION

1. Chance Same as in observational studies 

2. Bias Same as in observational studies 

3. Effect—Cause (Not a possible explanation in a trial)

variables
Randomization

4. Confounding

 variables (co-interventions)
Blinding

5. Cause—Effect
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If the intervention cannot be blinded, the investigator should at least limit potential co-
interventions as much as possible, and assure that individuals who ascertain and adjudicate 
the outcomes are blinded. For example, an investigator testing the effect of yoga for relief of 
menopausal hot flashes could instruct both yoga and control participants to refrain from start-
ing new medications, relaxation activities, or other treatments for hot flushes until the trial has 
ended. Also, study staff who collect information on the severity of hot flashes could be different 
from those who provide the yoga training.

■  SUMMARY

 1. A randomized blinded trial, properly designed and carried out, can provide the most defin-
itive causal inference as a basis for practice guidelines based on evidence-based medicine.

 2. The choice and dose of intervention is a difficult decision that balances judgments about 
efficacy and safety; other considerations include relevance to clinical practice, suitability 
for blinding, and whether to use a combination of drugs.

 3. When possible, the comparison group should be a placebo control that allows partici-
pants, investigators, and study staff to be blinded.

 4. Clinically relevant outcomes such as pain, quality of life, occurrence of cancer, and 
death are the most meaningful outcomes of trials. Intermediary outcomes, such as HIV 
viral load, are valid surrogate markers for clinical outcomes to the degree that treatment-
induced changes in the marker predict changes in the clinical outcome.

 5. Measuring more than one outcome variable is usually helpful, but combining them into 
composite outcomes requires careful consideration; a single primary outcome should be 
specified to test the main hypothesis.

 6. All clinical trials should include measures of potential adverse effects of the intervention, 
both targeted and (in moderation) open-ended measures with procedures to assure that 
serious adverse events (SAEs) are promptly reported to IRBs and sponsors.

 7. The criteria for selecting study participants should identify those who are likely to experience 
the most benefit and the least harm from treatment, and to adhere to treatment and follow-
up protocols. Choosing participants at high risk of the outcome can decrease sample size, 
but may make recruitment more difficult and decrease the generalizability of the findings.

 8. Baseline variables should be measured parsimoniously to describe participant charac-
teristics, measure risk factors for and baseline values of the outcome, and enable later 
examination of disparate intervention effects in various subgroups (effect modification). 
Consider storing baseline serum, genetic material, images, etc. for later analyses.

 9. Randomization, which minimizes the influence of baseline confounding variables, should 
be tamperproof; matched pair randomization is an excellent design when feasible, and in 
small trials stratified blocked randomization can reduce chance maldistributions of key 
predictors.

 10. Blinding the intervention is as important as randomization and serves to control co-
interventions and biased outcome ascertainment and adjudication.
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In the last chapter, we discussed the classic randomized, blinded, parallel group trial: how to select 
and blind the intervention and control conditions, randomly assign the interventions, choose out-
comes, deal with adverse events, select participants, and measure baseline and outcome variables.

In this chapter, we describe alternative randomized and non-randomized between-group 
trial designs, as well as within-group designs, cross-over studies, and pilot studies. We then 
address the conduct of clinical trials, including adherence to the intervention and follow-up, 
and ascertaining and adjudicating outcomes. We conclude with a discussion of statistical  issues 
such as interim monitoring for stopping the trial early, intention to treat and per-protocol 
analyses, and the use of subgroup analysis to discover effect modification.

■  ALTERNATIVE RANDOMIZED DESIGNS

There are a number of variations on the classic parallel group randomized trial that may be 
useful when the circumstances are right.

Factorial Design

The factorial design aims to answer two (or more) separate research questions in a single trial 
(Figure 11.1). A good example is the Women’s Health Study, which was designed to test the 
effect of low-dose aspirin and of vitamin E on the risk for cardiovascular events among healthy 
women (1). The participants were randomly assigned to four groups, and two hypotheses were 
tested by comparing two halves of the study cohort. First, the rate of cardiovascular events in 
women on aspirin was compared with women on aspirin placebo (disregarding the fact that 
half of each of these groups received vitamin E); then the rate of cardiovascular events in those 
on vitamin E was compared with all those on vitamin E placebo (now disregarding the fact 
that half of each of these groups received aspirin). The investigators have two complete trials 
for the price of one.

A limitation is the possibility of effect modification (interaction): if the effect of aspirin on 
risk for cardiovascular disease is different in women treated with vitamin E than in those not 
treated with vitamin E, effect modification is present and the effect of aspirin would have to be 
calculated separately in these two groups. This would reduce the power of these comparisons, 
because only half of the participants would be included in each analysis. Factorial designs can 
actually be used to study effect modification, but trials designed for this purpose are more com-
plicated and difficult to implement, larger sample sizes are required, and the results can be hard 
to interpret. Other limitations of the factorial design are that the same study population must 
be appropriate for each intervention, multiple treatments may interfere with recruitment and 
adherence, and analyses are more complex. That said, the factorial design can be very efficient. 
For example, the Women’s Health Initiative randomized trial was able to test the effect of three 
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■ FIGURE 11.1 In a factorial randomized trial, the steps are to:

interventions (postmenopausal hormone therapy, low-fat diet, and calcium plus vitamin D) on 
a number of outcomes (2).

Cluster Randomization

Cluster randomization requires that the investigator randomly assign naturally occurring 
groups or clusters of participants to the interventions, rather than individuals. A good example 
is a trial that enrolled players on 120 college baseball teams, randomly allocated half of the 
teams to an intervention to encourage cessation of spit-tobacco use, and observed a signifi-
cantly lower rate of spit-tobacco use among players on the teams that received the intervention 
compared to control teams (3). Applying the intervention to groups of people may be more 
feasible and cost effective than treating individuals one at a time, and it may better address re-
search questions about the effects of public health programs in the population. Some interven-
tions, such as a low-fat diet, are difficult to implement in only one member of a family. When 
participants in a natural group are randomized individually, those who receive the intervention 
are likely to discuss or share the intervention with family members, colleagues, team members, 
or acquaintances who have been assigned to the control group.

In the cluster randomization design, the units of randomization and analysis are groups, 
not individuals. Therefore, the effective sample size is smaller than the number of individual 
participants and power is diminished. The effective sample size depends on the correlation of 
the effect of the intervention among participants in the clusters and is somewhere between the 
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number of clusters and the number of participants (4). Other drawbacks are that sample size 
estimation and data analysis are more complicated in cluster randomization designs than for 
individual randomization (4).

Active Control Trials: Equivalence and Non-Inferiority

An active control trial is one in which the control group receives an active treatment. This  
design may be optimal when there is a known effective treatment or “standard of care” for a 
condition. This type of trial is sometimes called a comparative effectiveness trial because two 
treatments are compared.

In some cases, the aim of an active control trial is to show that a new treatment is superior 
to an established treatment. In this situation, the design and methods are similar to a placebo-
controlled trial. In most cases, however, investigators want to establish that a new therapy that 
has some advantages over an established therapy (easier to use, less invasive, safer) has similar 
efficacy. In this case, an equivalence or non-inferiority trial is more appropriate.

The statistical methods for equivalence or non-inferiority trials are different than for trials 
designed to show that one treatment is better than another. In a trial designed to show that 
a treatment is superior, the standard analysis uses tests of statistical significance to accept or 
reject the null hypothesis that there is no difference between groups. In a trial designed to 
show that a new treatment is equivalent to the standard treatment, on the other hand, the 
ideal goal would be to accept the null hypothesis of no difference. But proving that there is no 
difference between  treatments (not even a tiny one) would require an infinite sample size. So 
the practical solution is to design the sample size and analysis plan using a confidence interval 
(CI) approach— considering where the CI for the effect of the new treatment compared to the 
standard treatment lies with respect to a prespecified delta (“∆”), the unacceptable difference in 
efficacy between the two treatments (5, 6). Equivalence or non-inferiority is considered estab-
lished at the level of significance specified by the CI if the CI around the difference in efficacy 
of the new compared to the established treatment does not include ∆ (Figure 11.2). This is a 
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two-tailed consideration in the case of an equivalence trial (i.e., the new treatment is neither 
worse nor better than the standard treatment). However, it is uncommon for investigators to 
be interested in whether a new treatment is both no better and no worse than an established 
treatment. Most often, investigators are especially interested in showing that a new treatment 
with other advantages is not inferior to the standard treatment. The one-tailed nature of the 
non-inferiority trial design also has the advantage of permitting either a smaller sample size or 
a smaller alpha; the latter is usually preferred (e.g., 0.025 rather than 0.05), to be conservative.

One of the most difficult issues in designing a non-inferiority trial is establishing the 
 non-inferiority margin (∆)—the loss of efficacy of the new treatment that would be unaccept-
able (7). This decision is based on both statistical and clinical considerations of the potential 
efficacy and advantages of the new treatment, and requires expert judgment (8) (see Appendix 
11A for an example of how this is done). Non-inferiority trials generally need to be larger than 
placebo-controlled trials because the acceptable difference between the new and established 
treatment is usually smaller than the expected difference between a new treatment and placebo.

It is important to note that non-inferiority may not mean that both the established and new 
treatments are effective—they could be equivalently ineffective or harmful. To ensure that a 
new treatment evaluated in a non-inferiority trial is more effective than placebo, there should 
be strong prior evidence supporting the efficacy of the established treatment. This also means 
that the design of the non-inferiority trial should be as similar as possible to trials that have 
established the efficacy of the standard treatment, including selection criteria, dose of the estab-
lished treatment, adherence to the standard treatment, length of follow-up, loss to follow-up, 
and so on (6, 7). Any problem that reduces the efficacy of the standard treatment (enrolling 
participants unlikely to benefit, non-adherence to treatment, loss to follow-up) will make it 
more likely that the new therapy will be found to be non-inferior—simply because the efficacy 
of the standard treatment has been reduced. A new, less effective treatment may appear to be 
non-inferior when, in reality, the findings represent a poorly done study.

In summary, non-inferiority and equivalence trials are particularly worthwhile if a new 
treatment has important advantages such as lower cost, ease of use, or safety. It is difficult to 
justify large trials to test a new “me-too” drug with none of these advantages. Importantly, non-
inferiority and equivalence trials can produce the misleading conclusion that two treatments 
are equivalent if the trial is poorly conducted.

Adaptive Designs

Clinical trials are generally conducted according to a protocol that does not change during 
the conduct of the study. However, for some types of treatments and conditions, it is possible 
to monitor results from the trial as it progresses and change the design of the trial based on 
interim analyses of the results (9). For example, consider a trial of several doses of a new treat-
ment for non-ulcer dyspepsia. The initial design may plan to enroll 50 participants to a placebo 
group and 50 to each of three doses for 12 weeks of treatment over an enrollment period last-
ing 1 year. Review of the results after the first 10 participants in each group have completed 
4 weeks of treatment might reveal that there is a trend toward relief of dyspepsia only in the 
highest dose group. It may be more efficient to stop assigning participants to the two lower 
doses and continue randomizing only to the highest dose and the placebo. Other facets of a trial 
that could be changed based on interim results include increasing or decreasing the sample size 
or duration of the trial if interim results indicate that the effect size or rate of outcomes differ 
from the original assumptions.

Adaptive designs are feasible only for treatments that produce outcomes that are measured 
and analyzed early enough in the course of the trial to make design changes in the later stages 
of the trial possible. To prevent bias, rules for how the design may be changed should be estab-
lished before the trial begins, and the interim analyses and consideration of change in design 
should be done by an independent data and safety monitoring board that reviews unblinded 
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data.  Multiple interim analyses will increase the probability of finding a favorable result that is 
due to chance variation, and the increased chance of a type I error must be considered in the 
analysis of the results.

In addition to being more complex to conduct and analyze, adaptive designs require that 
informed consent include the range of possible changes in the study design, and it is difficult to 
estimate the cost of an adaptive trial and the specific resources needed to complete it.  Despite 
these precautions and limitations, adaptive designs are efficient and may be valuable, especially 
during the development of a new treatment; they can allow earlier identification of the best 
dose and duration of treatment, and ensure that a high proportion of participants receive the 
optimal treatment.

■  NONRANDOMIZED DESIGNS

Nonrandomized Between-Group Designs

Trials that compare groups that have not been randomized are far less effective than random-
ized trials in controlling for confounding variables. For example in a trial of the effects of 
coronary artery bypass surgery compared to percutaneous angioplasty, if clinicians are allowed 
to decide which patients undergo the procedures rather than using random allocation, patients 
chosen for surgery are likely to be different than those chosen for angioplasty. Analytic meth-
ods can adjust for baseline factors that are unequal in the two study groups, but this strategy 
does not deal with the problem of unmeasured confounding. When the findings of randomized 
and nonrandomized studies of the same research question are compared, the apparent benefits 
of intervention are often greater in the nonrandomized studies, even after adjusting statistically 
for differences in baseline variables (10). The problem of confounding in nonrandomized clini-
cal studies can be serious and not fully removed by statistical adjustment (11).

Sometimes participants are allocated to study groups by a pseudorandom mechanism. For 
example, every participant with an even hospital record number may be assigned to the treat-
ment group. Such designs may offer logistic advantages, but the predictability of the study 
group assignment permits the investigator or the study staff to tamper with it by manipulating 
the sequence or eligibility of new participants.

Participants are sometimes assigned to study groups by the investigator according to certain 
specific criteria. For example, patients with diabetes may be allocated to receive either insulin 
four times a day or long-acting insulin once a day according to their willingness to accept four 
daily injections. The problem with this design is that those willing to take four injections 
per day might differ from those who are unwilling (for example, being more compliant with 
other health advice), and this might be the cause of any observed difference in the outcomes 
of the two treatment programs.

Nonrandomized designs are sometimes chosen in the mistaken belief that they are more 
ethical than randomization because they allow the participant or clinician to choose the inter-
vention. In fact, studies are only ethical if they have a reasonable likelihood of producing the 
correct answer to the research question, and randomized studies are more likely to lead to a 
conclusive and correct result than nonrandomized designs. Moreover, the ethical basis for any 
trial is the uncertainty as to whether the intervention will be beneficial or harmful. This uncer-
tainty, termed equipoise, means that an evidence-based choice of interventions is not possible 
and this justifies random assignment.

Within-Group Designs

Designs that do not include a separate control group can be useful options for some types of 
questions. In a time series design, measurements are made before and after each participant 
receives the intervention (Figure 11.3). Therefore, each participant serves as his own control 
to evaluate the effect of treatment. This means that individual characteristics such as age, sex, 
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and genetic factors are not merely balanced (as they are in between-group studies), but actually 
eliminated as confounding variables.

The major disadvantage of within-group designs is the lack of a concurrent control group. 
The apparent efficacy of the intervention might be due to learning effects (participants do 
better on follow-up cognitive function tests because they learned from the baseline test), 
regression to the mean (participants who were selected for the trial because they had high 
blood pressure at baseline are found to have lower blood pressure at follow-up simply due to 
random variation in blood pressure), or secular trends (upper respiratory infections are less 
frequent at follow-up because the flu season ended before follow-up was completed). Within-
group designs sometimes use a strategy of repeatedly starting and stopping the treatment. If 
repeated onset and offset of the intervention produces corresponding patterns in the outcome, 
this is strong support that these changes are due to the treatment. This approach is only useful 
when the outcome variable responds rapidly and reversibly to the intervention. The design has 
a clinical application in “N-of-one” trials in which an individual patient can alternate between 
active and inactive versions of a drug (using identical-appearing placebo prepared by the local 
pharmacy) to detect his particular response to the treatment (12).

Crossover Designs

The crossover design has features of both within- and between-group designs (Figure 11.4). 
Half of the participants are randomly assigned to start with the control period and then switch 
to active treatment; the other half begins with the active treatment and then switches to control. 
This approach permits between-group, as well as within-group, analyses. The advantages are 
substantial: it minimizes the potential for confounding because each participant serves as his 
own control and the paired analysis increases the statistical power of the trial so that it needs 
fewer participants. However, the disadvantages are also substantial: a doubling of the duration 
of the study, the added expense required to measure the outcome at the beginning and end 
of each crossover period, and the added complexity of analysis and interpretation created by 
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potential carryover effects. A carryover effect is the residual influence of the intervention on 
the outcome during the period after it has been stopped—blood pressure not returning to base-
line levels for months after a course of diuretic treatment, for example. To reduce the carryover 
effect, the investigator can introduce an untreated “washout” period between treatments with 
the hope that the outcome variable will return to baseline before starting the next interven-
tion, but it is difficult to know whether all carryover effects have been eliminated. In general, 
crossover studies are a good choice when the number of study participants is limited and the 
outcome responds rapidly and reversibly to an intervention.

A variation on the crossover design may be appropriate when the intervention to be studied 
cannot be blinded and the intervention is believed by participants to be much more desirable 
than the control (such as a new noninvasive procedure). In this situation, where it may be very 
difficult to find eligible participants who are willing to be randomized, an excellent approach 
may be randomization to immediate intervention versus a wait-list (delayed) control. Another 
situation in which a wait-list control may be appropriate is when a community, school, gov-
ernment, or similar entity has decided that all members of a group should receive an interven-
tion, despite limited evidence of efficacy. In this situation, randomization to not receive the 
intervention may be considered unethical, while randomization to delayed intervention may 
be acceptable.

The wait-list design provides an opportunity for a randomized comparison between the 
immediate intervention and wait-list control groups. In addition, the two intervention pe-
riods (immediate intervention in one group and delayed intervention in the other) can be 
pooled to increase power for a within-group comparison before and after the intervention. 
For  example, in a trial in which women with symptomatic fibroids are randomized to a new 
 treatment that is less invasive than hysterectomy (uterine artery embolization) versus wait-list, 
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the wait-list control would receive no treatment during the initial period; then be offered 
uterine artery embolization at the beginning of the next period. Subsequently, within-group 
measurements of changes in fibroid symptom score can be pooled among all of the participants 
who received the intervention.

This design has the advantage of making enrollment much more feasible in a trial where the 
intervention is highly desirable, and of allowing a randomized comparison in situations where 
all eligible participants will eventually receive an intervention. However, the outcome must 
occur in a short period of time (or the wait period becomes prohibitively long). In addition, 
providing the intervention to the control group at the end of the trial prolongs the length of 
follow-up and can be expensive.

Trials for Regulatory Approval of New Interventions

Many trials are done to test the effectiveness and safety of new treatments that might be consid-
ered for approval for marketing by the U.S. Food and Drug Administration (FDA) or another 
regulatory body. Trials are also done to determine whether drugs that have FDA approval for 
one condition might be approved for the treatment or prevention of other conditions. The 
 design and conduct of these trials is generally the same as for other trials, but regulatory re-
quirements must be considered.

The FDA publishes general and specific guidelines on how such trials should be conducted 
(search for “FDA” on the Web). It would be wise for investigators and staff conducting trials 
with the goal of obtaining FDA approval of a new medication or device to seek specific train-
ing on general guidelines, called Good Clinical Practice (Chapter 17). In addition, the FDA 
provides specific guidelines for studies of certain outcomes. For example, studies designed to 
obtain FDA approval of treatments for hot flashes in menopausal women must currently in-
clude participants with at least seven hot flashes per day or 50 per week. FDA guidelines are 
regularly updated and similar guidelines are available from international regulatory agencies.

Trials for regulatory approval of new treatments are generally described by phase. This 
system refers to an orderly progression in the testing of a new treatment, from experiments in 
animals, human cell cultures or tissues (preclinical) and initial unblinded, uncontrolled treat-
ment of a few human volunteers to test safety (phase I), to small randomized or time series 
trials that test the effect of a range of doses on adverse effects and biomarkers or clinical out-
comes (phase II), to randomized trials large enough to test the hypothesis that the treatment 
improves the targeted condition (such as blood pressure) or reduces the risk of disease (such as 
stroke) with acceptable safety (phase III) (Table 11.1). The FDA usually defines the endpoints 
for phase III trials that are required to obtain approval to market the new drug. Phase IV refers 
to large studies that may be randomized trials, but are often large observational studies that are 
conducted after a drug is approved. These studies are often designed to assess the rate of serious 

TABLE 11.1  STAGES IN TESTING NEW THERAPIES

Preclinical Studies in cell cultures, tissues, and animals

Phase I Unblinded, uncontrolled studies in a few volunteers to test safety

Phase II Relatively small randomized or time series trials to test tolerability and different 
intensity or dose of the intervention on biomarkers or clinical outcomes

Phase III Relatively large randomized blinded trials to test conclusively the effect of the 
therapy on clinical outcomes and adverse events

Phase IV Large trials or observational studies conducted after the therapy has been ap-
proved by the FDA to assess the rate of uncommon serious side effects and 
evaluate additional therapeutic uses
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side effects when the drug is used in large populations or to test additional uses of the drug that 
might be approved by the FDA. Sometimes, phase IV studies do not have a clear scientific goal, 
but are performed to introduce physicians and patients to new drugs.

Pilot Studies

Designing and conducting a successful clinical trial requires extensive information on the type, 
dose, and duration of the intervention; the likely effect of the intervention on the outcome; 
potential adverse effects; the feasibility of recruiting, randomizing, and maintaining partici-
pants in the trial; and likely costs. Often, the only way to obtain some of this information is to 
conduct a good pilot study.

Pilot studies vary from a brief test of feasibility in a small number of participants to a long 
trial in hundreds of participants (in preparation for a major multicenter multi-year investment). 
Pilot studies should be as carefully planned as the main trial, with clear objectives and methods. 
Many pilot studies are focused primarily on determining the feasibility, time required, and 
cost of recruiting adequate numbers of eligible participants, and discovering if they are will-
ing to accept randomization and can comply with the intervention. Pilot studies may also be 
designed to demonstrate that planned measurements, data collection instruments, and data 
management systems are feasible and efficient. For pilot studies done primarily to test feasibil-
ity, a control group is generally not included.

An important goal of many pilot studies is to define the optimal intervention—the frequency, 
intensity, and duration of the intervention that will result in minimal toxicity and maximal 
effectiveness.

Pilot studies are sometimes used to provide estimates of parameters needed to estimate 
sample size. Sound estimates of the rate of the outcome or mean outcome measure in the 
 placebo group, the effect of the intervention on the main outcome (effect size), and the statis-
tical  variability of this outcome are crucial to planning the sample size. In most cases, it’s best 
to obtain these estimates from published full-scale studies of similar interventions in similar 
participants. In the absence of such data, using estimates from a pilot study may be helpful, but 
the sample size for pilot studies is usually so small that the calculated effect size and variance 
are unstable, with very wide confidence intervals.

Many trials fall short of estimated power not because the effect of the intervention is less 
than anticipated, but because the rate of dichotomous outcome events in the placebo group is 
much lower than expected. This likely occurs because persons who fit the enrollment criteria 
for a clinical trial and agree to be randomized are healthier than the general population with 
the condition of interest. Therefore, it is crucial to determine the rate of the outcome in the 
placebo group, which may be done by evaluating the placebo group of prior trials with similar 
participants, or by randomizing participants to placebo in a pilot study.

A pilot study should have a short but complete protocol (approved by the institutional 
review board), data collection forms, and analysis plans. Variables should include the typical 
baseline measures, predictors, and outcomes included in a full-scale trial, but also estimates 
of the number of participants available or accessible for recruitment, the number who are 
contacted or respond using different sources or recruitment techniques, the number and 
 proportion eligible for the trial, those who are eligible but refuse (or say they would refuse) 
randomization, the time and cost of recruitment and randomization, and estimates of adher-
ence to the intervention and other aspects of the protocol, including study visits. It is usually 
helpful to “debrief” both participants and staff after the pilot study to obtain their views on how 
the trial methods could be improved.

A good pilot study requires substantial time and can be costly, but markedly improves the 
chance of funding for a major clinical trial and the likelihood that the trial will be successfully 
completed.
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■  CONDUCTING A CLINICAL TRIAL

Follow-Up and Adherence to the Protocol

If a substantial number of study participants do not receive the study intervention, do not ad-
here to the protocol, or are lost to follow-up, the results of the trial can be underpowered or 
biased. Strategies for maximizing follow-up and adherence are outlined in Table 11.2.

The effect of the intervention (and the power of the trial) is reduced to the degree that par-
ticipants do not receive it. The investigator should try to choose a study drug or intervention 
that is easy to apply or take and is well-tolerated. Adherence is likely to be poor if a behavioral 
intervention requires hours of practice by participants. Drugs that can be taken in a single daily 
dose are the easiest to remember and therefore preferable. The protocol should include provi-
sions that will enhance adherence, such as instructing participants to take the pill at a standard 
point in the morning routine, giving them pill containers labeled with the day of the week, or 
sending reminders to their cell phones.

There is also a need to consider how best to measure adherence to the intervention, using 
such approaches as self-report, pill counts, pill containers with computer chips that record 
when the container is opened, and serum or urinary metabolite levels. This information can 

TABLE 11.2  MAXIMIZING FOLLOW-UP AND ADHERENCE TO THE PROTOCOL

PRINCIPLE EXAMPLE

Choose participants who are likely to be 
 adherent to the intervention and protocol

Require completion of two or more visits 
before randomization

Exclude those who are non-adherent in a 
 pre-randomization run-in period

Exclude those who are likely to move or be 
noncompliant

Make the intervention simple Use a single tablet once a day if possible

Make study visits convenient and 
enjoyable

Schedule visits often enough to maintain close 
 contact but not frequently enough to be tiresome

Schedule visits in the evening or on weekends, or 
 collect information by phone or e-mail

Have adequate and well-organized staff to prevent 
waiting

Provide reimbursement for travel and parking

Establish good interpersonal relationships with 
participants

Make study measurements painless, 
 useful, and interesting

Choose noninvasive, informative tests that are 
 otherwise costly or unavailable

Provide test results of interest to participants and 
 appropriate counseling or referrals

Encourage participants to continue  
in the trial

Never discontinue follow-up for protocol violations, 
adverse events, or stopping the intervention

Send participants birthday and holiday cards

Send newsletters and e-mail messages

Emphasize the scientific importance of adherence and 
follow-up

Find participants who are lost to follow-up Pursue contacts of participants

Use a tracking service
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identify participants who are not complying, so that approaches to improving adherence can be 
instituted and the investigator can interpret the findings of the study appropriately.

Adherence to study visits and measurements can be enhanced by discussing what is in-
volved in the study before consent is obtained, by scheduling the visits at a time that is conve-
nient and with enough staff to prevent waiting, by calling or e-mailing the participant the day 
before each visit, and by reimbursing travel, parking, and other out-of-pocket costs.

Failure to follow-up trial participants and measure the outcome of interest can result in 
biased results, diminished credibility of the findings, and decreased statistical power. For 
 example, a trial of nasal calcitonin spray to reduce the risk of osteoporotic fractures reported 
that treatment reduced fracture risk by 36% (13). However, about 60% of those randomized 
were lost to follow-up, and it was not known if fractures had occurred in these participants. 
Because the overall number of fractures was small, even a few fractures in the participants 
lost to follow-up could have altered the findings of the trial. This uncertainty diminished the 
 credibility of the study findings (14).

Even if participants violate the protocol or discontinue the trial intervention, they should 
be followed so that their outcomes can be used in intention-to-treat analyses (see “Analyzing 
the Results” in this chapter). In many trials, participants who violate the protocol by enrolling 
in another trial, missing study visits, or discontinuing the study intervention are discontinued 
from follow-up; this can result in biased or uninterpretable results. Consider, for example, a 
drug that causes a symptomatic side effect that results in more frequent discontinuation of the 
study medication in those on active treatment compared to those on placebo. If participants 
who discontinue study medication are not continued in follow-up, this can bias the findings 
if the side effect is associated with the main outcome or with a serious adverse event (SAE).

Strategies for achieving complete follow-up are similar to those discussed for cohort  studies 
(Chapter 7). At the outset of the study, participants should be informed of the importance of 
follow-up and investigators should record the name, address, e-mail address, and telephone 
number of one or two family members or close acquaintances who will always know where the 
participant is. In addition to enhancing the investigator’s ability to assess vital status, the ability 
to contact participants by phone or e-mail may give him access to proxy outcome measures from 
those who refuse to come for a visit at the end. The Heart and Estrogen/Progestin Replacement 
Study (HERS) trial used all of these strategies: 89% of the women returned for the final clinic visit 
after an average of 4 years of follow-up, another 8% had a final telephone contact for outcome 
ascertainment, and information on vital status was determined for every one of the remaining 
participants by using registered letters, contacts with close relatives, and a tracking service (15).

The design of the trial should make it as easy as possible for participants to adhere to the 
intervention and complete all follow-up visits and measurements. Lengthy and stressful visits 
can deter some participants from attending. Participants are more likely to return for visits that 
involve noninvasive tests, such as computed tomography scans, than for invasive tests such as 
coronary angiography. Collecting follow-up information by phone or electronic means may 
improve adherence for participants who find visits difficult. On the other hand, participants 
may lose interest in a trial if there are not some social or interpersonal rewards for participation. 
Participants may tire of study visits that are scheduled monthly, and they may lose interest if 
visits only occur annually. Follow-up is improved by making the trial experience positive and 
enjoyable for participants: designing trial measurements and procedures to be painless and 
interesting; performing tests that would not otherwise be available; providing results of tests to 
participants (unless they are specialized research tests that are not yet established for clinical 
practice); sending newsletters, text messages, or e-mail notes of appreciation; hosting social 
media sites; sending holiday and birthday cards; giving inexpensive gifts; and developing strong 
interpersonal relationships with enthusiastic and friendly staff.

Two design aspects that are specific to trials may improve adherence and follow-up: screen-
ing visits before randomization and a run-in period. Asking participants to attend one or two 
screening visits before randomization may exclude participants who find that they cannot 
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complete such visits. The trick here is to set the hurdles for entry into the trial high enough to 
exclude those who will later be non-adherent, but not high enough to exclude participants who 
will turn out to have satisfactory adherence.

A run-in period may be useful for increasing the proportion of study participants who adhere 
to the intervention and follow-up procedures. During the baseline period, all participants are 
placed on placebo. A specified time later (usually a few weeks), only those who have complied 
with the intervention (e.g., taken at least 80% of the assigned placebo) are randomized. Exclud-
ing non-adherent participants before randomization in this fashion may increase the power of the 
study and permit a better estimate of the full effects of intervention. However, a run-in period de-
lays entry into the trial, the proportion of participants excluded is generally small, and participants 
randomized to the active drug may notice a change in their medication following randomization, 
contributing to unblinding. It is also not clear that a placebo run-in is more effective in increasing 
adherence than the requirement that participants complete one or more screening visits before 
randomization. In the absence of a specific reason to suspect that adherence in the study will be 
poor, it is probably not necessary to include a run-in period in the trial design.

A variant of the placebo run-in design is the use of the active drug rather than the placebo 
for the run-in period. In addition to increasing adherence among those who enroll, an active 
run-in can select participants who tolerate and respond to the intervention; the absence of 
adverse effects, or the presence of a desired effect of treatment on a biomarker associated with 
the outcome, can be used as criteria for randomization. For example, in a placebo-controlled 
trial testing the effect of nitroglycerin on bone mass, the investigators used a 1-week active run-
in period and excluded women who stopped nitroglycerin due to headache (16). This design 
maximized power by increasing the proportion of the intervention group that tolerated the 
drug and were likely to be adherent. However, the findings of trials using this strategy may not 
be generalizable to those excluded.

Using an active run-in may also result in underestimation of the rate of adverse effects. 
A  trial of the effect of carvedilol on mortality in 1,094 patients with congestive heart failure 
used a 2-week active run-in period. During the run-in, 17 people had worsening congestive 
heart failure and 7 died (17). These people were not randomized in the trial, and these adverse 
effects of drug treatment were not included as outcomes.

Ascertaining and Adjudicating Outcomes

Data to ascertain that an outcome has occurred can come from many sources: self-report, 
standardized questionnaires, administrative or clinical records, laboratory or imaging tests, 
special measurements, and so on. Most self-reported outcomes, such as history of stroke or a 
participant report of quitting smoking, are not 100% accurate. Self-reported outcomes that are 
important to the trial should be confirmed if possible. Occurrence of disease, such as a stroke, 
is generally adjudicated by:

 1. Creating clear criteria for the outcome (e.g., a new, persistent neurologic deficit with 
 corresponding lesion on computed tomography or magnetic resonance imaging scan);

 2. Collecting the clinical documents needed to make the assessment (e.g., discharge summa-
ries and radiology reports);

 3. Having blinded experts review each potential case and judge whether the criteria for the 
diagnosis have been met.

The adjudication is often done by two experts working independently, then resolving discor-
dant cases by discussion between the two or by a third expert. However, involving multiple 
experts in adjudication can be expensive, and for straightforward outcomes in smaller studies 
it may be sufficiently accurate to have a single investigator carry out the adjudication. The im-
portant thing is that anyone involved in collecting the information and adjudicating the cases 
be blinded to the treatment assignment.
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Monitoring Clinical Trials

Investigators must assure that participants are not exposed to a harmful intervention, denied 
a beneficial intervention, or continued in a trial if the research question is unlikely to be an-
swered. Each of these three considerations must be monitored during the course of a trial to 
see if the trial should be stopped early.

 Stopping for harm. The most pressing reason to monitor clinical trials is to make sure that 
the intervention does not turn out unexpectedly to be harmful. If harm is judged to be 
clearly present and to outweigh benefits, the trial should be stopped.

 Stopping for benefit. If an intervention is more effective than was estimated when the trial 
was designed, statistically significant benefit can be observed early in the trial. When clear 
benefit has been proved, it may be unethical to continue the trial and delay offering the in-
tervention to participants on placebo and to others who could benefit.

 Stopping for futility. If there is a very low probability of answering the research question, 
it may be unethical to continue participants in a trial that requires time and effort and that 
may cause some discomfort or risk. If a clinical trial is scheduled to continue for 5 years, 
for example, but after 4 years there is little difference in the rate of outcome events in the 
intervention and control groups, the “conditional power” (the likelihood of rejecting the 
null hypothesis in the remaining time, given the results thus far) becomes very small and 
consideration should be given to stopping the trial. Sometimes trials are stopped early if 
investigators are unable to recruit or retain enough participants to provide adequate power 
to answer the research question, or adherence to the intervention is very poor.

The research question might be answered by other trials before a given trial is finished. It is 
desirable to have more than one trial that provides evidence concerning a given research ques-
tion, but if definitive evidence for either benefit or harm becomes available during a trial, it may 
be unethical to continue the trial.

Most clinical trials should include an interim monitoring plan. Trials funded by the 
National Institutes of Health (NIH) generally require interim monitoring, even if the inter-
vention is considered safe (such as a behavioral intervention for weight loss). How interim 
monitoring will occur should be considered in the planning of any clinical trial. In small trials 
with  interventions likely to be safe, the trial investigators might monitor safety or appoint a 
single independent data and safety monitor. In large trials and trials in which adverse effects 
of the intervention are unknown or potentially dangerous, interim monitoring is generally 
performed by a committee, usually known as the Data and Safety Monitoring Board (DSMB), 
consisting of experts in the disease or condition under study, biostatisticians, clinical trialists, 
ethicists, and sometimes a representative of the patient group being studied. These experts are 
not involved in the trial, and should have no personal or financial interest in its continuation. 
DSMB guidelines and procedures should be detailed in writing before the trial begins. Guidance 
for developing DSMB procedures is provided by the FDA and the NIH. Items to include in these 
guidelines are outlined in Table 11.3.

Stopping a trial should always be a careful decision that balances ethical responsibility to the 
participants and the advancement of scientific knowledge. Whenever a trial is stopped early, the 
chance to provide more conclusive results will be lost. The decision is often complex, and poten-
tial risks to participants must be weighed against possible benefits. Statistical tests of significance 
using one of the methods that compensates for multiple looks at the findings (Appendix 11B) 
provide important but not conclusive information for stopping a trial. Trends over time and ef-
fects on related outcomes should be evaluated for consistency, and the impact of stopping the 
study early on the credibility of the findings should be carefully considered (Example 11.2).

There are many statistical methods for monitoring the interim results of a trial. Analyzing 
the results of a trial repeatedly (“multiple peeks”) is a form of multiple hypothesis testing and 
increases the probability of a type I error. For example, if a = 0.05 is used for each interim 
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TABLE 11.3  MONITORING A CLINICAL TRIAL

Elements to monitor

Recruitment

Randomization

Adherence to intervention and blinding

Follow-up completeness

Important variables

Outcomes

Adverse effects

Potential co-interventions

Who will monitor

Trial investigator or a single monitor if small trial with minor hazards

Independent data and safety monitoring board otherwise

Methods for interim monitoring

Specify statistical approach and frequency of monitoring in advance

Importance of judgment and context in addition to statistical stopping rules

Changes in the protocol that can result from monitoring

Terminate the trial

Modify the trial

Stop one arm of the trial

Add new measurements necessary for safety monitoring

Discontinue high-risk participants

Extend the trial in time

Enlarge the trial sample

test and the results of a trial are analyzed four times during the trial and again at the end, the 
probability of making a type I error is increased from 5% to about 14% (18). To address this 
problem, statistical methods for interim monitoring generally decrease the a for each interim 
test so that the overall a is close to 0.05. There are multiple approaches to deciding how to 
“spend a ” (Appendix 11B).

Analyzing the Results: Intention-to-Treat and Per-Protocol

Statistical analysis of the primary hypothesis of a clinical trial is generally straightforward. If the 
outcome is dichotomous, the simplest approach is to compare the proportions in the study groups 
using a chi-squared test. When the outcome is continuous, a t test may be used, or a nonpara-
metric alternative if the outcome is not normally distributed. In many clinical trials, the duration 
of follow-up is different for each participant, necessitating the use of survival time methods. More 
sophisticated statistical models such as Cox proportional hazards analysis can accomplish this 
and at the same time adjust for chance maldistributions of baseline confounding variables (19).

One important issue that should be considered in the analysis of clinical trial results is 
the primacy of the intention-to-treat analytic approach to dealing with “crossovers,” partici-
pants assigned to the active treatment group who do not get treatment or discontinue it, and 
those assigned to the control group who end up getting active treatment. An analysis done 
by  intention-to-treat compares outcomes between the study groups with every participant 
analyzed according to his randomized group assignment, regardless of whether he adhered to 
the assigned intervention. Intention-to-treat analyses may underestimate the full effect of the 
treatment, but they guard against more important sources of biased results.
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An alternative to the intention-to-treat approach is to perform “per-protocol” analyses that 
include only participants who adhered to the protocol. This is defined in various ways, but often 
includes only participants in both groups who were adherent to the assigned study medication, 
completed a certain proportion of visits or measurements, and had no other protocol violations. 
A subset of the per-protocol analysis is an “as-treated” analysis in which only participants who 
were adherent to the assigned intervention are included. These analyses seem reasonable because 
participants can only be affected by an intervention they actually receive. However, participants 
who adhere to the study treatment and protocol may be different from those who do not in 
ways that are related to the outcome. In the Postmenopausal Estrogen-Progestin Interventions 
(PEPI) trial, 875 postmenopausal women were randomly assigned to four different estrogen or 
estrogen plus progestin regimens and placebo (20). Among women assigned to the unopposed 
estrogen arm, 30% had discontinued treatment after 3 years because of endometrial hyperplasia, 
a precursor of endometrial cancer. If these women were eliminated in a per protocol analysis, 
the association of estrogen therapy and endometrial cancer would be missed.

The major disadvantage of the intention-to-treat approach is that participants who choose not 
to take the assigned intervention will, nevertheless, be included in the estimate of the effects of 
that intervention. Therefore, substantial discontinuation or crossover between treatments will 
cause intention-to-treat analyses to underestimate the magnitude of the effect of treatment. For 
this reason, results of trials are often evaluated with both intention-to-treat and per- protocol 
analyses. For example, in the Women’s Health Initiative randomized trial of the effect of estro-
gen plus progestin treatment on breast cancer risk, the hazard ratio was 1.24 (P = 0.003) from 
the intention-to-treat analysis and 1.49 in the as-treated analysis (P <0.001) (21). If the results 
of intention-to-treat and per protocol analyses differ, the intention-to-treat results generally 
predominate for estimates of efficacy because they preserve the value of randomization and, 
unlike per-protocol analyses, can only bias the estimated effect in the conservative direction 
( favoring the null hypothesis). However, for estimates of harm (e.g.,  the breast cancer find-
ings), as-treated or per-protocol analyses provide the most conservative estimates, as interven-
tions can only be expected to cause harm in exposed persons.

Results can only be analyzed by intention-to-treat if follow-up measures are completed 
 regardless of whether participants adhere to treatment. Therefore, this should always be the goal.

Subgroup Analyses

Subgroup analyses are defined as comparisons between randomized groups in a subset of 
the trial cohort. The main reason for doing these analyses is to discover effect modification 
 (“interaction”) in subgroups, for example whether the effect of a treatment is different in men 
than in women. These analyses have a mixed reputation because they are easy to misuse and 
can lead to wrong conclusions. With proper care, however, they can provide useful ancillary 
information and expand the inferences that can be drawn from a clinical trial. To preserve the 
value of randomization, subgroups should be defined by measurements that were made before 
randomization. For example, a trial of denosumab to prevent fractures found that the drug de-
creased risk of non-vertebral fracture by 20% among women with low bone density. Preplanned 
subgroup analyses revealed that the treatment was effective (35% reduction in fracture risk; 
P <0.01) among women with low bone density at baseline and that treatment was ineffective in 
women with higher bone density at baseline (P = 0.02 for effect modification) (22). It is impor-
tant to note that the value of randomization is preserved: The fracture rate among women ran-
domized to denosumab is compared with the rate among women randomized to placebo in each 
subgroup. Subgroup analyses based on post-randomization factors such as adherence to random-
ized treatment do not preserve the value of randomization and often produce misleading results.

Subgroup analyses can produce misleading results for several reasons. Being smaller than 
the entire trial population, there may not be sufficient power to find important differences; in-
vestigators should avoid claiming that a drug “was ineffective” in a subgroup when the finding 
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might reflect insufficient power to find an effect. Investigators often examine results in a large 
number of subgroups, increasing the likelihood of finding a different effect of the intervention 
in one subgroup by chance. For example, if 20 subgroups are examined, differences in one 
subgroup at P <0.05 would be expected to occur by chance. To address this issue, planned 
subgroup analyses should be defined before the trial begins, and the number of subgroups ana-
lyzed should be reported with the results of the study (23). Claims about different responses in 
subgroups should be supported by evidence that there is a statistically significant interaction 
between the effect of treatment and the subgroup characteristic, and a separate study should 
confirm the effect modification before it is considered established.

■  SUMMARY

 1. There are several variations on the randomized trial design that can substantially increase 
efficiency under the right circumstances:
a. The factorial design allows two or more independent trials to be carried out for the 

price of one.
b. Cluster randomization permits efficient studies of naturally occurring groups.
c. Non-inferiority or equivalence trials compare a new intervention to an existing 

 “standard of care.”
d. Adaptive designs increase efficiency by allowing design changes based on interim 

analyses, for example altering the dose of study drug, the number of participants, and 
the duration of follow-up.

 2. There are also other useful clinical trial designs:
a. Time series designs have a single group with outcomes compared within each partici-

pant during periods on and off an intervention.
b. Crossover designs combine within and between group designs to enhance control over 

confounding (if carryover effects are not a problem) and minimize sample size.
 3. Trials for regulatory approval of new drugs are classified as:

a. Phase I, small trials to explore dosage and safety
b. Phase II, medium-sized randomized or time series trials of drug effects at several doses
c. Phase III, large randomized trials to demonstrate that benefits outweigh harms as the 

basis for FDA approval
d. Phase IV, large post-marketing observational studies to confirm benefits and detect rare 

adverse effects
 4. Pilot studies are important steps to help determine acceptability of interventions and fea-

sibility, size, cost, and duration of planned trials.
 5. In conducting a trial, if a substantial number of study participants do not adhere to the 

study intervention or are lost to follow-up, the results of the trial are likely to be under-
powered, biased, or uninterpretable.

 6. During a trial, interim monitoring by an independent data and safety monitoring board 
(DSMB) is needed to assure the quality of the study, and to decide if the trial should stop 
early due to evidence of harm, benefit, or futility.

 7. Intention-to-treat analysis takes advantage of the control of confounding provided by 
 randomization and should be the primary analysis approach for assessing efficacy. Per 
protocol analyses, a secondary approach that provides an estimate of the effect size in 
adherent participants (interpreted with caution), is the most conservative analysis of the 
harmful effects of treatment.

 8. Subgroup analyses can detect whether the effect of treatment is modified by other vari-
ables; to minimize misinterpretations, the investigator should specify the subgroups in 
advance, test possible effect modifications (interactions) for statistical significance, and 
report the number of subgroups examined.
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APPENDIX 11A
Specifying the Non-Inferiority 
Margin in a Non-Inferiority Trial
One of the most difficult issues in designing a non-inferiority trial is establishing the loss of 
 efficacy of the new treatment that would be unacceptable (7), referred to as “∆” and often called 
the non-inferiority margin. This decision is based on both statistical and clinical considerations 
of the potential efficacy and advantages of the new treatment, and requires expert judgment. 
Here’s an example of how this works:

EXAMPLE 11.1 Designing a Study of a New Drug Compared to 
Warfarin in Patients with Atrial Fibrillation

Warfarin reduces risk for stroke in high-risk patients with atrial fibrillation, so a new 
drug should be compared to this standard of care. When warfarin is used to reduce the 
risk of stroke in this situation, it is difficult to dose correctly, requires frequent blood 
tests to monitor level of anticoagulation, and can cause major bleeding. If a new drug 
were available that did not have these drawbacks, it could be reasonable to prefer this 
drug to warfarin, even if its efficacy in reducing risk of stroke was slightly lower.

One approach to setting ∆ is to perform a meta-analysis of previous trials of warfarin 
compared to placebo, and set ∆ at some proportion of the distance between the null and 
lower bound for the treatment effect of warfarin. Alternatively, since studies included in 
meta-analyses often vary in quality, it may be better to base ∆ on the results of the best 
quality randomized trial of warfarin that has similar entry criteria, warfarin dosage and 
outcome measures. It is  important to set ∆ such that there is a high likelihood, taking all 
benefits and harms into account, that the new therapy is better than placebo (6, 7).

Suppose that a meta-analysis of good-quality trials of warfarin compared to placebo 
shows that treatment with warfarin reduces the rate of stroke in high-risk patients with 
atrial fibrillation from 10% per year to about 5% per year (absolute treatment  effect = 5%, 
95% CI 4–6%). Given the advantages of our new drug, what loss of  efficacy is  clinically 
unacceptable? Perhaps an absolute efficacy that is 2% lower than warfarin would be ac-
ceptable? In this case, we would declare the new treatment non-inferior to warfarin if the 
lower limit of the confidence interval around the difference in stroke rates between war-
farin and the new treatment is less than 2% (Figure 11.2). In a  non-inferiority trial, it is 
also possible that the new treatment is found to be superior to the established treatment 
(topmost example in Figure 11.2).



APPENDIX 11B
Interim Monitoring of Trial 
Outcomes and Early Stopping
Interim monitoring of trial results to decide whether to stop a trial is a form of multiple hypoth-
esis testing, and thereby increases the probability of a type I error. To address this problem, a 
for each test (ai) is generally decreased so that the overall a is approximately = 0.05. There are 
multiple statistical methods for decreasing ai.

One of the easiest to understand is the Bonferroni method, where ai = a /N if N is the total 
number of tests performed. For example, if the overall a is 0.05 and five tests will be performed, 
ai for each test is 0.01. This method has two disadvantages, however: it requires using an equal 
threshold for stopping the trial at any interim analysis, and it results in a low a for the final 
analysis. Most investigators would rather use a more strict threshold for stopping a trial earlier 
rather than later and use an a close to 0.05 for the final analysis. In addition, this approach 
is too conservative because it assumes that each test is independent. Interim analyses are not 
independent, because each successive analysis is based on cumulative data, some of which were 
included in prior analyses. For these reasons, the Bonferroni method is not generally used.

A commonly used method suggested by O’Brien and Fleming (24) uses a very small ai for 
the initial hypothesis test, then gradually increases it for each test such that ai for the final 
test is close to the overall a. O’Brien and Fleming provide methods for calculating ai if the 
investigator chooses the number of tests to be done and the overall a. At each test, Zi = Z* 
(Ni)

1/2, where Zi = Z value for the ith test; Z* is determined so as to achieve the overall signifi-
cance level; and N is the total number of tests planned. For example, for five tests and overall  
a = 0.05, Z* = 2.04; the initial a = 0.00001 and the final a5 = 0.046. This method is unlikely 
to lead to stopping a trial very early unless there is a striking difference in outcome between 
randomized groups. In addition, this method avoids the awkward situation of getting to the 
end of a trial and accepting the null hypothesis when the P value is 0.04 or 0.03 but the ai for 
the final test is diluted down to 0.01.

A major drawback to the O’Brien–Fleming method is that the number of tests and the pro-
portion of data to be tested must be decided before the trial starts. In some trials, additional 
interim tests become necessary when important trends occur. DeMets and Lan (25) developed 
a method using a specified a-spending function that provides continuous stopping boundar-
ies. The ai at a particular time (or after a certain proportion of outcomes) is determined by the 
function and by the number of previous “looks.” Using this method, the number of “looks” 
and the proportion of data to be analyzed at each “look” do not need to be specified before 
the trial. Of course, for each additional unplanned interim analysis conducted, the final a is 
a little smaller.

A different set of statistical methods based on curtailed sampling techniques suggests termi-
nation of a trial if future data are unlikely to change the conclusion. The multiple testing prob-
lem is irrelevant because the decision is based only on estimation of what the data will show 
at the end of the trial. A common approach is to compute the probability of rejecting the null 
hypothesis at the end of the trial, conditioned on the accumulated data. A range of conditional 
power is typically calculated, first assuming that Ho is true (i.e., that any future outcomes in the 
treated and control groups will be equally distributed) and also assuming that Ha is true (i.e., 
that outcomes will be distributed unequally in the treatment and control groups as specified 
by Ha). Other estimates can also be used to provide a full range of reasonable effect sizes. If the 
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conditional power to reject the null hypothesis across the range of assumptions is low, the null 
hypothesis is not likely to be rejected and the trial might be stopped.

Examples of two trials that were stopped early are presented in Example 11.2

EXAMPLE 11.2 Two Trials That Have Been Stopped Early

Cardiac Arrhythmia Suppression Trial (CAST) (26). The occurrence of premature 
 ventricular contractions in survivors of myocardial infarction (MI) is a risk factor for 
sudden death. The CAST evaluated the effect of antiarrhythmic therapy (encainide, 
 flecainide, or moricizine) in patients with asymptomatic or mildly symptomatic ven-
tricular arrhythmia after MI on risk for sudden death. During an average of 10 months 
of follow-up, the participants treated with active drug had a higher total mortality (7.7% 
versus 3.0%) and a higher rate of death from arrhythmia (4.5% versus 1.5%) than those 
assigned to placebo. The trial was planned to continue for 5 years but this large and 
highly statistically significant difference led to the trial being stopped after 18 months.

Physicians’ Health Study (27). The Physicians’ Health Study was a randomized trial 
of the effect of aspirin (325 mg every other day) on cardiovascular mortality. The trial 
was stopped after 4.8 years of the planned 8-year follow-up. There was a statistically 
 significant reduction in risk of non-fatal myocardial infarction in the treated group 
 (relative risk = 0.56), but no difference in the number of cardiovascular disease deaths. 
The rate of cardiovascular disease deaths observed in the study was far lower than 
 expected (88  after 4.8 years of follow-up versus 733 expected), and the trial was stopped 
because of the beneficial effect of aspirin on risk for nonfatal MI coupled with the very 
low conditional power to detect a favorable impact on cardiovascular mortality.
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12C H A P T E R

Medical tests, such as those performed to screen for a risk factor, diagnose a disease, or 
estimate a patient’s prognosis, are an important aspect of clinical research. The study designs 
discussed in this chapter can be used when studying whether, and in whom, a particular test 
should be performed.

Most designs for studies of medical tests resemble the observational designs in Chapters 7 
and 8. There are, however, some important differences between most observational studies and 
those used to evaluate medical tests. Most important, the goal of most observational studies is 
to identify statistically significant associations (Chapter 5) that represent causal relationships 
(Chapter 9). In contrast, demonstrating that a test result has a statistically significant associa-
tion with a particular condition is not nearly enough to determine whether that test would be 
useful clinically, and for studies of medical tests, causality is often irrelevant. Thus, odds ratios 
and P values are secondary considerations for studies of medical tests, which focus instead on 
descriptive  parameters such as sensitivity, specificity, and likelihood ratios along with their 
associated confidence intervals.

■  DETERMINING WHETHER A TEST IS USEFUL

For a test to be useful it must pass muster on a series of increasingly difficult questions that 
address its reproducibility, accuracy, feasibility, and, most importantly, its effects on clinical 
decisions and outcomes (Table 12.1). Favorable answers to these questions are necessary but 
not sufficient criteria for a test to be worth doing. For example, if a test gives very different re-
sults depending on who does it or where it is done, it is unlikely to be useful. If the test seldom 
supplies new information, it is unlikely to affect clinical decisions. Even if it affects decisions, if 
these decisions do not improve the clinical outcome of patients who were tested at reasonable 
risk and cost, the test still may not be useful.

Of course, if using a test improves the outcomes of tested patients, favorable answers to the 
other questions can be inferred. However, studies of whether doing a test improves patient 
outcomes are the most difficult to do. Instead, the potential effects of a test on outcomes are 
usually inferred by comparing the accuracy, safety, or costs with those of existing tests. When 
developing a new diagnostic or prognostic test, it may be worthwhile to consider what aspects 
of current practice are most in need of improvement. For example, are current tests unreliable, 
inaccurate, expensive, dangerous, or difficult to perform?

General Issues for Studies of Medical Tests

 Spectrum of disease severity and of test results. Because the goal of most studies of medi-
cal tests is to draw inferences about populations by making measurements on samples, the 
way the sample is selected has a major effect on the validity of the inferences. Spectrum 
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TABLE 12.1  QUESTIONS TO DETERMINE THE USEFULNESS OF A MEDICAL TEST, 
POSSIBLE DESIGNS TO ANSWER THEM, AND STATISTICS FOR REPORTING 
RESULTS

QUESTION POSSIBLE DESIGNS STATISTICS FOR RESULTS*

How reproducible is the 
test?

Studies of intra- and  inter-observer 
and intra- and inter-laboratory 
variability

Proportion agreement, kappa, 
coefficient of variation, mean, and 
distribution of differences (avoid 
correlation coefficient)

How accurate is the test? Cross-sectional, case–control, or 
cohort-type designs in which test 
result is compared with a gold 
standard

Sensitivity, specificity, positive and 
negative predictive value, receiver 
operating characteristic curves, and 
likelihood ratios

How often do test results 
 affect clinical decisions? pre- and posttest clinical decision 

making

Proportion abnormal, proportion 
with discrepant results, proportion 
of tests leading to changes in clini-
cal decisions; cost per abnormal 
result or per  decision change

What are the costs, risks, 
and  acceptability of the 
test?

Prospective or retrospective studies Mean costs, proportions 
 experiencing adverse effects, 
 proportions willing to undergo the 
test

 improve clinical outcome 
or have adverse effects?

Randomized trials, cohort or 
case–control studies in which the 
predictor variable is receiving the 
test and the outcomes include 
 morbidity, mortality, or costs 
 related either to the disease or to 
its treatment

Risk ratios, odds ratios, hazard 
 ratios, numbers needed to treat, 
rates and ratios of desirable and 
undesirable outcomes

*Most statistics in this table should be presented with confidence intervals.

bias occurs when the spectrum of disease (or non-disease) in the sample differs from that 
of the patients to whom the investigator wishes to generalize. Early in the development of 
a diagnostic test, it may be reasonable to investigate whether a test can distinguish between 
subjects with clear-cut, late stage disease and healthy controls; if the answer is no, the inves-
tigator can go back to the lab to work on a modification or a different test. Later, however, 
when the research question addresses the clinical utility of the test, the spectrum of both 
disease and non-disease should be representative of the patients in whom the test will be 
used. For example, a test developed by comparing symptomatic pancreatic cancer patients 
to healthy controls could later be evaluated on a more difficult but clinically realistic sample, 
such as consecutive patients with unexplained abdominal pain or weight loss.

Spectrum bias can occur from an inappropriate spectrum of test results as well as an in-
appropriate spectrum of disease. For example, consider a study of inter-observer agreement 
among radiologists reading mammograms. If they are asked to classify the films as normal or 
abnormal, their agreement will be much higher if the “positive” films the investigator selects 
for them to examine are selected because they are clearly abnormal, and the “negative” films 
are selected because they are free of all suspicious abnormalities.

 Importance of blinding. Many studies of diagnostic tests involve judgments, such as 
whether to consider a radiograph abnormal, or whether a patient meets the criteria for 
diagnosing a particular disease. Whenever possible, investigators should blind those in-
terpreting test results from other information about the patient being tested. In a study 
of the contribution of ultrasonography to the diagnosis of appendicitis, for example, 
those reading the  sonograms should not know the results of the history and physical 
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examination.1 Similarly, the pathologists making the final determination of who does and 
does not have appendicitis (the gold standard to which sonogram results will be compared) 
should not know the results of the ultrasound examination. Blinding prevents biases, precon-
ceptions, and information from sources other than the test from affecting these judgments.

 Sources of variation, generalizability, and the sampling scheme. For some research ques-
tions, differences among patients are the main source of variation in the results of a test. For 
example, some infants with bacteremia (bacteria in the blood) will have an elevated white 
blood cell count, whereas others will not. The proportion of bacteremic infants with high white 
blood cell counts is not expected to vary much according to which laboratory does the blood 
count. On the other hand, many test results depend on the person doing the test or the setting 
in which the test is done. For example, the sensitivity, specificity, and inter-rater reliability for 
interpreting mammograms depend on the readers’ skill and experience, as well as the quality 
of the equipment. When accuracy may vary from reader to reader or institution to institution, 
it is helpful to study different readers and institutions to assess the consistency of the results.

 Gold standard for diagnosis. Some diseases have a gold standard that is generally accepted 
to indicate the presence or absence of the target disease, such as the pathological examination 
of a tissue biopsy specimen for cancer. Other diseases have definitional gold standards, such 
as defining coronary artery disease as a 50% obstruction of at least one major coronary artery 
as seen with coronary angiography. Still others, such as rheumatologic diseases, require that a 
patient have a specified number of signs, symptoms, or laboratory abnormalities to meet the 
criteria for having the disease. Of course, if any signs, symptoms, or laboratory tests used 
to diagnose a disease are used as part of the gold standard, a study comparing them to that 
gold standard can make them look falsely good. This is called incorporation bias because the 
test being studied is incorporated into the gold standard; avoiding it is one of the previously 
mentioned reasons for blinding.

It is also important to consider whether the gold standard is truly gold. If the gold stan-
dard is imperfect it can make a test either look worse than it really is (if in reality the test 
outperforms the gold standard) or better than it really is (if the index test makes the same 
mistakes as the gold standard).

 What constitutes a positive test? Particularly if a test has continuous results (like a serum 
erythropoietin level), it may be tempting for an investigator to look at all the results in 
those with the outcome (say, anemia of chronic disease) and those without the outcome 
(other types of anemia), and then select the best cut point to define a positive test. How-
ever, this is a type of overfitting (i.e., random variation in the particular sample studied that 
makes the test performance look better than it is in the population). Better approaches are 
to base the cut point on clinical or biological knowledge from other studies or to divide 
continuous tests into intervals, then calculate likelihood ratios for each interval (see the fol-
lowing text). To minimize overfitting, cut points for defining intervals should be specified in 
advance, or reasonable round numbers should be used. Overfitting is a particular issue for 
clinical prediction rules, which are discussed later in this chapter.

■  STUDIES OF TEST REPRODUCIBILITY

Sometimes the results of tests vary according to when or where they were done or who did 
them. Intra-observer variability describes the lack of reproducibility in results when the same 
observer or laboratory performs the test on the same specimen at different times. For example, 
if a radiologist is shown the same chest radiograph on two occasions, what percent of the time 
will he agree with himself on the interpretation, assuming he is unaware of his prior inter-
pretation? Inter-observer variability describes the lack of reproducibility among two or more 

1 Alternatively, the accuracy of the history and physical examination alone could be compared with the accuracy of 
history and physical examination plus ultrasound.
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observers: If another radiologist is shown the same film, how likely is he to agree with the first 
radiologist?

Often, the level of reproducibility (or lack thereof) is the main research question. In other 
cases, reproducibility is studied with the goal of quality improvement, either for clinical care 
or for a research study. When reproducibility is poor—because either intra- or inter-observer 
variability is large—a measurement is unlikely to be useful, and it may need to be either im-
proved or abandoned.

Studies of reproducibility per se address precision, not accuracy or validity (Chapter 4), so 
all observers can agree with one another and still be wrong. When a gold standard is available, 
investigators of intra- and inter-observer reproducibility may compare subjects’ observations 
with a gold standard to determine accuracy. When no gold standard is available, investigators 
must rely on the other methods of assessing validity described in Chapter 4.

Designs

The basic design to assess test reproducibility involves comparing test results from more than 
one observer or that were performed on more than one occasion. For tests that involve several 
steps, differences in any one of which might affect reproducibility, the investigator will need to 
decide on the breadth of the study’s focus. For example, measuring inter-observer agreement 
of pathologists on a set of Pap smear slides in a single hospital may overestimate the overall 
reproducibility of Pap smears because the variability in how the sample was obtained and how 
the slide was prepared would not be captured.

The extent to which an investigator needs to isolate the steps that might lead to inter-
observer disagreement depends partly on the goals of his study. Most studies should estimate 
the reproducibility of the entire testing process, because this is what determines whether the 
test is worth using. On the other hand, an investigator who is developing or improving a test 
may want to focus on the specific steps that are problematic in order to improve the process. 
In either case, the investigator should lay out the exact process for obtaining the test result in 
the operations manual (Chapters 4 and 17) and then describe it in the methods section when 
reporting the study results.

Analysis

 Categorical variables. The simplest measure of inter-observer agreement is the percent of 
observations on which the observers agree exactly. However, when the observations are not 
evenly distributed among the categories (e.g., when the proportion that are “abnormal” on 
a dichotomous test is not close to 50%), the percent agreement can be hard to interpret, 
because it does not account for agreement that could result simply from both observers 
having some knowledge about the prevalence of abnormality. For example, if 95% of sub-
jects are normal, two observers who randomly choose which 5% of tests to call “abnormal” 
will agree that results are “normal” about 90% of the time. The percent agreement is also 
a suboptimal measure when a test has more than two possible results that are intrinsically 
ordered (e.g., normal, borderline, abnormal), because it counts partial disagreement (e.g., 
normal/borderline) the same as complete disagreement (normal/abnormal).

A better measure of inter-observer agreement, called kappa (Appendix 12A), measures the 
extent of agreement beyond what would be expected from observers’ knowledge of the preva-
lence of abnormality,2 and can give credit for partial agreement. Kappa ranges from –1 (perfect 
disagreement) to 1 (perfect agreement). A kappa of 0 indicates no more agreement than would 
be expected from the observers’ estimates of the prevalence of each level of abnormality. Kappa 
values above 0.8 are generally considered very good; levels of 0.6 to 0.8 are good.

2 Kappa is often described as the extent of agreement beyond that expected by chance, but the estimate of the agreement 
expected by chance is based on the prevalence of abnormality assigned by each observer.
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 Continuous variables. Measures of inter-observer variability for continuous variables depend 
on the design of the study. Some studies measure the agreement between just two machines 
or methods (e.g., temperatures obtained from two different thermometers). The best way to 
describe the data from such a study is to gather the data on the pairs of measurements (each 
pair consists of two measurements made at close to the same time in the same subject) and 
report the mean difference between those pairs with some measure of the spread of values, 
such as the standard deviation or how often the difference exceeds a clinically relevant 
threshold. For example, if a clinically important difference in body temperature is 0.3°C, a 
study comparing temperatures from tympanic and rectal thermometers could estimate the 
mean (± standard deviation) difference between the two techniques, and report how often 
the two measurements differed by more than 0.3°C.3

Other studies examine the inter-assay, inter-observer, or inter-instrument variability of 
tests across a large group of different technicians, laboratories, or machines. These results 
are commonly summarized using the coefficient of variation (CV), which is the standard 
deviation of all of the results obtained from a single specimen divided by the mean value. 
Often, the CVs of two or more different assays or instruments are compared; the one with 
the smallest CV is the most precise (though it may not be the most accurate).

■  STUDIES OF THE ACCURACY OF TESTS

Studies in this section address the question, “To what extent does the test give the right  answer?” 
This assumes, of course, that a gold standard is available to reveal what the right answer is.

Designs

 Sampling. Studies of diagnostic test accuracy can have designs analogous to case–control or 
cross-sectional studies. In the case–control design of a diagnostic test, those with and with-
out the disease are sampled separately, and the test results in the two groups are compared. 
As previously noted, case–control sampling may be appropriate early in the development of a 
diagnostic test, when the research question is whether the test warrants further study. Later, 
when the research question is the clinical utility of the test, the spectra of disease and non-
disease should resemble those of the people to whom the test will be applied clinically; this 
is much more difficult to achieve with case–control sampling than with samples designed to 
be representative of the whole target population.

Studies of tests that sample those with and without the disease separately are subject to 
bias in the measurement or reporting of the test result, because its measurement necessarily 
comes after the measurement of disease status. In addition, studies with this sampling scheme 
usually cannot be used to estimate predictive values (discussed in the following text).

A consecutive sample of patients being evaluated for a particular diagnosis generally 
will yield more valid and interpretable results, including predictive values. For example, 
Tokuda et al. (3) found that the degree of chills (e.g., feeling cold versus whole body shak-
ing under a thick blanket) was a strong predictor of bacteremia in a series of 526 consecu-
tive febrile adult emergency department patients. Because the subjects were enrolled before 
it was known whether they were bacteremic, the spectrum of patients in this study should 
be reasonably representative of patients who present to emergency departments with fever.

3 Although commonly used, the correlation coefficient is best avoided in studies of the reliability of laboratory tests 
because it is highly influenced by outlying values and does not allow readers to determine how frequently differences 
between the two measurements are clinically important. Confidence intervals for the mean difference should also be 
avoided because their dependence on sample size makes them potentially misleading. A narrow confidence interval 
for the mean difference between the two measurements does not imply that they generally closely agree—only that the 
mean difference between them is being measured precisely. See Bland and Altman (1) or Newman and Kohn (2) for 
additional discussion of these points.
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A sampling scheme that we call tandem testing is sometimes used to compare two (pre-
sumably imperfect) tests with one another. Both tests are done on a representative sample of 
subjects and the gold standard is selectively applied to those with positive results on either 
or both tests. The gold standard should also be applied to a random sample of patients with 
concordant negative results, to make sure that they really don’t have the disease. This design, 
which allows the investigator to determine which test is more accurate without the expense 
of doing the gold standard test in all the subjects with negative results, has been used in 
studies comparing different cervical cytology methods (4).

Prognostic test studies require cohort designs. In a prospective design, the test is done 
at baseline, and the subjects are then followed to see who develops the outcome of interest. 
A retrospective cohort study can be used when a new test becomes available, such as viral 
load in HIV-positive patients, if a previously defined cohort with banked blood samples is 
available. Then the viral load can be measured in the stored blood to see whether it predicts 
prognosis. The nested case–control design (Chapter 8) is particularly attractive if the out-
come of interest is rare and the test is expensive.

 Predictor variable: the test result. Although it is simplest to think of the results of a diagnos-
tic test as being either positive or negative, many tests have categorical, ordinal, or continu-
ous results. In order to take advantage of all available information in the test, investigators 
should generally report the results of ordinal or continuous tests rather than dichotomizing 
as “normal or abnormal.” Most tests are more indicative of disease if they are very abnormal 
than if they are slightly abnormal, and have a borderline range in which they do not provide 
much information.

 Outcome variable: the disease (or its outcome). The outcome variable in a diagnostic test 
study is the presence or absence of the disease, which is best determined with a gold stan-
dard. Wherever possible, the assessment of outcome should not be influenced by the results 
of the diagnostic test being studied. This is best accomplished by blinding those doing the 
gold standard test so that they do not know the results of the index test.

Sometimes, particularly with screening tests, uniform application of the gold standard is 
not ethical or feasible. For example, Smith-Bindman et al. (5) studied the accuracy of mam-
mography according to characteristics of the interpreting radiologist. Women with positive 
mammograms were referred for further tests, eventually with pathologic evaluation as the 
gold standard. However, it is not reasonable to do breast biopsies in women whose mammo-
grams are negative. Therefore, to determine whether these women had false-negative mam-
mograms, the authors linked their mammography results with local tumor registries and 
considered whether or not breast cancer was diagnosed in the year following mammography 
to be the gold standard. This solution assumes that all breast cancers that exist at the time of 
mammography will be diagnosed within 1 year, and that all cancers diagnosed within 1 year 
existed at the time of the mammogram. Measuring the gold standard differently depending 
on the result of the test creates a potential for bias, discussed in more detail at the end of the 
chapter, but sometimes that is the only feasible option.

The outcome variable in a prognostic test study involves what happens to patients with 
a disease, such as how long they live, what complications they develop, or what additional 
treatments they require. Again, blinding is important, especially if clinicians caring for the 
patients may make decisions based upon the prognostic factors being studied. For example, 
Rocker et al. (6) found that attending physicians’ estimates of prognosis, but not those of 
bedside nurses, were independently associated with intensive care unit mortality. This could 
be because the attending physicians were more skilled at estimating severity of illness, but 
it could also be because physician prognostic estimates had a greater effect than those of the 
nurses on decisions to withdraw life support. To distinguish between these possibilities, it 
would be helpful to obtain estimates of prognosis from attending physicians other than those 
involved in making or framing decisions about withdrawal of support.
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Analysis

 Sensitivity, specificity, and positive and negative predictive values. When results of a 
dichotomous test are compared with a dichotomous gold standard, the results can be sum-
marized in a 2 × 2 table (Table 12.2). The sensitivity of a test is defined as the proportion of 
subjects with the disease in whom the test gives the right answer (i.e., is positive); specific-
ity is the proportion of subjects without the disease in whom the test gives the right answer 
(i.e., is negative). If the sample of patients who were studied is representative of the group 
of patients in whom the test would be used, two additional parameters can be calculated. 
The positive predictive value is the proportion of subjects with positive tests who have the 
disease; the negative predictive value is the proportion of subjects with negative tests who 
don’t have the disease.

 Receiver operating characteristic curves. Many diagnostic tests yield ordinal or continuous 
results. With such tests, several values of sensitivity and specificity are possible, depending 
on the cutoff chosen to define a positive test. This trade-off between sensitivity and specific-
ity can be displayed using a graphic technique originally developed in electronics: receiver 
operating characteristic (ROC) curves. The investigator selects several cutoff points and 
determines the sensitivity and specificity at each point. He then graphs the sensitivity (or 
true-positive rate) on the Y-axis as a function of 1 – specificity (the false-positive rate) on 
the X-axis. An ideal test is one that reaches the upper left corner of the graph (100% true-
positives and no false-positives). A worthless test follows the diagonal from the lower left to 
the upper right corners: at any cutoff the true-positive rate is the same as the false-positive 
rate (Figure 12.1). The area under the ROC curve, which thus ranges from 0.5 for a useless 
test to 1.0 for a perfect test, is a useful summary of the overall accuracy of a test and can be 
used to compare the accuracy of two or more tests.

 Likelihood ratios. Although the information in a diagnostic test with continuous or ordinal 
results can be summarized using sensitivity and specificity or ROC curves, there is a better 
way. Likelihood ratios allow the investigator to take advantage of all information in a test. 
For each test result, the likelihood ratio is the ratio of the likelihood of that result in some-
one with the disease to the likelihood of that result in someone without the disease.

Likelihood ratio = 
P (Result | Disease)

P (Result | No Disease)

TABLE 12.2  SUMMARIZING RESULTS OF A STUDY OF DICHOTOMOUS TESTS IN 
A 2 × 2 TABLE

GOLD STANDARD

DISEASE NO DISEASE TOTAL

TEST

Positive
a b

a + b
Positive predictive 
value = a/(a + b)True-positive False-positive

Negative
c d

c + d
Negative predictive 
value = d/(c + d)False-negative True-negative

Total a + c b + d

Sensitivity =  
a/(a + c)

Specificity =  
d/(b + d)

Positive and negative predictive values can be calculated from a 2 × 2 table like this only when the prevalence of 
disease is (a + c)/(a + b + c + d). This will not be the case if subjects with and without disease are sampled separately 
(e.g., 100 of each in a study with case–control sampling).
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■ FIGURE 12.1 Receiver operating characteristic curves for 
good and worthless tests.
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The P is read as “probability of” and the “|” is read as “given.” Thus, P(Result|Disease) is 
the probability of the result given disease, and P(Result|No Disease) is the probability of that 
result given no disease. The likelihood ratio is a ratio of these two probabilities.4

The higher the likelihood ratio, the better the test result for ruling in a disease; a likeli-
hood ratio greater than 100 is very high (and unusual among tests). On the other hand, 
the lower a likelihood ratio (the closer it is to 0), the better the test result is for ruling out 
the disease. A likelihood ratio of 1 means that the test result provides no information at all 
about the likelihood of disease; those close to 1 (say from 0.8 to 1.25) provide little helpful 
information.

An example of likelihood ratios is shown in Table 12.3, which presents results from a study 
of complete blood counts in newborns at risk for serious infections (7). A white blood cell 
count less than 5,000 cells/μL was much more common among infants with serious infections 
than among other infants. The calculation of likelihood ratios simply quantifies this: 19% of 
the infants with infections had white blood cell counts less than 5,000 cells/μL, compared with 
only 0.52% of those without infections. Therefore, the likelihood ratio is 19%/0.52% = 36.

4 For dichotomous tests the likelihood ratio for a positive test is

Sensitivity
1− Specificity

and the likelihood ratio for a negative test is

1− Sensitivity
Specificity

.

Detailed discussions of how to use likelihood ratios and prior information (the prior probability of disease) to estimate 
a patient’s probability of disease after knowing the test result (the posterior probability) are available in Newman and 
Kohn (2). The formula is

Prior odds × Likelihood ratio = Posterior odds

where prior and posterior odds are related to their respective probabilities by

odds =
P

1− P
.
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 Absolute risks, risk ratios, risk differences, and hazard ratios. The analysis of studies of 
prognostic tests is similar to that of other cohort studies. If everyone in a prognostic test 
study is followed for a set period of time (say 3 years) with few losses to follow-up, then the 
results can be summarized with absolute risks, risk ratios, and risk differences. Especially 
when follow-up is complete and of short duration, results of studies of prognostic tests are 
sometimes summarized like those of diagnostic tests, using sensitivity, specificity, predic-
tive value, likelihood ratios, and ROC curves. On the other hand, when the study subjects 
are followed for varying lengths of time, a survival-analysis technique that accounts for the 
length of follow-up time and estimates hazard ratios is preferable (8).

 Net reclassification improvement. For new tests or biomarkers intended to predict future 
disease events, it is important to quantify what the new tests add to existing prediction mod-
els. While one way to do this is to look at the amount they increase the area under the ROC 
curve, changes in the area under the ROC curve are often small, even for well-established pre-
dictors, and are difficult to translate into projected changes in clinical decisions and patient 
outcomes (9, 10). A more direct approach, which is most useful when treatment thresholds 
are well-established, is to examine how often a model or clinical prediction rule including the 
new test changes the classification of patients from one risk category (and treatment decision) 
to another, compared with the old model. If the new test improves prediction, more subjects 
who develop the outcome (“cases”) should move up to a higher risk category than move 
down to a lower risk category; the opposite should be true for those who do not develop the 
outcome (“controls”): their risk should move down in more subjects than it moves up. Net 
reclassification improvement (NRI) quantifies these differences as follows (11):

NRI = P(up|case) – P(down|case) + P(down|control) – P(up|control)

where P(up|case) is the proportion of cases in whom the model with the new marker led 
to the subject moving to a higher risk category and the other terms are correspondingly 
defined. For example, Shepherd et al. (12) found that adding the calculated mammographic 
fibroglandular volume (i.e., the estimated amount of breast tissue at risk of malignancy) to 
a model that included traditional clinical risk factors improved the prediction of subsequent 
breast cancer or ductal carcinoma in situ with an NRI of 21% (P = 0.0001).

TABLE 12.3  EXAMPLE OF CALCULATION OF LIKELIHOOD RATIOS FROM  
A STUDY OF COMPLETE BLOOD COUNTS TO PREDICT SERIOUS INFECTIONS  
IN YOUNG NEWBORNS (7)

WHITE BLOOD CELL 
COUNT (PER lL) SERIOUS INFECTION

LIKELIHOOD  
RATIO

   YES        NO

!5,000   46
     19%

     347
       0.52%

36

5,000–9,999   53
     22%

  5,103
         7.6%

               2.9

10,000–14,999   53
     22%

 16,941
          25%

0.86

15,000–19,999   45
     18%

21,168
           31%

0.58

≥20,000   48
     20%

23,818
          35%

0.56

Total 245
   100%

67,377
        100%
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■  STUDIES TO CREATE CLINICAL PREDICTION RULES

Studies to create clinical prediction rules differ from studies of existing tests (or rules) because 
the goal is to improve clinical decisions by using mathematical methods to develop a new (com-
posite) test, rather than to evaluate one that already exists.

Subjects for these studies should be similar to those in whom the rule will be applied. 
Clinical prediction rules are likely to be most helpful when intended to guide a specific clinical 
decision, such as the decision to start treatment with statins (for which the Framingham Risk 
Score is used). Therefore, subjects should be those in whom the specific clinical decision needs 
to be made, especially those in whom it is currently difficult or uncertain (13). Many studies to 
develop clinical decision rules include subjects only from a single center, but those developed 
using data from multiple centers are more likely to be generalizable.

Mathematical methods for creating prediction rules generally involve a multivariate 
technique for selecting candidate predictor variables and combining their values to gener-
ate a prediction. The candidate variables should include all known and plausible predictor 
variables that can be easily, reliably, and inexpensively measured. A multivariate model, 
such as logistic regression or the Cox (proportional hazards) model, can quantify the in-
dependent contribution of candidate predictor variables for predicting the outcome. Those 
most strongly and consistently associated with outcome can be included in the rule, and 
points can be assigned to different values of the predictor variables depending on the coef-
ficients in the model. For example, Wells et al. (14) used logistic regression analysis on 
40 potential clinical predictors of pulmonary embolism to create a prediction score based 
on just 7 variables (Table 12.4). This now popular score is used to assign a pretest prob-
ability of pulmonary embolism, to guide further testing decisions and the interpretation of 
their results (15).

An alternative technique, which does not require modeling and is helpful for generating 
rules of high sensitivity, is recursive partitioning, or Classification and Regression Tree 
(CART) analysis. This technique creates a tree that asks a series of yes/no questions, taking the 
user down different branches depending on the answers. At the end of each branch will be an 
estimated probability of the outcome. The tree can be designed to have high sensitivity by in-
structing the software to make the penalty for false negatives higher than that for false positives. 
An example of such a tree, used to predict bacterial meningitis among adults with meningitis 
(16), is shown in Figure 12.2.

TABLE 12.4  EXAMPLE OF A CLINICAL PREDICTION RULE (FOR PULMONARY 
 EMBOLISM) DERIVED FROM A LOGISTIC REGRESSION ANALYSIS (14)

CLINICAL CHARACTERISTIC POINTS

Previous pulmonary embolism or deep vein thrombosis + 1.5

Heart rate >100 beats per minute + 1.5

Recent surgery or immobilization (within the last 30 days) + 1.5

Clinical signs of deep vein thrombosis + 3

Alternative diagnosis less likely than pulmonary embolism + 3

Hemoptysis (coughing blood) + 1

Cancer (treated within the last 6 mo) + 1

ESTIMATED CLINICAL PROBABILITY OF PULMONARY EMBOLISM (15) TOTAL SCORE

Low (Probability ~1%–2%) 0–1

Intermediate (Probability ~16%) 2–6

High (Probability ~40%) ≥7
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Regardless of the method chosen to develop the rule, it is important that it be validated 
in a group of patients different from those in whom it was derived. One reason for this is to 
avoid overfitting (i.e., taking advantage of the tendency in a single sample for random error to 
increase the predictive strength of some factors). Overfitting can be addressed by dividing the 
cohort into derivation (typically 50% to 67% of the sample) and validation data sets, and test-
ing the rule derived from the derivation cohort using data from the validation cohort. However, 
this validates the rule only in a population very similar to that from which it was derived (i.e., it 
addresses only internal validity). To address external validity, it is important to determine how 
well the rule performs in different populations (“prospective validation”) (17).

■  STUDIES OF THE EFFECT OF TEST RESULTS ON CLINICAL DECISIONS

A test may be accurate, but if the disease is very rare, the test may be so seldom positive that 
it is hardly ever worth doing. Other tests may not affect clinical decisions because they do not 
provide new information beyond what was already known (e.g., from the medical history and 
physical examination). The study designs in this section address the yield of diagnostic tests 
and their effects on clinical decisions.

Bacteria on CSF
gram stain

Yes No

! 150/µL d 150/µL

High risk
(28/28 = 100%)

CSF neutrophil
percent (%)

CSF neutrophil
count

(cells/µL)

Low risk
(0/58 = 0%)

d 15%! 15%

High risk
(38/50 = 76%)

High risk
(4/5 = 80%)

Low risk
(1/50 = 2%)

Yes No

Mental status 
change

■  FIGURE 12.2 Example of a Classification and Regression Tree to distinguish 
bacterial from viral meningitis in adults (16). White boxes serve to divide sub-
jects into those at high risk of bacterial meningitis (red boxes) and those at low 
risk (green boxes); the numbers show the proportions with bacterial meningitis5 
in the red and green “terminal branches” of the tree.

5 The numbers in the figure include both derivation and validation data sets.
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Types of Studies

 Diagnostic yield studies. Diagnostic yield studies address such questions as:
 When a test is ordered for a particular indication, how often is it abnormal?
 Can abnormal results be predicted from other information available at the time of testing?
 In which group(s) of patients does the testing have the most or least value?
 What happens to patients with abnormal results? Do benefits outweigh harms?

Diagnostic yield studies estimate the proportion of positive tests among patients with a 
particular indication for the test. Unfortunately, showing that a test is often positive is not 
sufficient to indicate the test should be done. However, a diagnostic yield study showing a 
test is almost always negative may be sufficient to question its use for that indication.

For example, Siegel et al. (18) studied the yield of stool cultures in hospitalized patients 
with diarrhea. Although not all patients with diarrhea receive stool cultures, it seems rea-
sonable to assume that those who do are, if anything, more likely to have a positive culture 
than those who do not. Overall, only 40 (2%) of 1,964 stool cultures were positive. More-
over, none of the positive results were in the 997 patients who had been in the hospital 
for more than 3 days. Because a negative stool culture is unlikely to affect management in 
these  patients with a low likelihood of bacterial diarrhea, the authors concluded that stool 
cultures are of little value among patients with diarrhea who have been in the hospital for 
more than 3 days.

 Before/after studies of clinical decision-making. These designs directly address the effect of 
a test result on clinical decisions. The design generally involves a comparison between what 
clinicians do (or say they would do) before and after obtaining results of a diagnostic test. 
For example, Carrico et al. (19) prospectively studied the value of abdominal ultrasound 
scans in 94 children with acute lower abdominal pain. They asked the clinicians requesting 
the sonograms to record their diagnostic impression and what their treatment would be if a 
sonogram were not available. After doing the sonograms and providing the clinicians with 
the results, they asked again. They found that sonographic information changed the initial 
treatment plan in 46% of patients.

Of course (as discussed later), altering a clinical decision does not guarantee that a 
patient will benefit, and some altered decisions could actually be harmful. Studies that 
demonstrate effects on decisions are most useful when the natural history of the disease 
and the efficacy of treatment are clear. In the preceding example, there would very likely 
be a benefit from changing the decision from “discharge from hospital” to “laparoscopy” in 
children with appendicitis, or from “laparoscopy” to “observe” in children with nonspecific 
abdominal pain.

■  STUDIES OF FEASIBILITY, COSTS, AND RISKS OF TESTS

Another important area for clinical research relates to the practicalities of diagnostic testing. 
What proportion of patients will return a postcard with tuberculosis skin test results? What are 
the medical effects of false-positive screening tests in newborns, and the psychological effects 
on the parents? What proportion of colonoscopies are complicated by colonic perforation?

Design Issues

Studies of the feasibility, costs, and risks of tests are generally descriptive. The sampling 
scheme is important because tests often vary among the people or institutions doing them, and 
among the patients receiving them.

A straightforward choice is to study everyone who receives the test, as in a study of the 
return rate of postcards after tuberculosis skin testing. Alternatively, for some questions, the 
subjects in the study may be only those with results that were positive or falsely positive. For 
example, Bodegard et al. (20) studied families of infants who had tested falsely positive on a 



183

newborn screening test for hypothyroidism and found that fears about the baby’s health per-
sisted for at least 6 months in almost 20% of the families.

Adverse effects can occur not just from false-positive results, but also from the testing itself. 
For example, Rutter et al. (21) employed an electronic medical record to do a retrospective 
cohort study of serious adverse events (perforation, hemorrhage, and acute diverticulitis) in 
the 30 days following colonoscopy among patients in the Group Health Cooperative of Puget 
Sound.

Analysis

Results of these studies can usually be summarized with simple descriptive statistics like means 
and standard deviations, medians, ranges, and frequency distributions. Dichotomous variables, 
such as the occurrence of adverse effects, can be summarized with proportions and their 95% 
confidence intervals (CIs). For example, in the aforementioned study Rutter et al. (21) reported 
perforations in 21/43,456 colonoscopies; this is 0.48 per 1,000 with a 95% confidence interval 
from 0.30 to 0.74 per 1,000.

There are generally no sharp lines that divide tests into those that are or are not feasible, or 
those that have or do not have an unacceptably high risk of adverse effects. For this reason it is 
helpful in the design stage of the study to specify criteria for deciding that the test is acceptable. 
What rate of follow-up would be insufficient? What rate of complications would be too high?

■  STUDIES OF THE EFFECT OF TESTING ON OUTCOMES

The best way to determine the value of a medical test is to see whether patients who are tested 
have a better clinical outcome (e.g., live longer or with better quality of life) than those who are 
not. Randomized trials are the ideal design for making this determination, but trials of diagnostic 
tests are often difficult to do. The value of tests is therefore usually estimated from observational 
studies. The key difference between the designs described in this section and the experimental 
and observational designs discussed elsewhere in this book is that the predictor variable for this 
section is performing the test, rather than a treatment, risk factor, or the result of a test.

Designs

Testing itself is unlikely to have any direct benefit on the patient’s health. It is only when a test 
result leads to effective preventive or therapeutic interventions that the patient may benefit (22). 
Therefore, one important caveat about outcome studies of testing is that the predictor variable 
actually being studied is not just a test (e.g., a fecal occult blood test), but also all of the medical 
care that follows (e.g., procedures for following up abnormal results, colonoscopy, etc.).

It is best if the outcome variable of these studies is a measure of morbidity or mortality, not 
simply a diagnosis or stage of disease. For example, showing that men who are screened for 
prostate cancer have a greater proportion of cancers diagnosed at an early stage does not by 
itself establish the value of screening (23, 24). Many of those cancers would not have caused 
any problem if they had not been detected.

The outcome should be broad enough to include plausible adverse effects of testing and 
treatment, and may include psychological as well as medical effects of testing. Therefore, a 
study of the value of prostate-specific antigen screening for prostate cancer should include 
treatment-related impotence or incontinence in addition to cancer-related morbidity and mor-
tality. When many more people are tested than are expected to benefit (as is usually the case), 
less severe adverse outcomes among those without the disease may be important, because they 
will occur much more frequently. While negative test results may be reassuring and comforting 
to some patients (25), in others the psychological effects of labeling or false-positive results, 
loss of insurance, and troublesome (but nonfatal) side effects of preventive medications or 
surgery may outweigh infrequent benefits (24).



184

 Observational studies. Observational studies are generally quicker, easier, and less costly 
than clinical trials. However, they have important disadvantages as well, especially because 
patients who are tested tend to differ from those who were not tested in important ways that 
may be related to the risk of a disease or its prognosis. For example, those getting the test 
could be at relatively low risk of an adverse health outcome, because people who volunteer 
for medical tests and treatments tend to be healthier than average, an example of volunteer 
bias. On the other hand, those tested may be at relatively high risk, because patients are more 
likely to be tested when there are indications that lead them or their clinicians to be con-
cerned about a disease, an example of confounding by indication for the test (Chapter 9).

An additional common problem with observational studies of testing is the lack of stan-
dardization and documentation of any interventions or changes in management that follow 
positive results. If a test does not improve outcome in a particular setting, it could be be-
cause follow-up of abnormal results was poor, because patients were not compliant with the 
planned intervention, or because the particular intervention used in the study was not ideal.

 Clinical trials. The most rigorous design for assessing the benefit of a diagnostic test is a 
clinical trial, in which subjects are randomly assigned to receive or not to receive the test. 
Presumably the result of the test is then used to guide clinical management. A variety of 
outcomes can be measured and compared in the two groups. Randomized trials minimize 
or eliminate confounding and selection bias and allow measurement of all relevant outcomes 
such as mortality, morbidity, cost, and satisfaction. Standardizing the testing and interven-
tion process enables others to reproduce the results.

Unfortunately, randomized trials of diagnostic tests are often not practical, especially for 
diagnostic tests already in use in the care of sick patients. Randomized trials are generally 
more feasible and important for tests that might be used in large numbers of apparently 
healthy people, such as new screening tests.

Randomized trials, however, may bring up ethical issues about withholding potentially 
valuable tests. Rather than randomly assigning subjects to undergo a test or not, one ap-
proach to minimizing this ethical concern is to randomly assign some subjects to receive 

EXAMPLE 12.1 An Elegant Observational Study of a Screening Test

Selby et al.(26) did a nested case–control study in the Kaiser Permanente Medical Care 
Program to determine whether screening sigmoidoscopy reduces the risk of death from 
colon cancer. They compared the rates of previous sigmoidoscopy among patients who 
had died of colon cancer with controls who had not. They found an adjusted odds ratio 
of 0.41 (95% CI, 0.25 to 0.69), suggesting that sigmoidoscopy resulted in an almost 60% 
decrease in the death rate from cancer of the rectum and distal colon.

A potential problem is that patients who undergo sigmoidoscopy may differ in 
 important ways from those who do not, and that those differences might be associated 
with a difference in the expected death rate from colon cancer. To address this possible 
confounding, Selby et al. examined the apparent efficacy of sigmoidoscopy at prevent-
ing death from cancers of the proximal colon, above the reach of the sigmoidoscope. If 
patients who underwent sigmoidoscopy were less likely to die of colon cancer for other 
reasons, then sigmoidoscopy would appear to be protective against these cancers as well. 
However, sigmoidoscopy had no effect on mortality from cancer of the proximal colon 
(adjusted odds ratio = 0.96; 95% CI, 0.61 to 1.50), suggesting that confounding was not 
the reason for the apparent reduction in distal colon cancer mortality. Specifying alter-
nate endpoints (in advance!) that are expected not to be associated with the predictor of 
 interest (cancer of the proximal colon in this case), and then showing that they are not, 
can greatly strengthen causal inference (27).
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an intervention that increases the use of the test, such as frequent postcard reminders and 
assistance in scheduling. The primary analysis must still follow the “intention-to-treat” 
rule—that is, the entire group that was randomized to receive the intervention must be 
compared with the entire comparison group. However, this rule will tend to create a conser-
vative bias; the observed efficacy of the intervention will underestimate the actual efficacy 
of the test, because some subjects in the control group will get the test and some subjects in 
the intervention group will not. This problem can be addressed in secondary analyses that 
include testing rates in both groups and assume all the difference  in outcomes between the 
two groups is due to different rates of testing. The actual benefits of testing in the subjects 
as a result of the intervention can then be estimated algebraically (8, 28).

Analysis

Analysis of studies of the effect of testing on outcome are those appropriate to the specific 
design used—odds ratios for case–control studies, and risk ratios or hazard ratios for cohort 
studies or clinical trials. A convenient way to express the results is to project the results of the 
testing procedure to a large cohort (e.g., 100,000), and list the number of initial tests, follow-up 
tests, people treated, side effects of treatment, costs, and deaths in tested and untested groups.

■   PITFALLS IN THE DESIGN OR ANALYSIS  
OF DIAGNOSTIC TEST STUDIES

As with other types of clinical research, compromises in the design of studies of diagnostic tests 
may threaten the validity of the results, and errors in analysis may hinder their interpretation. 
Some of the most common and serious of these, along with steps to avoid them, are outlined 
in the following text.

Inadequate Sample Size

If the outcome of a diagnostic test study is common, obtaining an adequate sample size is likely 
to be feasible. When the disease or outcome is rare, a very large number of people may be 
needed. Many laboratory tests, for example, are not expensive, and a yield of 1% or less might 
justify doing them, especially if they can diagnose a serious treatable illness. For example, 
 Sheline and Kehr (29) retrospectively reviewed routine admission laboratory tests, including 
the Venereal Disease Research Laboratory (VDRL) test for syphilis among 252 psychiatric pa-
tients and found that the laboratory tests identified one patient with previously unsuspected 
syphilis. If this patient’s psychiatric symptoms were indeed due to syphilis, it would be hard to 
argue that it was not worth the $3,186 spent on VDRLs to make this diagnosis. But if the true 
rate of unsuspected syphilis were close to the 0.4% seen in this study, a study of this sample 
size could easily have found no cases.

Inappropriate Exclusion

When calculating proportions, it is inappropriate to exclude subjects from the numerator 
without excluding similar subjects from the denominator. For example, in a study of routine 
laboratory tests in emergency department patients with new seizures (30), 11 of 136 patients 
(8%) had a correctable laboratory abnormality (e.g., hypoglycemia) as a cause for their seizure. 
In 9 of the 11 patients, however, the abnormality was suspected on the basis of the history or 
physical examination. The authors therefore reported that only 2 of 136 patients (1.5%) had ab-
normalities not suspected on the basis of the history or physical examination. But if all patients 
with suspected abnormalities are excluded from the numerator, then similar patients should 
have been excluded from the denominator as well. The correct denominator for this proportion 
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is therefore not all 136 patients tested, but only those who were not suspected of having any 
laboratory abnormalities on the basis of their medical history or physical examination.

Dropping Borderline or Uninterpretable Results

Sometimes a test may fail to give any answer at all, such as if the assay failed, the test specimen 
deteriorated, or the test result fell into a gray zone of being neither positive nor negative. It is 
not usually legitimate to ignore these problems, but how to handle them depends on the spe-
cific research question and study design. In studies dealing with the expense or inconvenience 
of tests, failed attempts to do the test are clearly important results.

Patients with “nondiagnostic” imaging studies or a borderline result on a test need to be 
counted as having had that specific result on the test. In effect, this may change a dichotomous 
test (positive, negative) to an ordinal one—positive, indeterminate and negative. ROC curves 
can then be drawn and likelihood ratios can be calculated for “indeterminate” as well as posi-
tive and negative results.

Verification Bias: Selective Application of a Single Gold Standard

A common sampling strategy for studies of medical tests is to study (either prospectively or 
retrospectively) patients who are tested for disease who also receive the gold standard for diag-
nosis. However, this causes a problem if the test being studied is also used to decide who gets 
the gold standard. For example, consider a study of predictors of fracture in children presenting 
to the emergency department with ankle injuries, in which only children who had ankle x-rays 
were included. If those with a particular finding (for example, ankle swelling) were more likely 
to get an x-ray, this could affect the sensitivity and specificity of ankle swelling as a test for 
fracture. This bias, called verification bias, is illustrated numerically in Appendix 12B. Verifica-
tion bias can be avoided by using strict criteria for application of the gold standard that do not 
include the test or finding being studied. If this is not practical, it is possible to estimate and 
correct for verification bias if the gold standard can be applied to a random sample of those 
who test negative.

Differential Verification Bias: Different Gold Standards for Those Testing 
Positive and Negative

Another strategy is to use a different gold standard for those in whom the usual gold standard is 
not indicated. For example, subjects with ankle injuries in whom no x-ray was performed could 
be included by contacting them by telephone a few weeks after the injury and classifying them 
as not having had a fracture if they recovered uneventfully. However, this can cause differen-
tial verification bias, also called double gold standard bias (31). This bias can occur any time 
the gold standard differs among those with positive and negative test results. In the previously 
mentioned study of mammography (5) the gold standard for those with positive mammograms 
was a biopsy, whereas for those with negative mammograms, it was follow-up to see if a cancer 
became evident in the next year. Having different gold standards for the disease is a problem 
if the gold standards don’t always have the same results, as would occur if breast cancer that 
would be detected by biopsy in the case of a positive mammogram would not become evident 
in the 1-year follow-up of those with a negative mammogram.

Another example is a study of ultrasonography to diagnose intussusception in young chil-
dren (32). All children with a positive ultrasound scan for intussusception received the gold 
standard contrast enema. In contrast, the majority of children with a negative ultrasound were 
observed in the emergency department and intussusception was ruled out clinically. For cases 
of intussusception that resolve spontaneously, the two gold standards would give different 
results: the contrast enema would be positive, whereas clinical follow-up would be negative. A 
numerical illustration of differential verification bias in this study is provided in Appendix 12C.
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Differential verification bias can be avoided by applying the same gold standard to all sub-
jects. When this is not feasible (as was the case in the mammography study), investigators 
should make every effort to use other studies (e.g., autopsy studies examining the prevalence 
of asymptomatic cancers among patients who died from other causes in a study of a cancer 
screening test) to assess the degree to which this bias might threaten the validity of the study.

■  SUMMARY

 1. The usefulness of medical tests can be assessed using designs that address a series of 
increasingly stringent questions (Table 12.1). For the most part, standard observational 
designs provide descriptive statistics of test characteristics with confidence intervals.

 2. The subjects for a study of a diagnostic test should be chosen from patients who have a 
spectrum of disease and non-disease appropriate for the research question, in most cases 
reflecting the anticipated use of the test in clinical practice.

 3. If possible, the investigator should blind those interpreting the test results and determining 
the gold standard from other information about the patients being tested.

 4. Measuring the reproducibility of a test, including the intra- and inter-observer variability, 
is often a good first step in evaluating a test.

 5. Studies of the accuracy of tests require a gold standard for determining if a patient has, or 
does not have, the disease or outcome being studied.

 6. The results of studies of the accuracy of diagnostic tests can be summarized using sensitiv-
ity, specificity, predictive value, ROC curves, and likelihood ratios. Studies of the value 
of prognostic tests can be summarized with risk ratios, hazard ratios, or reclassification 
improvement.

 7. Studies to develop new clinical prediction rules are subject to problems of overfitting and 
lack of generalizability, requiring that new rules be validated in additional population 
samples.

 8. The most rigorous design for studying the utility of a diagnostic test is a clinical trial, with 
subjects randomized to receive the test or not, and with mortality, morbidity, cost, and 
quality of life among the outcomes.

 9. If trials are not ethical or feasible, observational studies of benefits, harms, and costs, with 
appropriate attention to possible biases and confounding, can be helpful.



APPENDIX 12A
Calculation of Kappa to Measure 
Inter-Observer Agreement
Consider two observers listening for an S4 gallop on cardiac examination (Table 12A.1). They 
record it as either present or absent. The simplest measure of inter-observer agreement is the 
proportion of observations on which the two observers agree. This proportion can be obtained 
by summing the numbers along the diagonal from the upper left to the lower right and divid-
ing it by the total number of observations. In this example, out of 100 patients there were 10 
patients in whom both observers heard a gallop, and 75 in whom neither did, for (10 + 75)/100 
= 85% agreement.
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TABLE 12.A.1  INTER-OBSERVER AGREEMENT ON PRESENCE OF AN S4 GALLOP

GALLOP HEARD BY 
OBSERVER 1

NO GALLOP HEARD 
BY OBSERVER 1 TOTAL, OBSERVER 2

Gallop heard by observer 2 10   5   15

No gallop heard by observer 2 10 75   85

Total, observer 1 20 80 100

When the observations are not evenly distributed among the categories (e.g., when the 
proportion “abnormal” on a dichotomous test is substantially different from 50%), or when 
there are more than two categories, another measure of inter-observer agreement, called 
kappa (k), is sometimes used. Kappa measures the extent of agreement beyond what would 
be expected by chance alone, given the observed “marginal values” (i.e., the row and column 
totals). Kappa ranges from –1 (perfect disagreement) to 1 (perfect agreement). A kappa of 0 
indicates that the amount of agreement was exactly that expected from the row and column 
totals. k is estimated as:

 

Observed agreement (%) − Expected agreement (%)

100% − Expected agreement (%)
k = 

The “expected” proportion in each cell is simply the proportion in that cell’s row (i.e., the row 
total divided by the sample size) times the proportion in that cell’s column (i.e., the column 
total divided by the sample size). The expected agreement is obtained by adding the expected 
proportions in the cells along the diagonal of the table, in which the observers agreed.

For example, in Table 12A.1 the observers appear to have done quite well: They have agreed 
85% of the time. But how well did they do compared with agreement expected from their mar-
ginal totals? By chance alone (given the observed marginal values) they will agree about 71% 
of the time: (20% × 15%) + (80% × 85%) = 71%. Because the observed agreement was 85%, 
kappa is (85% –71%)/(100% –71%) = 0.48—respectable, if somewhat less impressive than 85% 
agreement.

When there are more than two categories of test results, it is important to distinguish be-
tween ordinal variables, which are intrinsically ordered, and nominal variables, which are not. 
For ordinal variables, kappa as calculated above fails to capture all the information in the data, 
because it does not give partial credit for coming close. To give credit for partial agreement, a 
weighted kappa should be used. (See Newman and Kohn [29] for a more detailed discussion.)



APPENDIX 12B
Numerical Example  
of Verification Bias
Consider two studies examining ankle swelling as a predictor of fractures in children with an-
kle injuries. The first study is a consecutive sample of 200 children. In this study, all children 
with ankle injuries are x-rayed, regardless of swelling. The sensitivity and specificity of ankle 
swelling are 80% and 75%, as shown in Table 12B.1:
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TABLE 12B.1  ANKLE SWELLING AS A PREDICTOR OF 
 FRACTURE USING A CONSECUTIVE SAMPLE

FRACTURE NO FRACTURE

Swelling 32   40

No swelling 8 120

Total 40 160

Sensitivity = 32/40 = 80% Specificity = 120/160 = 75%

TABLE 12B.2  VERIFICATION BIAS: ANKLE SWELLING AS A 
PREDICTOR OF FRACTURE USING A SELECTED SAMPLE

FRACTURE NO FRACTURE

Swelling 32   40

No swelling 4   60

Total 36 100

Sensitivity = 32/36 = 89% Specificity = 60/100 = 60%

The second study is a selected sample, in which only half the children without ankle swell-
ing are x-rayed. Therefore, the numbers in the “No swelling” row will be reduced by half. This 
raises the apparent sensitivity from 32/40 (80%) to 32/36 (89%) and lowers the apparent speci-
ficity from 120/160 (75%) to 60/100 (60%), as shown in Table 12B.2.



APPENDIX 12C
Numerical Example of Differential 
Verification Bias
Results of the study by Eshed et al. of ultrasonography to diagnose intussusception (32) are 
shown in Table 12C.1.
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TABLE 12C.1  RESULTS OF A STUDY OF ULTRASOUND 
 DIAGNOSIS OF INTUSSUSCEPTION

INTUSSUSCEPTION NO INTUSSUSCEPTION

Ultrasound + 37    7

Ultrasound –   3 104

Total 40 111

Sensitivity = 37/40 = 93% Specificity = 104/111 = 94%

TABLE 12C.2  EFFECT ON SENSITIVITY AND SPECIFICITY  
IF NINE CHILDREN WITH SPONTANEOUSLY RESOLVING  
INTUSSUSCEPTION HAD RECEIVED THE CONTRAST ENEMA 
GOLD STANDARD INSTEAD OF CLINICAL FOLLOW-UP

INTUSSUSCEPTION NO INTUSSUSCEPTION

Ultrasound + 37 7

Ultrasound – 3 + 9 = 12 104 – 9 = 95

Total 49 102

Sensitivity = 37/49 = 76% Specificity = 95/102 = 93%

The 104 subjects with a negative ultrasound listed as having “No Intussusception” actually 
included 86 who were followed clinically and did not receive a contrast enema. If about 10% 
of these subjects (i.e., nine children) actually had an intussusception that resolved spontane-
ously, but that would still have been identified if they had a contrast enema, and all subjects 
had received a contrast enema, those nine children would have changed from true-negatives to 
false-negatives, as shown in Table 12C.2.

A similar, albeit less pronounced, effect occurs if some children with positive scans had in-
utssusceptions that would have resolved spontaneously if given the chance (31).
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Many research questions can be answered quickly and efficiently using data or specimens 
that have already been collected. There are three general approaches to using these existing 
resources. Secondary data analysis is the use of existing data to investigate research questions 
other than the main ones for which the data were originally gathered. Ancillary studies add 
one or more measurements to a study, often in a subset of the participants, to answer a separate 
research question. Systematic reviews combine the results of multiple previous studies of a 
given research question, often including calculation of a summary estimate of effect that has 
greater precision than the individual study estimates. Making creative use of existing data and 
specimens is a fast and effective way for new investigators with limited resources to begin to 
answer important research questions, gain valuable experience in a research area, and some-
times have a publishable finding in a short time frame.

■  ADVANTAGES AND DISADVANTAGES

The main advantages of studies using existing data are speed and economy. A research ques-
tion that might otherwise require much time and money to investigate can sometimes be an-
swered rapidly and inexpensively. For example, in the database of the Study of Osteoporotic 
Fractures, a prospective cohort study originally designed to study risk factors for fracture, Yaffe 
and colleagues used repeated measurements that had been made of physical activity and of 
cognitive function to discover that women who walked more had a 36% lower risk of cognitive 
decline than women who walked less (1).

Studies using existing data or specimens also have disadvantages. The selection of the 
population to study, which data to collect, the quality of data gathered, and how variables were 
measured and recorded are all predetermined. The existing data may have been collected from a 
population that is not ideal (e.g., men only rather than men and women), the measurement ap-
proach may not be what the investigator would prefer (history of hypertension, a dichotomous 
historical variable, in place of actual blood pressure), and the quality of the data may be poor 
(frequent missing or incorrect values). Important confounders and outcomes may not have 
been measured or recorded. All these factors contribute to the main disadvantage of using exist-
ing data: The investigator has little or no control over what data have been collected, and how.

■  SECONDARY DATA ANALYSIS

Secondary data sets may come from medical records, health care billing files, death certificates, 
public databases, and many other sources, but other research studies, either conducted at the 
investigator’s institution or elsewhere, are one of the richest sources of secondary data. Many 
studies collect more data than the investigators analyze and these data can be used to document 
interesting results that have gone unnoticed. Access to such data is generally controlled by the 
study’s principal investigator or a steering committee; the new researcher should therefore 
seek out information about studies by other investigators that may have made measurements 
relevant to the research question. One of the most important ways a good mentor can be helpful 
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to a new investigator is by providing knowledge of and access to relevant data sets. Most NIH-
funded studies are required to make their data publicly available.

Other fruitful sources of secondary data are large regional and national data sets that are 
publicly available and do not have a principal investigator. Computerized databases of this sort 
are as varied as the reasons people have for collecting information. We will give several exam-
ples that deserve special mention, and readers can locate others in their own areas of interest.

 Tumor registries are government-supported agencies that collect complete statistics on 
cancer incidence, treatment, and outcome in defined geographic areas. These registries cur-
rently include about one quarter of the U.S. population, and the area of coverage is expected 
to increase during the coming years. One purpose of these registries is to provide data to 
outside investigators. Combined data for all the registries are available from the Surveillance, 
Epidemiology, and End Results (SEER) Program. For example, investigators used the SEER 
registry of breast cancer diagnoses to find that the annual incidence of estrogen-receptor 
positive breast cancer declined 13% in postmenopausal women between 2001 and 2003; 
this trend paralleled the reduction in use of hormone therapy by postmenopausal women, 
suggesting that stopping hormone therapy reduced the risk of breast cancer (2).

 Death certificate registries can be used to follow the mortality of any cohort. The National 
Death Index includes all deaths in the United States since 1978. This can be used to ascer-
tain the vital status of subjects of an earlier study or of those who are part of another data 
set that includes important predictor variables. A classic example is the follow-up of men 
with coronary disease who were randomly assigned to high-dose nicotinic acid or placebo 
to lower serum cholesterol in the Coronary Drug Project. No study had ever shown an effect 
of lipid treatment on mortality and there was no difference in death rates at the end of the 
5 years of randomized treatment, but a mortality follow-up 9 years later using the National 
Death Index revealed a significant benefit (3). Whether an individual is alive or dead is pub-
lic information, so follow-up was available even for men who had dropped out of the study.

The National Death Index can be used when either the Social Security number or the 
name and birth date are known. Ascertainment of the fact of death is 99% complete with 
this system, and additional information from death certificates (notably cause of death) can 
then be obtained from state records. On the state and local level, many jurisdictions now 
have computerized vital statistics systems, in which individual data (such as information 
from birth or death certificates) are entered as they are received.

 NHANES, the National Health and Nutrition Examination Survey is a series of surveys that 
assess the health and nutritional status of both adults and children in the United States. The 
surveys employ population-based cluster random selection to identify a nationally represen-
tative sample, and include self-reported data (e.g., demographic, socioeconomic, dietary, and 
health-related behaviors), physical examinations, laboratory tests, and other measurements. 
NHANES data can provide population-based estimates of disease prevalence, risk factors, 
and other variables. For example, bone mineral density (BMD) of the hip was measured 
during two examinations: 1988–1994 and 2005–2006. The results provide normal values for 
women and men of various races in the United States that are used to define  ‘osteoporosis’ 
as 2.5 standard deviations below the average BMD value for young adults in NHANES (4). 
Investigators also used the repeated measurements to discover that BMD has been improving 
and the prevalence of osteoporosis has been declining (5).

Secondary data can be especially useful for studies to evaluate patterns of utilization and 
clinical outcomes of medical treatment. This approach can complement the information avail-
able from randomized trials and examine questions that trials cannot answer. These types of 
existing data include electronic administrative and clinical databases such as those developed 
by Medicare, the Department of Veterans Affairs, Kaiser Permanente Medical Groups, the Duke 
Cardiovascular Disease Databank, and registries such as the San Francisco Mammography 
 Registry and the National Registry of Myocardial Infarction. Information from these sources 
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(many of which can be found on the Web) can be very useful for studying rare adverse events 
and for assessing real-world utilization and effectiveness of an intervention that has been shown 
to work in a clinical trial setting. For example, the National Registry of Myocardial Infarction 
was used to examine risk factors for intracranial hemorrhage after treatment with recombinant 
tissue-type plasminogen activator (tPA) for acute myocardial infarction (MI). The registry 
included 71,073 patients who received tPA; among these, 673 had intracranial hemorrhage 
confirmed by computed tomography or magnetic resonance imaging. A multivariate analysis 
showed that a tPA dose exceeding 1.5 mg/kg was significantly associated with developing an 
intracranial hemorrhage when compared with lower doses (6). Given that the overall risk of 
developing an intracranial hemorrhage was less than 1%, a clinical trial collecting primary data 
to examine this outcome would have been prohibitively large and expensive.

Another valuable contribution from this type of secondary data analysis is a better under-
standing of the difference between efficacy and effectiveness. The randomized clinical trial is 
the gold standard for determining the efficacy of a therapy in a select population under highly 
controlled circumstances in limited clinical settings. In the “real world,” however, the patients 
who are treated, the choice of drugs and dosage by the treating physician, and adherence to 
medications by the patient are much more variable. These factors may make the application 
of therapy in the general population less effective than what is observed in trials. The effec-
tiveness of treatments in actual practice can sometimes be studied using secondary data. For 
example, primary angioplasty has been demonstrated to be superior to thrombolytic therapy in 
clinical trials among patients with acute MI (7). But this may only be true when success rates 
for angioplasty are as good as those achieved in the clinical trial setting. Secondary analyses 
of community data sets have not found a benefit of primary angioplasty over thrombolytic 
therapy (8, 9). However, it is important to remember that observational studies of treatments 
have several limitations—most importantly potential confounding by differences in character-
istics of those treated and those not treated. Bias and confounding are particularly difficult to 
assess using secondary databases that are not designed to study the effectiveness of treatments, 
and a randomized trial comparing treatments conducted in community settings is a better ap-
proach, when feasible.

Secondary data analysis is often the best approach for describing how therapies are used in 
clinical practice. Although clinical trials can demonstrate efficacy of a new therapy, this benefit 
can only occur if the therapy is adopted by practicing physicians. Understanding utilization 
rates, addressing regional variation and use in specific populations (such as the elderly, ethnic 
minorities, the economically disadvantaged, and women), can have useful public health im-
plications. For example, using publicly available data from a 5% random sample of Medicare 
beneficiaries, investigators demonstrated substantial regional variation in the prevalence of 
diagnosed glaucoma after adjustment for potential confounders, suggesting over- or under-
diagnosis in certain regions of the country (10).

Two or more existing data sets may also be linked to answer a research question. Investi-
gators who were interested in how military service affects health used the 1970 to 1972 draft 
lottery involving 5.2 million 20-year-old men who were assigned eligibility for military service 
randomly by date of birth (the first data set) and subsequent mortality based on death certifi-
cate registries (the second source of data). The predictor variable (date of birth) was a ran-
domly assigned proxy for military service during the Vietnam era. Men who had been randomly 
assigned to be eligible for the draft had significantly greater mortality from suicide and motor 
vehicle accidents in the ensuing 10 years (11). The study was done very inexpensively, yet it 
was a more unbiased approach to examining the effect of military service on specific causes of 
subsequent death than other studies of this topic with much larger budgets.

When individual data are not available, aggregate data sets can sometimes be useful. Aggre-
gate data include information only for groups of persons (e.g., death rates from cervical cancer 
in each of the 50 states), not for individuals. With such data, associations can only be measured 
among these groups by comparing group information on a risk factor (such as tobacco sales by 
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region) with the rate of an outcome (lung cancer by region). Studies of associations based on 
aggregate data are called ecologic studies.

The advantage of aggregate data is its availability. Its major drawback is that associations 
are especially susceptible to confounding: Groups tend to differ from each other in many ways, 
not just with regard to the predictor variable of interest. As a result, associations observed in 
the aggregate do not necessarily hold for the individual. For example, sales of cigarettes may 
be greater in states with high suicide rates, but individuals who commit suicide may not be the 
ones doing most of the smoking. This situation is referred to as the ecologic fallacy. Aggregate 
data are most appropriately used to test the plausibility of a new hypothesis or to generate new 
hypotheses. Interesting results can then be pursued in another study that uses individual data.

Getting Started

After choosing a research topic and becoming familiar with the literature in that area (including 
a thorough literature search and advice from a senior mentor), the next step is to investigate 
whether the research question can be addressed with an existing data set. The help of a senior 
colleague can be invaluable in finding an appropriate data set. An experienced researcher has 
defined areas of interest in which he stays current and is aware of important data sets and the 
investigators who control these data, both at his own institution and elsewhere. This person 
can help identify and gain access to the appropriate data. Often, the research question needs 
to be altered slightly (by modifying the definition of the predictor or outcome variables, for 
example) to fit the available data.

The best solution may be close at hand, a database at the home institution. For example, a 
University of California, San Francisco (UCSF) fellow who was interested in the role of lipo-
proteins in coronary disease noticed that one of the few interventions known to lower the level 
of lipoprotein(a) was estrogen. Knowing that the Heart and Estrogen/Progestin Replacement 
Study (HERS), a major clinical trial of hormone treatment to prevent coronary disease, was 
managed at UCSF, the fellow approached the investigators with his interest. Because no one 
else had specifically planned to examine the relationship between this lipoprotein, hormone 
treatment, and coronary heart disease events, the fellow designed an analysis and publication 
plan. After receiving permission from the HERS study leadership, he worked with coordinating 
center statisticians, epidemiologists, and programmers to carry out an analysis that he subse-
quently published in a leading journal (12).

Sometimes a research question can be addressed that has little to do with the original study. 
For example, another fellow from UCSF was interested in the value of repeated screening Pap 
tests in women over 65 years old. He realized that the mean age of participants in the HERS 
trial was 67 years, that participants were required to have a normal Pap test to enter the trial, 
and that participants then underwent screening Pap tests annually during follow-up. By fol-
lowing up on Pap test outcomes, he was able to document that 110 Pap tests were abnormal 
among 2,763 women screened over a 2-year period, and that only one woman was ultimately 
found to have abnormal follow-up histology. Therefore, all but one of the abnormal Pap tests 
were falsely positive (13). This study strongly influenced the next U.S. Preventive Services Task 
Force recommendation that Pap tests should not be performed in low-risk women over age 65 
with previous normal tests.

Sometimes it is necessary to venture further afield. Working from a list of predictor and 
outcome variables whose relation might help to answer the research question, an investigator 
can seek to locate databases that include these variables. Some studies have websites that pro-
vide free access to the study data without requiring permission. When the data are not available 
online, phone calls or e-mail messages to the authors of previous studies or to government of-
ficials might result in access to files containing useful data. It is essential to conquer any anxiety 
about contacting strangers to ask for help. Most people are surprisingly cooperative, either by 
providing data themselves or by suggesting other places to try.
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Once the data for answering the research question have been located, the next challenge 
is to obtain permission to use them. It is a good practice to use official titles and your insti-
tutional domain name on correspondence or e-mail, and to copy your mentor as someone 
who will be recognized as an expert in the field. Young investigators should determine if 
their mentors are acquainted with the investigators who control the database, as an introduc-
tion may be more effective than a cold contact. It is generally most effective to work with an 
investigator, or a member of the study staff, who is interested in the research topic and in-
volved in the study that has the data of interest. This investigator can facilitate access to the 
data, assure understanding of the study methods and how the variables were measured, and 
often becomes a valued colleague and collaborator. Data sets from multicenter studies and 
clinical trials generally have clear procedures for obtaining access to the data that include 
the requirement for a written proposal that must be approved by an analysis or publications 
committee.

The investigator should be very specific about what information is sought and confirm the 
request in writing. Many studies have guidelines for requesting data that specify what data are 
being requested, how the analyses will be done, and the timelines for completing the work. 
It is a good idea to keep the size of the request to a minimum and to offer to pay the cost of 
preparing the data. If the data set is controlled by a group of researchers, the investigator can 
suggest a collaborative relationship. In addition to providing an incentive to share the data, this 
can engage a co-investigator who is familiar with the database. It is wise to clearly define such 
a relationship early on, including who will be first author of the planned publications.

■  ANCILLARY STUDIES

Research using secondary data takes advantage of the fact that most of the data needed to 
answer a research question are already available. In an ancillary study, the investigator adds 
one or several measurements to an existing study to answer a different research question. 
For example, in the HERS trial of the effect of hormone therapy on risk for coronary events 
in 2,763 elderly women, an investigator added measurement of the frequency and severity of 
urinary incontinence. Adding a brief questionnaire at the next planned exam created a large 
trial of the effect of hormone therapy on urinary incontinence, with little additional time or 
expense (14).

Ancillary studies have many of the advantages of secondary data analysis with fewer con-
straints. They are both inexpensive and efficient, and the investigator can design a few key 
ancillary measurements specifically to answer the research question. Ancillary studies can be 
added to any type of study, including cross-sectional and case–control studies, but large pro-
spective cohort studies and randomized trials are particularly well suited.

Ancillary studies have the problem that the measurements may be most informative when 
added before the study begins, and it may be difficult for an outsider to identify studies in the 
planning phase. Even when a variable was not measured at baseline, however, a single mea-
surement during or at the end of a trial can produce useful information. By adding cognitive 
function measures at the end of the HERS trial, the investigators were able to compare the cog-
nitive function of elderly women treated with hormone therapy for 4 years with the cognitive 
function of those treated with placebo (15).

A good opportunity for ancillary studies is provided by the banks of stored sera, DNA, 
 images, and so on, that are found in most large clinical trials and cohort studies. The op-
portunity to propose new measurements using these stored specimens can be an extremely 
cost-effective approach to answering a novel research question, especially if it is possible to 
make these measurements on a subset of specimens using a nested case–control or case–cohort 
design (Chapter 8). In HERS, for example, a nested case–control study that carried out genetic 
analyses on stored specimens showed that the excess number of thromboembolic events in the 
hormone-treated group was not due to an interaction with factor V Leiden (16).
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Getting Started

Opportunities for ancillary studies should be actively pursued, especially by new investigators 
who have limited time and resources. A good place to start is to identify studies with research 
questions that include either the predictor or the outcome variable of interest. For example, an 
investigator interested in the effect of weight loss on pain associated with osteoarthritis of the 
knee might start by identifying studies that include good measurement of painful osteoarthritis 
(by validated questionnaires) or databases with records of joint replacements that also have 
preceding measurements of weight. Additionally, the investigator may look for trials of inter-
ventions (such as diet, exercise, behavior change, or drugs) for weight loss. Such studies can 
be identified by searching lists of studies funded by the federal government (http://clinicaltrials 
.gov or http://report.nih.gov), by contacting pharmaceutical companies that manufacture drugs 
for weight loss, and by talking with experts in weight loss who are familiar with ongoing 
studies. To create an ancillary study, the investigator would simply add a measure of arthritis 
symptoms at a follow-up exam of subjects enrolled in these studies.

After identifying a study that provides a good opportunity for ancillary measures, the next 
step is to obtain the cooperation of the study investigators. Most researchers will consider add-
ing brief ancillary measures to an established study if they address an important question and 
do not substantially interfere with the conduct of the main study. Investigators will be reluctant 
to add measures that require a lot of the participant’s time (e.g., cognitive function testing) or 
are invasive and unpleasant (colonoscopy) or costly (positron emission tomography scanning).

Generally, formal permission from the principal investigator or the appropriate study com-
mittee is required to add an ancillary study. Most large, multicenter studies have established 
procedures requiring a written application. The proposed ancillary study is often reviewed by a 
committee that can approve, reject, or revise the ancillary study. Many ancillary measures require 
funding, and the ancillary study investigator must find a way to pay these costs. Of course, the 
marginal cost of an ancillary study is far less than the cost of conducting the same study inde-
pendently. Ancillary studies are also very well suited for some types of NIH funding that provide  
only modest support for measurements and analyses but substantial support for career develop-
ment (Chapter 19). Some large studies have their own mechanisms for funding ancillary studies, 
especially if the research question is important and considered relevant by the funding agency.

The disadvantages of ancillary studies are few. If the study will be collecting data from 
participants, new measures can be added, but variables already being measured generally can-
not be changed. In some cases there may be practical problems in obtaining permission from 
the investigators or sponsor to perform the ancillary study, in training those who will make 
the measurements, or in obtaining separate informed consent from participants. These issues, 
including a clear understanding of authorship of scientific papers that result from the ancillary 
study and the rules governing their preparation and submission, need to be clarified before 
starting the study.

■  SYSTEMATIC REVIEWS

Systematic reviews identify a set of completed studies that address a particular research ques-
tion, and evaluate the results of these studies to arrive at conclusions about a body of research. In 
contrast to other approaches to reviewing the literature, a systematic review uses a  well-defined 
approach to identify all relevant studies, display the characteristics and results of eligible stud-
ies, and, when appropriate, calculate a summary estimate of the overall results. The statistical 
 aspects of a systematic review (calculating summary effect estimates and variance, statistical 
tests of heterogeneity, and statistical estimates of publication bias) are called meta-analysis.

A systematic review can be a great opportunity for a new investigator. Although it takes a 
surprising amount of time and effort, a systematic review generally does not require substantial 
financial or other resources. Completing a good systematic review requires that the investigator 

http://clinicaltrials.govor
http://clinicaltrials.govor
http://report.nih.gov
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become intimately familiar with the literature on the research question. For new investigators, 
this detailed knowledge of published studies is invaluable. Publication of a good systematic 
review can also establish a new investigator as an “expert” on the research question. Moreover, 
the findings, with power enhanced by the larger sample size available from the combined stud-
ies and peculiarities of individual study findings revealed by comparison with the others, often 
represent an important scientific contribution. Systematic review findings can be particularly 
useful for developing practice guidelines.

The elements of a good systematic review are listed in Table 13.1. A good source of informa-
tion on methods for conducting high-quality systematic reviews can be found in the Cochrane 
Handbook for Systematic Reviews (http://handbook.cochrane.org). Just as for other studies, the 
methods for completing each of these steps should be described in a written protocol before 
the systematic review begins.

The Research Question

A good systematic review has a well-formulated, clear research question that meets the FINER 
criteria (Chapter 2). Feasibility depends largely on the existence of a set of studies of the ques-
tion. The research question should describe the disease or condition of interest, the population 
and setting, the intervention and comparison treatment (for trials), and the outcomes of inter-
est. For example,

“Among persons admitted to an intensive care unit with acute coronary syndrome, does 
treatment with aspirin plus intravenous heparin reduce the risk of myocardial infarction and 
death during the hospitalization more than treatment with aspirin alone?”

This research question led to a meta-analysis that found that adding aspirin to heparin im-
proved outcomes, which was published in a top medical journal (17) and had an important 
impact on practice patterns.

Identifying Completed Studies

Systematic reviews are based on a comprehensive and unbiased search for completed studies. 
The search should follow a well-defined strategy established before the results of the individual 
studies are known. The process of identifying studies for potential inclusion in the review and 
the sources for finding such articles should be explicitly documented before the study. Searches 
should not be limited to MEDLINE, which may not list non-English-language references. 
Depending on the research question, electronic databases such as AIDSLINE, CANCERLIT, 
and EMBASE should be included, as well as manual review of the bibliography of relevant 
published studies, previous reviews, evaluation of the Cochran Collaboration database, and 
consultation with experts. The search strategy should be clearly described so that other inves-
tigators can replicate the search.

TABLE 13.1  ELEMENTS OF A GOOD SYSTEMATIC REVIEW

5. Clear and uniform presentation of data from individual studies

7. Assessment of the heterogeneity of the findings of the individual studies

9. Subgroup and sensitivity analyses

http://handbook.cochrane.org
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Criteria for Including and Excluding Studies

The protocol for a systematic review should provide a good rationale for including and exclud-
ing studies, and these criteria should be established a priori (Table 13.2). Once these criteria 
are established, each potentially eligible study should be reviewed for eligibility independently 
by two or more investigators, with disagreements resolved by another reviewer or by con-
sensus. When determining eligibility, it may be best to blind reviewers to the date, journal, 
authors, and results of trials.

Published systematic reviews should list studies that were considered for inclusion and the 
specific reason for excluding a study. For example, if 30 potentially eligible studies are identi-
fied, these 30 studies should be fully referenced and a reason should be given for each exclusion.

Collecting Data from Eligible Studies

Data should be abstracted from each study in a uniform and unbiased fashion. Generally, 
this is done independently by two or more abstractors using predesigned forms (Table 13.3). 
The data abstraction forms should include any data that will subsequently appear in the text, 
tables, or figures describing the studies included in the systematic review, or in tables or figures 
presenting the outcomes. When the two abstractors disagree, a third abstractor can settle the 
difference, or a consensus process may be used. The process for abstracting data from studies 
for the systematic review should be clearly described in the manuscript.

The published reports of some studies that might be eligible for inclusion in a systematic 
review may not include important information, such as design features, risk estimates, and 
standard deviations. Often it is difficult to tell if design features such as blinding were not im-
plemented or were just not described in the publication. The reviewer can sometimes calculate 

TABLE 13.2  CRITERIA FOR INCLUDING OR EXCLUDING STUDIES FROM 
META-ANALYSES

CRITERIA
EXAMPLE–OMEGA-3 FATTY ACIDS AND 
CARDIOVASCULAR EVENTS*

published
Studies published before August 2012

2. Study design
-

vention settings

3. Study population Studies of adults randomized to omega-3 fatty 

diet or supplements, any dose, administered for 
at least one year

- None

Not stated

Not stated
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relative risks and confidence intervals from crude data presented from randomized trials, but 
it is generally unacceptable to calculate risk estimates and confidence intervals based on crude 
data from observational studies because there is not sufficient information to adjust for potential 
confounders. Every effort should be made to contact the authors to retrieve important informa-
tion that is not included in the published description of a study. If this necessary information 
cannot be calculated or obtained, the study findings are generally excluded.

Presenting the Findings Clearly

Systematic reviews generally include three types of information. First, important characteris-
tics of each study included in the systematic review are presented in tables. These often include 
characteristics of the study population, sample size, number or rate of outcomes, length of 
follow-up, and methods used in the study. Second, the review displays the analytic findings of 
the individual studies (relative risk, odds ratio, risk difference, and confidence intervals or P 
values) in a table or figure. Finally, in the absence of significant heterogeneity (see below), the 
meta-analysis presents summary estimates and confidence intervals based on the findings of 
all the included studies as well as sensitivity and subgroup analyses.

The summary effect estimates represent a main outcome of the meta-analysis, but should 
be presented in the context of all the information abstracted from the individual studies. The 
characteristics and findings of individual studies included in the systematic review should be 
displayed clearly in tables and figures so that the reader can form opinions that do not depend 
solely on the statistical summary estimates.

Meta-Analysis: Statistics for Systematic Reviews

 Summary effect estimate and confidence interval. Once all completed studies have been 
identified, those that meet the inclusion and exclusion criteria have been chosen, and data 
have been abstracted from each study, a summary estimate (summary relative risk, summary 
odds ratio, summary risk difference, etc.) and confidence interval are generally calculated. 
The summary effect is essentially an average effect weighted by the inverse of the variance 
of the outcome of each study. Methods for calculating the summary effect and confidence 
interval are discussed in Appendix 13. Those not interested in the details of calculating mean 
weighted estimates from multiple studies should at least be aware that different approaches 
can give different results. For example, recent meta-analyses of the effectiveness of condoms 
for preventing heterosexual transmission of HIV have given summary estimates ranging 
from 80% to 94% decrease in transmission rates, although they are based on the results of 
almost identical sets of studies (18, 19).
Heterogeneity. Combining the results of several studies is not appropriate if the studies 
differ in clinically important ways, such as the population, intervention, outcome, control 

TABLE 13.3  ELEMENTS TO INCLUDE ON DATA ABSTRACTION FORMS FOR 
META-ANALYSES
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condition, blinding, and so on. It is also inappropriate to combine the findings if the results 
of the individual studies differ widely. Even if the methods used in the studies appear to be 
similar, the fact that the results vary markedly suggests that something important was dif-
ferent in the individual studies. This variability in the findings of the individual studies is 
called heterogeneity (and the study findings are said to be heterogeneous); if there is little 
variability, the study findings are said to be homogeneous.

How can the investigator decide whether methods and findings are similar enough to com-
bine into summary estimates? First, he can review the individual studies to determine if there 
are substantial differences in study design, study populations, intervention, or outcome. Then 
he can examine the results of the individual studies. If some trials report a substantial beneficial 
effect of an intervention and others report considerable harm, heterogeneity is clearly present. 
Sometimes, it is difficult to decide if heterogeneity is present. For example, if one trial reports 
a 50% risk reduction for a specific intervention but another reports only a 30% risk reduction, 
is heterogeneity present? Statistical approaches (tests of homogeneity) have been developed 
to help answer this question (Appendix 13), but ultimately, the assessment of heterogeneity 
requires judgment. Every reported systematic review should include some discussion of het-
erogeneity and its effect on the summary estimates.

Assessment of Publication Bias

Publication bias occurs when published studies are not representative of all studies that have 
been done, usually because positive results tend to be submitted and published more often than 
negative results. There are two main ways to deal with publication bias. Unpublished studies 
can be identified and the results included in the summary estimate. Unpublished results may 
be identified by querying investigators and reviewing abstracts, meeting presentations, and 
doctoral theses. The results of unpublished studies can be included with those of the published 
studies in the overall summary estimate, or sensitivity analyses can determine if adding these 
unpublished results substantially changes the summary estimate determined from published 
results. However, including unpublished results in a systematic review is problematic for 
several reasons. It is often difficult to identify unpublished studies and even more difficult to 
abstract the required data. Frequently, inadequate information is available to determine if the 
study meets inclusion criteria for the systematic review or to evaluate the quality of the meth-
ods (which, lacking the rigor of peer review, may be inferior). For these reasons, unpublished 
data are not often included in meta-analyses.

Alternatively, the extent of potential publication bias can be estimated and this information 
used to temper the conclusions of the systematic review. Publication bias exists when unpub-
lished studies have different findings from published studies. Unpublished studies are more 
likely to be small (large studies usually get published, regardless of the findings) and to have 
found no association between the risk factor or intervention and the outcome (markedly positive 
studies usually get published, even if small). If there is no publication bias, there should be no 
association between a study’s size (or the variance of the outcome) and the findings. The degree 
of this association is often measured using Kendall’s Tau, a coefficient of correlation. A strong 
or statistically significant correlation between study outcome and sample size suggests publica-
tion bias. In the absence of publication bias, a plot of study sample size versus outcome (e.g., log 
relative risk) should have a bell or funnel shape with the apex near the summary effect estimate.

The funnel plot in Figure 13.1A suggests that there is little publication bias because small 
studies with both negative and positive findings were published. The plot in Figure 13.1B, on 
the other hand, suggests publication bias because the distribution appears truncated in the 
corner that should contain small, negative studies.

When substantial publication bias is likely, summary estimates should not be calculated or 
should be interpreted cautiously. Every reported systematic review should include some dis-
cussion of potential publication bias and its effect on the summary estimates.
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Subgroup and Sensitivity Analyses

Subgroup analyses may be possible using data from all or some subset of the studies included 
in the systematic review. For example, in a systematic review of the effect of postmenopausal 
estrogen therapy on endometrial cancer risk, some of the studies presented the results by dura-
tion of estrogen use. Subgroup analyses of the results of studies that provided such information 
demonstrated that longer duration of use was associated with higher risk for cancer (20).

Sensitivity analyses indicate how “sensitive” the findings of the meta-analysis are to certain 
decisions about the design of the systematic review or inclusion of certain studies. For example, 
if the authors decided to include studies with a slightly different design or methods in the sys-
tematic review, the findings are strengthened if the summary results are similar whether or not 
the questionable studies are included. Systematic reviews should generally include sensitivity 
analyses if any of the design decisions appear questionable or arbitrary.

Meta-analyses can increase the power to answer a research question, but have the disadvan-
tage that they do not include individual-level data to allow adjustment for potential confound-
ing or to perform individual subgroup analyses. In some situations, it may be possible to obtain 
the individual-level data from the relevant individual studies and perform pooled analyses. In 
these cases, the pooled data from individual studies can be used to adjust for confounding or 
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assess subgroup effects just as would be done in a large single study. For example, the Early 
Breast Cancer Trialists Collaborative Group pooled individual-level data from 123 random-
ized trials to evaluate the efficacy of different chemotherapy regimens for early breast cancer 
(21). However, it is generally difficult to obtain individual-level data from relevant studies, and 
uncommon that these studies have measured variables in ways that are similar enough to be 
combined into one data set.

Garbage In, Garbage Out

The biggest drawback to a systematic review is that it can produce a reliable-appearing sum-
mary estimate based on the results of individual studies that are of poor quality. There are 
several approaches used to assess the quality of different study designs in meta-analyses, but 
the process of assessing quality is complex and problematic. We favor relying on relatively 
strict criteria for good study design when setting the inclusion criteria. If the individual studies 
that are summarized in a systematic review are of poor quality, no amount of careful analysis 
can prevent the summary estimate from being unreliable. A special instance of this problem 
is encountered in systematic reviews of observational data. If the results of these studies are 
not adjusted for potential confounding variables, the results of the meta-analysis will also be 
unadjusted and potentially confounded.

■  SUMMARY

This chapter describes three approaches to making creative use of existing data and specimens, 
a fast and effective way for new investigators with limited resources to acquire valuable experi-
ence and an early publication.

Secondary Data Analysis

 1. This approach to using existing data sets has the advantage of greatly reducing the time 
and cost of doing research and the disadvantage of providing little or no control over the 
study population, design, or measurements.

 2. Sources of data for secondary analysis include existing research projects, electronic medi-
cal records, administrative databases and public databases such as tumor registries, death 
certificate registries, and national surveys such as NHANES.

 3. Large community-based data sets are useful for studying effectiveness (the real-world 
effects of an intervention in various communities); for assessing utilization rates and 
 regional variation, and for discovering rare adverse events.

 4. Studies of associations based on aggregate data are called ecological studies; these can 
provide useful information but are subject to special biases termed ecological fallacies.

Ancillary Study

 1. An ancillary study is a secondary data analysis in which the investigator makes one or  
more new measurements to answer a new research question with relatively little cost and 
effort.

 2. Good opportunities for ancillary studies may be found in cohort studies or clinical trials 
that include either the predictor or outcome variable for the new research question.

 3. Stored serum, DNA, images, and so on, provide the opportunity for nested case–control 
designs.

 4. Most large studies have written policies that allow investigators (including outside scien-
tists) to propose and carry out secondary data analyses and ancillary studies.
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Systematic Review

 1. A good systematic review, like any other study, requires a written protocol before the study 
begins that includes the research question, methods for identifying all eligible studies, 
methods for abstracting data from the studies, and statistical methods.

 2. The statistical aspects of combining studies on a topic, termed meta-analysis, include the 
summary effect estimate and confidence interval, tests for evaluating heterogeneity and 
potential publication bias, and subgroup and sensitivity analyses.

 3. The characteristics and findings of individual studies should be displayed clearly in tables 
and figures so that the reader can form opinions that do not depend solely on the statistical 
summary estimates.

 4. A major challenge is assessing quality of the studies in a systematic review, which can 
strongly influence the findings of the review.



APPENDIX 13
Statistical Methods for  
Meta-Analysis

■  SUMMARY EFFECTS AND CONFIDENCE INTERVALS

The primary goal of meta-analysis is to calculate a summary effect estimate and confidence 
 interval. An intuitive way to do this is to multiply each study outcome, such as the relative risk 
(an effect estimate), by the sample size (a weight that reflects the precision of the relative risk), 
add these products, and divide by the sum of the weights. In actual practice, the inverse of the 
variance of the effect estimate from each individual study (1/variancei) is used as the weight for 
each study. The inverse of the variance is a better estimate of the precision of the effect estimate 
than the sample size because it takes into account the number of outcomes and their distribution. 
The weighted mean effect estimate is calculated by multiplying each study weight (1/variancei) 
by the log of the relative risk (or any other risk estimate, such as the log odds ratio, risk differ-
ence, etc.), adding these products, and dividing by the sum of the weights. Small studies gener-
ally result in a large variance (and a wide confidence interval around the risk estimate) and large 
studies result in a small variance (and a narrow confidence interval around the risk estimate). 
Therefore, in a meta-analysis, large studies get a lot of weight (1/small variance) and small  studies 
get little weight (1/big variance).

To determine if the summary effect estimate is statistically significant, the variability of the 
estimate of the summary effect is calculated. There are various formulas for calculating the 
 variance of summary risk estimates (22, 23). Most use something that approximates the inverse 
of the sum of the weights of the individual studies (1/Σ weighti). The variance of the sum-
mary estimate is used to calculate the 95% confidence interval around the summary estimate 
(± 1.96 × variance1/2).

■  RANDOM- VERSUS FIXED-EFFECTS MODELS

There are multiple statistical approaches available for calculating a summary estimate (22, 23). 
The choice of statistical method is usually dependent on the type of outcome (relative risk, 
odds ratio, risk difference, etc.). In addition to the statistical method, the investigator must also 
choose to use either a fixed-effects or random-effects model. The fixed-effects model simply 
calculates the variance of a weighted summary estimate based on the inverse of the sum of the 
weights of each individual study. The random-effects model adds variance to the summary 
effect in proportion to the variability of the results of the individual studies. Summary effect 
estimates are generally similar using either the fixed- or random-effects model, but the variance 
of the summary effect is greater in the random-effects model to the degree that the results of the 
individual studies differ, and the confidence interval around the summary effect is correspond-
ingly larger, so that summary results are less likely to be statistically significant. Many journals 
require authors to use a random-effects model because it is considered “conservative” (i.e., less 
likely to find a statistically significant effect if one does not exist). Meta-analyses should state 
clearly whether they used a fixed- or random-effects model.

Simply using a random-effect model does not obviate the problem of heterogeneity. If the 
studies identified by a systematic review are clearly heterogeneous, a summary estimate should 
not be calculated.

205



206

■  STATISTICAL TESTS OF HOMOGENEITY

Tests of homogeneity assume that the findings of the individual trials are the same (the null 
hypothesis) and use a statistical test (test of homogeneity) to determine if the data (the indi-
vidual study findings) refute this hypothesis. A chi-squared test is commonly used (22). If the 
data do support the null hypothesis (P value ≥0.10), the investigator accepts that the studies 
are homogeneous. If the data do not support the hypothesis (P value <0.10), he rejects the 
null hypothesis and assumes that the study findings are heterogeneous. In other words, there 
are meaningful differences in the populations studied, the nature of the predictor or outcome 
variables, or the study results.

All meta-analyses should report tests of homogeneity with a P value. These tests are not very 
powerful and it is hard to reject the null hypothesis and prove heterogeneity when the sample 
size—the number of individual studies—is small. For this reason, a P value of 0.10 rather than 
0.05 is typically used as a cutoff. If substantial heterogeneity is present, it is inappropriate to 
combine the results of trials into a single summary estimate.
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C H A P T E R 14

R esearch with human participants raises ethical concerns because people accept  inconvenience 
and risks to advance scientific knowledge and to benefit others. The public, who participate in 
and help fund clinical research, needs to trust that research follows high ethical standards.

In this chapter we begin with the history of research oversight and then review ethical 
principles and federal regulations guiding research with human participants, especially 
 requirements for institutional review board (IRB) approval and informed consent. We finally 
turn to issues of scientific misconduct, authorship, conflicts of interest, and ethical issues in 
specific types of research.

■  HISTORY OF REGULATIONS ON CLINICAL RESEARCH

Current regulations and guidelines for clinical research have responded to abuses,including 
Nazi physician “research” during World War II, research in the U.S. on prisoners, residents 
of long-term care facilities and other vulnerable populations, and the Tuskegee Study 
(Case 14.1).

Addressing Ethical Issues
Bernard Lo and Deborah G. Grady

CASE 14.1 The Tuskegee Study (1)

In 1932 U.S. government agencies started the Tuskegee study to document the  natural 
history and long-term effects of untreated syphilis. Subjects were impoverished, poorly 
educated African American men in rural Alabama. They received meals, some basic 
medical care, and burial insurance. Researchers falsely told the subjects that they were 
receiving treatment for syphilis, for example misrepresenting lumbar punctures done 
for research purposes as “special free treatments.” When antibiotics for syphilis be-
came available during World War II and later recommended as a public health measure, 
 researchers took steps to keep subjects from receiving treatment. In response to the 
Tuskegee study, in 1974 the federal government issued regulations on human subjects 
research, which required informed consent from subjects and review by IRBs for federally 
sponsored human subjects research. In 1997, President Clinton formally apologized for 
the Tuskegee study.

■  ETHICAL PRINCIPLES

Ethical lapses from the Tuskegee study and several others inspired current regulations for the 
protection of research participants. Three ethical principles, which had been violated in these 
studies, were articulated to guide research with human participants (2). First, recognizing that 
all persons have the right to make their own decisions about research participation, the prin-
ciple of respect for persons requires investigators to obtain informed and voluntary consent 
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from research participants, to allow them to discontinue participation in research at any time, 
and to protect participants with impaired decision-making capacity.

Second, the principle of beneficence requires that the scientific knowledge to be gained from 
the study must outweigh the inconvenience and risk experienced by research participants, and 
that risks be minimized. Risks include both physical harm from research interventions and also 
psychosocial harm, such as breaches of confidentiality, stigma, and discrimination. The risks 
of participating in the study can be reduced, for example, by screening potential participants 
to exclude those likely to suffer harm, ensuring confidentiality and monitoring participants for 
adverse effects.

Third, the principle of justice requires that the benefits and burdens of research be distrib-
uted fairly. Disadvantaged and vulnerable populations, such as people with low income, limited 
education, poor access to health care, or impaired decision-making capacity, should not be 
selectively targeted as participants if other populations would also be suitable to address the 
research questions. Studying vulnerable groups primarily because of easy access, cooperation, 
and follow-up takes unfair advantage of them.

Justice also requires equitable access to the benefits of research. Traditionally, clinical re-
search has been regarded as risky, and potential participants have been thought of as guinea 
pigs that needed protection from dangerous interventions that would confer little or no per-
sonal benefit. Increasingly, however, clinical research is regarded as providing access to new 
therapies for such conditions as HIV infection and cancer. Patients who seek promising new 
drugs for fatal conditions want increased access to clinical research, not greater protection, 
and such access should be available regardless of income, insurance, or education. Children, 
women, and members of ethnic minorities historically have been under-represented in clinical 
research, resulting in a weak evidence base and potentially suboptimal clinical care. The prin-
ciple of justice requires that these groups be included in research studies. NIH-funded clinical 
researchers must have adequate representation of children, women, and members of ethnic 
minorities in studies, or justify why these groups might be under-represented.

■  FEDERAL REGULATIONS FOR RESEARCH ON HUMAN SUBJECTS

Federal regulations apply to all federally funded research and to research that will be submitted 
to the U.S. Food and Drug Administration (FDA) in support of a new drug or device applica-
tion. In addition, universities require that all research on human participants conducted by 
affiliated faculty and staff comply with core regulations regarding informed consent and IRB 
review, including research funded privately or conducted off-site. Although the regulations 
refer to human “subjects,” the term “participants” is preferred by some because it emphasizes 
that people are active participants in research, rather than subjects to be experimented upon.

Several definitions in these regulations are important to understand:

Research is “systematic investigation designed to develop or contribute to generalizable 
knowledge” (3). Unproven clinical care that is directed toward benefiting the individual 
patient and not toward publication is not considered research. Some quality improvement 
projects might be treated as research, although most meet criteria for exemption, which we 
discuss later.

 Human subjects are living individuals about whom an investigator obtains either “data 
through intervention or interaction with the individual” or “identifiable private information.”

 Private information comprises (1) information that a person can reasonably expect is not 
being observed or recorded and (2) information that has been provided for specific purposes 
and that “the individual can reasonably expect will not be made public (e.g., a medical 
record).” Information is identifiable if “the identity of the subject is or may be readily ascer-
tained by the investigator.”

 Coded research data are not identifiable if the key that links data to participants is destroyed 
before the research begins or if the investigators have no access to the key.
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The Federal Regulations on the Protection of Human Subjects are available on the website 
of the Office for Human Research Protections (3). Researchers who have questions about these 
federal regulations should consult their IRB. These federal regulations provide two main pro-
tections for human participants—IRB approval and informed consent.

Institutional Review Board (IRB) Approval

Federal regulations require that research with human participants be approved by an IRB. The 
IRB mission is to ensure that the research is ethically acceptable and that the welfare and rights 
of research participants are protected. Although most IRB members are researchers, IRBs must 
also include community members and persons knowledgeable about legal and ethical issues 
concerning research.

When approving a research study, the IRB must determine that (3):

 Risks to participants are minimized
 Risks are reasonable in relation to anticipated benefits and the importance of the knowledge 

that is expected to result
 Selection of participants is equitable
 Informed consent will be obtained from participants or their legally authorized representatives
 Confidentiality is adequately maintained

The IRB system is decentralized. Each local IRB implements federal regulations using its 
own forms, procedures, and guidelines, and there is no appeal to a higher body. As a result, a 
multicenter study might be approved by one IRB but not by other IRBs. Usually these differ-
ences can be resolved through discussions or protocol modifications.

IRBs and federal regulations have been criticized for several reasons (4, 5). They might place 
undue emphasis on consent forms, fail to scrutinize the research design, and not adequately 
consider the scientific merit of the research. Although IRBs need to review any protocol revi-
sions and monitor adverse events, typically they do not check whether research was actually 
carried out in accordance with the approved protocols. Many IRBs lack the resources and ex-
pertise to adequately fulfill their mission of protecting research participants. For these reasons, 
federal regulations and IRB approval should be regarded only as a minimal ethical standard 
for research. Ultimately, the judgment and character of the investigator are the most essential 
element for assuring that research is ethically acceptable.

 Most research using surveys and interviews, as well as secondary analyses of de-identified 
existing records and specimens may be exempted from IRB review (Table 14.1). The ethical 
justification for such exemptions is that the research involves low risk, almost all people 
would consent to such research, and obtaining consent from each participant would make 

TABLE 14.1  RESEARCH THAT IS EXEMPT FROM FEDERAL RESEARCH 
REGULATIONS

and
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such studies prohibitively expensive or difficult. Many IRBs, however, require researchers to 
submit some information about the project, to verify that it qualifies for exemption.

 An IRB may allow certain minimal risk research to undergo expedited review by a single 
reviewer rather than the full committee (Table 14.2). The Office for Human Research Pro-
tections website lists the types of research eligible for expedited review (6). The concept 
of minimal risk to participants plays a key role in federal regulations, as indicated in 
Table 14.2. Minimal risk is defined as that “ordinarily encountered in daily life or during the 
performance of routine physical or psychological tests.” Both the magnitude and probability 
of risk must be considered. The IRB must judge whether a specific project may be considered 
minimal risk.

Informed and Voluntary Consent

Investigators must obtain informed and voluntary consent from research participants.

The federal regulations require investigators to discuss several topics with potential partici-
pants, including:

The nature of the research project. The prospective participant should be told explicitly that 
research is being conducted, what the purpose of the research is, and who is being recruited 
as a participant. The specific study hypothesis need not be stated.
The procedures of the study. Participants need to know what they will be asked to do in the 
research project. On a practical level, they should be told how much time will be required 
and how often. Procedures that are not standard clinical care should be identified as such. If 
the study involves blinding or randomization, these concepts should be explained in terms 
the participant can understand. In interview or questionnaire research, participants should 
be informed of the topics to be addressed.
The risks and potential benefits of the study and the alternatives to participating in 
the study. Medical, psychosocial, and economic risks and benefits should be described in 
lay terms. Also, potential participants need to be told the alternatives to participation; for 
 example, whether the intervention in a clinical trial is available outside the study. Concerns 
have been voiced that often the information provided to participants understates the risks 
and overstates the benefits (7). For example, research on new drugs is sometimes described 
as offering benefits to participants. However, most promising new interventions, despite 
encouraging preliminary results, show no significant advantages over standard therapy. 
Participants commonly have a “therapeutic misconception” that the research intervention is 
designed to provide them a personal benefit (8). Investigators should make clear that it is 

TABLE 14.2  RESEARCH THAT MAY UNDERGO EXPEDITED IRB REVIEW
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not known whether the study drug or intervention is more effective than standard therapy 
and that promising drugs can cause serious harms.

Written consent forms are generally required to document that the process of informed 
 consent—discussions between an investigator and the participant—has occurred. The consent 
form needs to contain the required information discussed in the previous section. Alternatively, 
a short form may be used, which states that the required elements of informed consent have 
been presented orally. If the short form is used, there must be a witness to the oral presentation, 
who must sign the short consent form in addition to the participant.

IRBs usually have template consent forms that they prefer investigators to use. IRBs may 
require more information to be disclosed than federal regulations require.

Research participants commonly have serious misunderstandings about the goals of research 
and the procedures and risks of the specific protocol (9). In discussions and consent forms, 
researchers should avoid technical jargon and complicated sentences. IRBs have been criticized 
for excessive focus on consent forms rather than on whether participants have understood 
crucial information (9). Strategies to increase comprehension by participants include having 
a study team member or a neutral educator spend more time talking one-on-one with study 
participants, simplifying consent forms, using a question-and-answer format, providing infor-
mation over several visits, and using audiotapes or videotapes (10). In research that involves 
substantial risk or is controversial, investigators should consider assessing participants’ com-
prehension and documenting that the participant can correctly answer questions about key 
aspects of the research (11, 12).

Ethically valid consent must be voluntary as well as informed. Researchers must minimize the 
possibility of coercion or undue influence. Examples of undue influence are excessive pay-
ments to participants and enrolling students as research participants. Undue influence is ethi-
cally problematic if it leads participants to significantly discount the risks of a research project 
or seriously undermines their ability to decline to participate. Participants must understand 
that declining to participate in the study will not compromise their medical care and that they 
may withdraw from the project at any time.

Exceptions to Informed Consent

Some scientifically important studies would be difficult or impossible to carry out if informed 
consent were required from each participant.

CASE 14.2 Research with Neonatal Blood Specimens

Shortly after birth, infants have a heel stick to collect blood onto filter paper to screen 
for genetic diseases. In most states, parental permission is not required for this mandated 
screening; hence the specimens represent the entire population of newborns. Specimens left 
over after clinical screening have been valuable for research on genetic causes of birth de-
fects and preterm birth, environmental exposures during pregnancy, and gene–environment 
interactions.
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Under federal regulations, IRBs may grant waivers of informed consent if all of the condi-
tions in Table 14.3 apply. Most IRBs would waive consent for the proposed study of maternal 
environmental exposures.

Some scientifically important research presents such low risks that consent would be burden-
some, while doing little to protect research participants. Every patient has benefited from 
knowledge obtained from research that used existing records and specimens. Fairness in the 
sense of reciprocity suggests that people who receive such benefits should be willing to partici-
pate in similar very low risk research to benefit others.

Even though the federal regulations permit de-identified neonatal blood specimens to be used 
for research without parental permission, there is significant public opposition.

Informed consent and IRB review are not required to use de-identified specimens in research 
(Table 14.1), but many IRBs still require investigators to notify them of such research. When 
original research is submitted for publication, many journals require authors to declare that an 
IRB approved the protocol or determined that review was not needed.

Some valuable research projects require identified existing information and specimens. Such 
studies do not qualify for exemption from IRB review, but may qualify for a waiver of informed 
consent.

CASE 14.2 Research with Neonatal Blood Specimens (Continued )

A research team would like to use identified neonatal blood specimens to study the as-
sociation between maternal environmental exposures to selected chemicals and low birth 
weight, prematurity, and perinatal deaths. Researchers can link identified specimens to 
birth certificates, death certificates, and hospital records. Because of the large number 
of children who need to be studied to achieve adequate power to detect associations, it 
would not be feasible to obtain permission from parents or guardians.

CASE 14.2 Research with Neonatal Blood Specimens (Continued )

Parents in several states have objected to the storage of specimens for unspecified re-
search without their permission or the opportunity to withdraw from research, bringing 
lawsuits in two states. The plaintiffs did not contest the collection of blood for neonatal 
screening but objected that even de-identification of the specimens failed to address their 
concerns about loss of privacy and autonomy.

Because such objections to research might undermine the clinical uptake of neonatal screen-
ing, states are increasingly giving parents an opportunity to opt out of research uses of neonatal 
specimens collected in state screening programs. Such attention to parental wishes may be be-
yond what the federal research regulations require. Thus, what is legally permitted in research 
might not always be ethically acceptable, particularly for sensitive research.
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When participants are not capable of giving informed consent, permission to participate in the 
study should be obtained from the participant’s legally authorized representative (the parent or 
guardian in the case of young children). Also, the protocol should be subjected to additional 
scrutiny, to ensure that the research question could not be studied in a population that is ca-
pable of giving consent.

Minimizing Risks

Researchers need to anticipate risks that might occur in research projects and reduce them, 
for instance by identifying and excluding persons who are very susceptible to adverse events, 
appropriate monitoring for adverse events, and substituting less invasive measurements. An 
important aspect of minimizing risk is maintaining participants’ confidentiality.

Breaches of confidentiality might cause stigma or discrimination, particularly if the research 
addresses sensitive topics such as sexual attitudes or practices, use of alcohol or drugs, illegal 
conduct, and psychiatric illness. Strategies for protecting confidentiality include coding re-
search data, protecting or destroying the key that identifies participants, and limiting personnel 
who have access to identifiers. However, investigators should not make unqualified promises 
of confidentiality. Confidentiality may be overridden if research records are audited or subpoe-
naed, or if conditions are identified that legally must be reported, such as child abuse, certain 
infectious diseases, and serious threats of violence. In projects where such reporting can be 
foreseen, the protocol should specify how field staff should respond, and participants should 
be informed of these plans.

Investigators can forestall subpoenas in legal disputes by obtaining confidentiality certifi-
cates from the Public Health Service (13), which allow them to withhold identifiable research 
data if faced with a subpoena or court order to disclose them. However, these certificates have 
not been widely tested in court rulings, do not apply to audits by funding agencies or the FDA, 
and do not preclude the researcher from voluntarily disclosing information regarding child or 
elder abuse, domestic violence, or reportable communicable diseases. The research need not be 
federally funded to receive a certificate of confidentiality.

The federal Health Privacy Rule (commonly known as HIPAA, after the Health Insurance Por-
tability and Accountability Act) protects individually identifiable health information, which is 
termed protected health information. Under the Privacy Rule, individuals must sign an au-
thorization for the use of protected health information in a research project (14). This HIPAA 
authorization form is in addition to the informed consent form required by the IRB. Researchers 
must obtain authorization for each use of protected information for research; general consent for 
future research is not permitted. Authorization is not required if data are not identifiable and in 

TABLE 14.3  RESEARCH THAT MAY RECEIVE A WAIVER OF INFORMED CONSENT

and
and

and
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certain other situations. Researchers should contact their IRB with questions about the Privacy 
Rule and how it differs from the Federal Regulations on the Protection of Human Subjects.

■  RESEARCH PARTICIPANTS WHO REQUIRE ADDITIONAL PROTECTIONS

Some participants might be “at greater risk for being used in ethically inappropriate ways in 
research” because of difficulty giving voluntary and informed consent or increased susceptibil-
ity to adverse events (15).

Types of Vulnerability

Identifying different types of vulnerability allows researchers to adopt safeguards tailored to the 
specific type of vulnerability.

Persons with impairment for cognition or communication might have difficulty understanding 
information about a study and weighing the risks and benefits of the study.

Persons who reside in institutions, such as prisoners or nursing home residents, might feel 
pressure to participate in research and to defer to persons who control their daily routine. Resi-
dents might not appreciate that they may decline to participate in research without retaliation 
by authorities or jeopardy to other aspects of their everyday lives.

If the investigator in the research project is also a participant’s treating physician, the par-
ticipant might hesitate to decline to participate in research, fearing that the physician would 
then be less interested in his or her care. Similarly, students and trainees might feel pressure to 
enroll in research conducted by their instructors or superiors.

Persons with low socioeconomic status or poor access to health care might join a research 
study to obtain payment or medical care, even if they would regard the risks as unacceptable if 
they had a higher income. Participants with poor education or low health literacy might fail to 
comprehend information about the study or be more susceptible to influence by other people.

Protections for Vulnerable Participants

Federal regulations on research with vulnerable participants can be found on the federal 
 Office for Human Research Protections website (3).

Investigators must obtain the permission of the parents and the assent of the child if developmen-
tally appropriate. Research with children involving more than minimal risk is permissible only:

 If it offers the prospect of direct benefit to the child OR
 If the increase over minimal risk is minor and the research is likely to yield “generalizable 

knowledge of vital importance about the child’s disorder or condition.”

Prisoners might not feel free to refuse to participate in research and might be unduly influenced 
by cash payments, breaks from prison routine, or parole considerations. Federal regulations 
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In other highly influential publications, researchers intentionally made up or altered data, for 
example, in alleging a link between measles-mumps-rubella vaccine and childhood autism 
and in claiming to derive a human stem cell line using somatic cell nuclear transplantation 
(19, 20). Such misconduct undermines public and physician trust in research and threatens 
public  funding for research.

Scientific Misconduct

The federal Office for Research Integrity defines research misconduct as fabrication, falsification, 
and plagiarism (21).

limit the types of research that are permitted in prisoners and require stricter IRB review and 
approval by the Department of Health and Human Services.

Research that offers no prospect of direct benefit to the fetus is permitted only if “the purpose of 
the research is the development of important biomedical knowledge that cannot be obtained by 
any other means”. Research that offers the prospect of direct benefit only to the fetus requires 
the informed consent of the father as well as the pregnant woman, even though research that 
offers children the prospect of direct benefit requires the permission of only one parent. These 
restrictions have been criticized for deterring research that would strengthen the evidence base 
for clinical care of pregnant women and their fetuses.

■  RESPONSIBILITIES OF INVESTIGATORS

Allegations of serious research misbehavior continue to occur today.

CASE 14.3 Cardiac Adverse Effects of Rofecoxib

In 2000, the results of the VIGOR randomized controlled trial were published. This 
study compared a new COX-2 selective nonsteroidal anti-inflammatory drug, rofe-
coxib, to an older, nonselective drug, naproxen (16). The manufacturer of rofecoxib 
sponsored the study. Rofecoxib caused significantly fewer gastrointestinal complica-
tions than naproxen (2.1 versus 4.5 per 100 patient-years), while providing similar 
efficacy for arthritis pain. The rofecoxib arm also had more heart attacks (0.4% versus 
0.1%). Following this publication, rofecoxib was widely prescribed, with sales over 
$2.5 billion annually. Before the article was published, three additional heart attacks in 
the rofecoxib arm were reported to the FDA, but not to the university-based authors 
of the paper or to the journal. Two authors who were employees of the manufacturer 
knew of these additional cases. The journal that published the VIGOR study results 
later issued an expression of concern that the “article did not accurately represent the 
safety data available when the article was being reviewed for publication” (17). In ad-
dition to withholding unfavorable data, the publication set an earlier cutoff date for 
cardiovascular adverse events than for gastrointestinal adverse events without disclos-
ing this to the journal or academic authors of the study, biasing the results in favor of 
rofecoxib.

Subsequently, another randomized trial showed that rofecoxib caused significantly 
more heart attacks and strokes than naproxen (18), and the manufacturer voluntarily 
withdrew the drug from the market.
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 Fabrication is making up results and recording or reporting them.
 Falsification is manipulating research materials, equipment, or procedures or changing or 

omitting data or results, so that the research record misrepresents the actual findings.
 Plagiarism is appropriating another person’s ideas, results, or words without giving appropri-

ate credit.

In this federal definition, misconduct must be intentional in the sense that perpetrators are 
aware that their conduct is wrong. In Case 14.3, intentional falsification of findings could not 
be proved. Research misconduct excludes honest error and legitimate scientific differences of 
opinion, which are a normal part of the research process. The federal definition does not ad-
dress other wrong actions, such as double publication, refusal to share research materials, and 
sexual harassment; research institutions should deal with them under other policies.

When research misconduct is alleged, both the federal funding agency and the investigator’s 
institution have the responsibility to carry out a fair and timely inquiry or investigation (22). 
During an investigation, both whistleblowers and accused scientists have rights that must be 
respected. Whistleblowers need to be protected from retaliation, and accused scientists need 
to be told the charges and given an opportunity to respond. Punishment for proven research 
misconduct may include suspension of a grant, debarment from future grants, and other ad-
ministrative, academic, criminal, or civil sanctions.

CASE 14.3 Cardiac Adverse Effects of Rofecoxib (Continued )

Many patients who had taken rofecoxib and suffered a heart attack sued the manufac-
turer. During the legal process, internal sponsor e-mails were subpoenaed, which indi-
cated that many articles on rofecoxib were commonly drafted by company employees or 
consultants, and academic investigators were often invited to be first author only after 
the manuscript had been drafted. The employees who drafted the articles frequently were 
not listed as authors or acknowledged.

Authorship

To merit authorship, researchers must make substantial contributions to:

 Study conception and design, or data analysis and interpretation, and
 Drafting or revising the article; and
 Giving final approval of the manuscript. (23)

Guest authorship and ghost authorship are unethical. Guest or honorary authors are listed 
as authors despite having made only trivial contributions to the paper; for example, by pro-
viding name recognition, access to participants, reagents, laboratory assistance, or funding. 
In Case 14.3, it is not appropriate for people to become authors after the study is completed, 
the data analyzed, and the first draft written. Ghost authors make substantial contributions 
to a paper but are not listed as authors. They are generally employees of pharmaceutical 
companies or medical writing companies. Omission of ghost writers misleads readers into 
underestimating the company’s role in the manuscript. According to one study, 25% of origi-
nal research articles in high-impact general journals have guest authors and 12% have ghost 
authors (24).

Disagreements commonly arise regarding who should be an author or the order of authors. 
These issues are best discussed explicitly and decided at the beginning of a project. Changes 
in authorship should be negotiated if decisions are made to shift responsibilities for the work. 
Suggestions have been made for carrying out such negotiations diplomatically (25). Because 
there is no agreement on criteria for position of authors, some journals describe the contribu-
tions of each author to the project in the published article.
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Conflicts of Interest

A researcher’s primary interests should be providing valid answers to important scientific ques-
tions and protecting the safety of participants. Researchers might have other interests, such as 
their reputation or income, that conflict with the primary goals of research and might impair 
their objectivity or undermine public trust in research (26).

 Financial conflicts of interest. Studies of new drugs, devices, and tests are commonly funded 
by industry. The ethical concern is that certain financial ties might lead to bias in the design 
and conduct of the study, the overinterpretation of positive results, or failure to publish 
negative results (27, 28). If investigators hold patents on the study intervention or stock op-
tions in the company making the drug or device under study, they might reap large  financial 
rewards if the treatment is shown to be effective, in addition to their compensation for con-
ducting the study. Finally, receipt of large consulting fees, honoraria, or in-kind gifts might 
bias an investigator’s judgment in favor of the company’s product.

 Dual roles for clinician-investigators. If an investigator is the personal physician of an 
eligible research participant, the role of clinician and investigator might conflict. Patients 
might fear that their future care will suffer if they decline to participate in the research, and 
they might not distinguish between research and treatment. Furthermore, what is best for a 
particular patient might differ from what is best for the research project.

All conflicts of interest should be disclosed, and some have such great potential for biasing 
research results that they should be managed or avoided.

 Reduce the likelihood of bias. In well-designed clinical trials, several standard precautions 
help keep competing interests in check. Investigators can be blinded to the intervention a 
participant is receiving to prevent bias in assessing outcomes. An independent data and safety 
monitoring board (see Chapter 11), whose members have no conflict of interest, can review 
interim data and terminate the study if the data provide convincing evidence of benefit or 
harm. The peer review process for grants, abstracts, and manuscripts also helps reduce bias.

 Separate conflicting roles. Physicians should separate the role of investigator in a research 
project from the role of clinician providing the participant’s medical care. In general, physi-
cians should not enroll their own patients in a research study where they are a co-investigator. 
If such patients are enrolled, a member of the research team who is not the treating physician 
should handle consent discussions.

 Control of analysis and publications. In research funded by a pharmaceutical company, 
academic-based investigators need to ensure that the contract gives them control over the pri-
mary data and statistical analysis, and the freedom to publish findings, whether or not the 
investigational drug is found to be effective (27, 28). The investigator has an ethical obligation 
to take responsibility for all aspects of the research. The sponsor may review the manuscripts, 
make suggestions, and ensure that patent applications have been filed before the article is sub-
mitted to a journal. However, the sponsor should not have power to veto or censor publication 
or to insist on specific language in the manuscript.

 Disclose conflicting interests. Research institutions require conflicts of interest to be dis-
closed to a designated office. The NIH and other funding agencies, local IRBs, scientific meet-
ings, and medical journals require disclosure of conflicts of interest when grants, abstracts, or 
papers are submitted. Although disclosure alone is often an inadequate response to serious 
conflicts of interest, it might deter investigators from ethically problematic practices and al-
lows reviewers and readers of journal articles to assess the potential for undue influence.

 Manage conflicts of interest. If a particular study presents significant conflicts of interest, 
the research institution, funding agency, or IRB may require additional safeguards, such as 
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closer monitoring of the informed consent process or modification of the conflicted investi-
gator’s role.

 Prohibit certain situations. To minimize conflicts of interest, funders or academic institu-
tions might prohibit the patent holder on an intervention or an officer of the company 
manufacturing the intervention to serve as principal investigator in a clinical trial.

■  ETHICAL ISSUES SPECIFIC TO CERTAIN TYPES OF RESEARCH

Randomized Clinical Trials

Although randomized clinical trials are the most rigorous design for evaluating interventions 
(see Chapter 10), they present special ethical concerns for two reasons: The intervention is 
determined by chance and, in contrast to observational studies, researchers carry out an in-
tervention on participants. One ethical justification for assigning treatment by randomization 
is that the study interventions are in equipoise, a concept that seems intuitively clear but is 
hotly debated and impossible to define precisely (29). There should be genuine uncertainty or 
controversy over which arm of the trial is superior, so that participants will not be significantly 
harmed if they allow their care to be determined by randomization rather than by their personal 
physician. Equipoise does not require an exact balance among study arms.

Participants in a clinical trial receive an intervention whose adverse effects might be un-
known. Thus, trials require careful monitoring to make sure that participants are not being 
inappropriately harmed. It is the investigator’s responsibility to establish careful methods for 
evaluating adverse effects (see Chapters 10 and 11). For most trials, this includes establishing 
an independent Data and Safety Monitoring Board that intermittently reviews study data and 
has the power to stop the trial if there is unexpected harm associated with the intervention (see 
Chapter 11).

Interventions for control groups also raise ethical concerns. If there is a standard of effective 
care for a condition, the control group should receive it (see Chapter 11). However, placebo 
controls may still be justified in short-term trials that do not offer serious risks to participants, 
such as studies of mild hypertension and mild, self-limited pain. Participants need to be in-
formed of effective interventions that are available outside the research study.

It is unethical to continue a clinical trial if there is compelling evidence that one arm is safer 
or more effective. Furthermore, it would be wrong to continue a trial that will not answer the 
research question because of low enrollment, few outcome events, or high dropout rates. The 
periodic analysis of interim data in a clinical trial by an independent Data and Safety Monitoring 
Board can determine whether a trial should be terminated prematurely for these reasons (30). 
Such interim analyses should not be carried out by the researchers themselves, because unblinding 
investigators to interim findings can lead to bias if the study continues, and the investigators often 
have conflicting interest in continuing or stopping a study. Procedures for examining interim data 
and statistical stopping rules should be specified before enrolling participants (see Chapter 11).

Clinical trials in developing countries present additional ethical dilemmas (Chapter 18).

Research on Previously Collected Specimens and Data

Research with previously collected data and stored specimens offers the potential for signifi-
cant discoveries. For example, DNA testing on a large number of stored biological specimens 
that are linked to clinical data might identify genes that increase the likelihood of developing 
a disease, having a poor prognosis, or responding to a particular treatment. Large biobanks of 
blood and tissue samples allow future studies to be carried out without the collection of addi-
tional samples. Research on previously collected specimens and data offers no physical risks to 
participants. However, there might be ethical concerns. Consent for unspecified future studies 
is problematic because no one can anticipate what kind of research might be carried out later. 
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Furthermore, participants might object to future use of data and samples in certain ways. If 
breaches of confidentiality occur, they might lead to stigma and discrimination. Groups partici-
pating in research might be harmed even if individual participants are not.

When biological specimens are collected, consent forms should allow participants to agree 
to or refuse certain broad categories of future research using the specimens. For example, par-
ticipants might allow their specimens to be used:

 For future research that is approved by an IRB and scientific review panel; or
 Only for research on specific conditions; or
 Only in the current research study, not in future studies.

Participants should also know whether identifiable data and specimens will be shared with 
other researchers. Furthermore, participants should understand that research discoveries from 
the specimens might be patented and developed into commercial products.

■  OTHER ISSUES

Payment to Research Participants

Participants in clinical research deserve payment for their time and effort and reimburse-
ment for out-of-pocket expenses such as transportation and child care. Practically speaking, 
compensation might also be needed to enroll and retain participants. A common practice 
is to offer higher payment for studies that are very inconvenient or risky. However, incen-
tives also raise ethical concerns about undue inducement. If participants are paid more to 
participate in riskier research, persons of lower socioeconomic status might undertake risks 
against their better judgment. To avoid undue influence, it has been suggested that partici-
pants be compensated only for actual expenses and time, at an hourly rate for unskilled 
labor (31).

■  SUMMARY

 1. Investigators must assure that their projects observe the ethical principles of respect for 
persons, beneficence, and justice.

 2. Investigators must assure that research meets the requirements of applicable federal regula-
tions, the key features being informed consent from participants and IRB review. During 
the informed consent process, investigators must explain to potential participants the na-
ture of the project and the risks, potential benefits, and alternatives. Investigators must 
assure the confidentiality of participant information, observing the HIPAA Health Privacy 
Rule.

 3. Vulnerable populations, such as children, prisoners, pregnant women, and people with 
cognitive deficits or social disadvantage, require additional protections.

 4. Investigators must have ethical integrity. They must not commit scientific misconduct, 
which regulations define as fabrication, falsification, or plagiarism. Investigators need 
to disclose and appropriately manage conflicts of interest and should follow criteria for 
 appropriate authorship by listing themselves as an author on a manuscript only if they 
made substantial intellectual contributions, and by ensuring that all persons who substan-
tially contribute to a manuscript are listed as an author.

 5. In certain types of research, additional ethical issues must be addressed. In random-
ized clinical trials, the intervention arms must be in equipoise, control groups must 
receive appropriate interventions, and the trial must not be continued once it has 
been demonstrated that one arm is more effective or harmful. When research is carried 
out on previously collected specimens and data, special attention needs to be given to 
confidentiality.
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Much of the information used in clinical research is gathered using questionnaires, 
 administered on paper or electronically, or through interviews. For many studies, the valid-
ity of the results depends on the quality of these instruments. In this chapter we describe the 
components of questionnaires and interviews and outline procedures for developing them.

Clinical researchers have a rapidly increasing number of options for developing online 
 surveys, including REDCap, a Web-based data management platform developed by a Vander-
bilt University consortium, and commercial products such as SurveyMonkey, Zoomerang, 
Qualtrics, and QuesGen. These products provide online, easy-to-use survey development tools 
and utilities for automatic e-mailing to study participants or posting on the study website. The 
ongoing transition from paper-based to Web-based surveys has not changed the principles of 
designing good instruments: writing clear instructions and well-phrased questions that elicit 
informative responses (1).

■  DESIGNING GOOD INSTRUMENTS

Open-Ended and Closed-Ended Questions

There are two basic types of questions, open-ended and closed-ended, which serve somewhat 
different purposes. Open-ended questions are particularly useful when it is important to hear 
what respondents have to say in their own words. For example:

What habits do you believe increase a person’s chance of having a stroke?

Open-ended questions leave the respondent free to answer with fewer limits imposed by the 
researcher. They allow participants to report more information than is possible with a discrete 
list of answers, but the responses may be less complete. A major disadvantage is that open-
ended questions usually require qualitative methods or special systems (such as coding dic-
tionaries for symptoms and adverse events) to code and analyze the responses; this takes more 
time than entering responses to closed-ended questions, and may require subjective judgments. 
Open-ended questions are often used in exploratory phases of question design because they 
help the researcher understand a concept as respondents express it. Phrases and words used 
by respondents can form the basis for closed-ended questions that ask respondents to choose 
from two or more preselected answers:

Designing Questionnaires, 
Interviews, and Online Surveys
Steven R. Cummings, Michael A. Kohn, and Stephen B. Hulley
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Because closed-ended questions provide a list of possible alternatives from which the re-
spondent may choose, they are quicker and easier to answer and the answers are easier to 
tabulate and analyze. In addition, the list of possible answers often helps clarify the meaning 
of the question, and closed-ended questions are well suited for use in multi-item scales that 
produce a single score.

On the other hand, closed-ended questions have several disadvantages. They lead respon-
dents in certain directions and do not allow them to express their own, potentially more accu-
rate, answers. The set of answers may not be exhaustive (not include all possible options, e.g., 
“sexual activity” or “dietary salt”). One solution is to include an option such as “Other (please 
specify)” or “None of the above.” When a single response is desired, the respondent should 
be so instructed and the set of possible responses should also be mutually exclusive (i.e., the 
categories should not overlap) to ensure clarity and parsimony.1

When the question allows more than one answer, instructing the respondent to mark “All 
that apply” is not ideal. This does not force the respondent to consider each possible response, 
and a missing item may represent either an answer that does not apply or an overlooked item. 
It is better to ask respondents to mark each possible response as either “yes” or “no”:

Which of the following do you believe increase the chance of having a stroke?

(Check all that apply.)

 Smoking
 Being overweight
 Stress
 Drinking alcohol

Which of the following do you believe increases the chance of having a stroke?

Yes No Don’t know

Smoking

Being overweight

Stress

Drinking alcohol

The visual analog scale (VAS) is another option for recording answers to closed-ended 
questions using lines or other drawings. The participant is asked to mark a line at a spot along 
the continuum from one extreme to the other that best represents his answer. It is important 
that the words that anchor each end describe the most extreme values for the item of interest. 
Here is a VAS for pain severity:

Please mark the place on this line that best describes the severity of your pain 
in general over the past week.

 None Unbearable

For convenience of measurement, the lines are often 10 cm long and the score is the dis-
tance, in centimeters, from the lowest extreme. For an example of an online VAS, see the web-
site: http://www.epibiostat.ucsf.edu/dcr/.

1 For online forms, the convention is to display mutually exclusive options as radio buttons (circles), and to use check 
boxes (squares) for responses to “all that apply” questions.

http://www.epibiostat.ucsf.edu/dcr/
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VASs are attractive because they rate characteristics on a continuous scale; they may be more 
sensitive to small changes than ratings based on categorical lists of adjectives. Many of the on-
line survey tools, including REDCap, Qualtrics, and QuesGen, accommodate VASs.

Formatting

On questionnaires, it is customary to describe the purpose of the study and how the data will be 
used in a brief statement at the outset. Similar information is usually presented at the beginning 
of an interview as part of obtaining consent. To ensure accurate and standardized responses, all 
instruments must have instructions specifying how they should be filled out. This is true not 
only in self-administered questionnaires, but also for the forms that interviewers use to record 
responses.

Sometimes it is helpful to provide an example of how to complete a question, using a simple 
question that is easily answered:

Instructions on How to Fill Out a Questionnaire That Assesses Dietary Intake

These questions are about your usual eating habits during the past 12 months. 
Please mark your usual serving size and write down how often you eat each 
food in the boxes next to the type of food.

For example, if you drink a medium (6 oz) glass of apple juice about three 
times a week, you would answer:

 Apple Juice  Small (3 oz) [3] time(s) per  Day
   Medium (6 oz)   Week
   Large (9 oz)   Month
     Year

To improve the flow of the instrument, questions concerning major subject areas should be 
grouped together and introduced by headings or short descriptive statements. To warm up the 
respondent to the process of answering questions, it is helpful to begin with emotionally neu-
tral questions such as name and contact information. Highly sensitive questions about income 
or sexual function are often placed at the end of the instrument. For each question or set of 
questions with a format that differs from that of other questions on the instrument, instructions 
must clearly indicate how to respond.

If the instructions include different time frames, it is sometimes useful to repeat the time 
frame at the top of each new set of questions. For example, questions such as:

How often have you visited a doctor during the past year?

During the past year, how many times have you been a patient in an emergency 
department?

How many times were you admitted to the hospital during the past year?

can be shortened and tidied as follows:

During the past year, how many times have you

 Visited a doctor?
 Been a patient in an emergency department?
 Been admitted to a hospital?
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For paper forms, the visual design should make it as easy as possible for respondents—
whether study subjects or research staff—to complete all questions in the correct sequence. 
If the format is too complex, respondents or interviewers may skip questions, provide the 
wrong information, or sometimes even refuse to complete the instruments. A neat format 
with plenty of space is more attractive and easier to use than one that is crowded or clut-
tered. Although investigators often assume that a questionnaire will appear shorter by hav-
ing fewer pages, the task can be more difficult when more questions are crowded onto a 
page. Response scales should be spaced widely enough so that it is easy to circle or check 
the correct number without the mark accidentally including the answer “above” or “below.” 
When an open-ended question is included, the space for responding should be big enough 
to allow respondents with large handwriting to write comfortably in the space. People with 
visual problems, including many elderly subjects, will appreciate large type and high contrast 
(black on white).

Possible answers to closed-ended questions should be lined up vertically and preceded by 
boxes or brackets to check, or by numbers to circle, rather than using open blanks:

How many different medicines do you take every day? (Check one)

 None
 1–2
 3–4
 5–6
 7 or more

Note that these response options are exhaustive and mutually exclusive.
Sometimes the investigator may wish to follow-up certain answers with more detailed ques-

tions. This is best accomplished by a branching question. Respondents’ answers to the initial 
question (often referred to as a screener) determine whether they are directed to answer ad-
ditional questions or skip ahead to later questions. For example:

Have you ever been told that you have high blood pressure?

 Yes         How old were you when you were first told you had high 
blood pressure?

   _ _ years old

 No

Go to question 11

Branching questions save time and allow respondents to avoid irrelevant or redundant ques-
tions. Directing the respondent to the next appropriate question is done by using arrows to 
point from response to follow-up questions and including directions such as “Go to question 11” 
(see Appendix 15).

Online surveys are generally clearer and easier for the respondents because they incorporate 
skip logic. A male study subject will not see a question about pregnancies and will only reach 
the question about pack years if he answered “yes” to the question about cigarette smoking. 
(See www.epibiostat.ucsf.edu/dcr/.) However, the skip logic must be carefully validated dur-
ing the study’s pretesting phase. Complex skip logic can result in dead ends and “orphan” 

http://www.epibiostat.ucsf.edu/dcr/
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questions that are never reached. Good design, including consideration of respondents with 
visual problems,2 is just as important for online forms as for paper forms

Wording

Every word in a question can influence the validity and reproducibility of the responses. The 
objective is to construct questions that are simple, free of ambiguity, and encourage accurate 
and honest responses without embarrassing or offending the respondent.

 Clarity. Make questions as clear and specific as possible. Concrete words are preferred over 
abstract words. For example, asking, “How much exercise do you usually get?” is less clear 
than asking, “During a typical week, how many hours do you spend in vigorous walking?”

 Simplicity. Use simple, common words and grammar that convey the idea, and avoid techni-
cal terms and jargon. For example, it is clearer to ask about “drugs you can buy without a 
prescription from a doctor” than to ask about “over-the-counter medications.”

 Neutrality. Avoid “loaded” words and stereotypes that suggest a desirable answer. Asking 
“During the last month, how often did you drink too much alcohol?” may discourage re-
spondents from admitting that they drink a lot of alcohol. “During the last month, how often 
did you drink more than five drinks in one day?” is a more factual, less judgmental, and less 
ambiguous question.

Sometimes it is useful to set a tone that permits the respondent to admit to behaviors and at-
titudes that may be considered undesirable. For example, when asking about a patient’s compli-
ance with prescribed medications, an interviewer or a questionnaire may use an introduction: 
“People sometimes forget to take medications their doctor prescribes. Does that ever happen to 
you?” Such wording can be tricky, however—it is important to give respondents permission to 
admit certain behaviors without encouraging them to exaggerate.

Collecting information about potentially sensitive areas like sexual behavior or income is 
especially difficult. Some people feel more comfortable answering these types of questions in 
self-administered questionnaires than in interviews, but a skillful interviewer can sometimes 
elicit open and honest answers. It may be useful to put potentially embarrassing responses on 
a card so that the respondent can answer by simply pointing to a response.

Setting the Time Frame

To measure the frequency of the behavior it is essential to have the respondent describe it in 
terms of some unit of time. If the behavior is usually the same day after day, such as taking 
one tablet of a diuretic every morning, the question can be very simple: “How many tablets do 
you take a day?”

Many behaviors change from day to day, season to season, or year to year. To measure these, 
the investigator must first decide what aspect of the behavior is most important to the study: 
the average or the extremes. A study of the effect of alcohol on the risk of cardiovascular 
disease may need a measurement of average consumption over time, but a study of the role 
of alcohol in the occurrence of falls may need to know how frequently the respondent drank 
enough alcohol to become intoxicated.

Questions about average behavior can be asked in two ways: asking about “usual” or 
“typical” behavior or counting actual behaviors during a period of time. For example, an 
investigator may determine average intake of beer by asking respondents to estimate their 
usual intake:

2 The commercial providers of online survey tools pay considerable attention to issues of readability, partially because 
Section 508 of the Rehabilitation Act of 1973 requires federal agencies to make their electronic forms accessible to 
people with disabilities. Most commercial providers are certified as “508 compliant.”
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This format is simple and brief. It assumes, however, that respondents can accurately aver-
age their behavior into a single estimate. Because drinking patterns often change markedly over 
even brief intervals, the respondent may have a difficult time deciding what is a typical week. 
Faced with questions that ask about usual or typical behavior, people often report the things 
they do most commonly and ignore the extremes. Asking about drinking on typical days, for 
example, will underestimate alcohol consumption if the respondent drinks large amounts on 
weekends.

An alternative approach is to quantify exposure during a certain period of time:

About how many beers do you have during a typical week (one beer is equal to 
one 12-oz can or bottle, or one large glass)?

[ ] beers per week

During the last 7 days, how many beers did you have (one beer is equal to one 
12-oz can or bottle, or one large glass)?

[ ] beers in the last 7 days

The goal is to ask about the shortest recent segment of time that accurately represents the 
characteristic over the whole period of interest for the research question. The best length of 
time depends on the characteristic. For example, patterns of sleep can vary considerably from 
day to day, but questions about sleep habits during the past week may adequately represent 
patterns of sleep during an entire year. On the other hand, the frequency of unprotected sex 
may vary greatly from week to week, so questions about unprotected sex should cover longer 
intervals.

Using diaries may be a more accurate approach to keep track of events, behaviors, or 
symptoms that happen episodically (such as falls) or that vary from day to day (such as vagi-
nal bleeding). This may be valuable when the timing or duration of an event is important or 
the occurrence is easily forgotten. Participants can enter these data into electronic devices, 
and the approach allows the investigator to calculate an average daily score of the event or 
behavior being assessed. However, this approach can be time-consuming for participants 
and can lead to more missing data than the more common approach of asking retrospective 
questions. The use of diaries assumes that the time period assessed was typical, and that the 
self-awareness involved in using diaries has not altered the behavior being recorded in im-
portant ways.

Avoid Pitfalls

 Double-barreled questions. Each question should contain only one concept. Consider this 
question designed to assess caffeine intake: “How many cups of coffee or tea do you drink 
during a day?” Coffee contains much more caffeine than tea and differs in other ways, so a 
response that combines the two beverages is not as precise as it could be. When a question 
attempts to assess two things at one time, it is better to break it into two separate questions. 
“(1) How many cups of coffee do you drink during a typical day?” and “(2) How many cups 
of tea do you drink during a typical day?”

 Hidden assumptions. Sometimes questions make assumptions that may not apply to all 
people who participate in the study. For example, a standard depression item asks how often, 
in the past week: “I felt that I could not shake off the blues even with help from my family.” 
This assumes that respondents have families and ask for emotional support; for those who 
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do not have a family or who do not seek help from their family, it is difficult to answer the 
question.

 The question and answer options don’t match. It is important that the question match the 
options for the answer, a task that seems simple but is often done incorrectly. For example, 
the question “Have you had pain in the last week?” should not be matched with response 
options of “never,” “seldom,” “often,” “very often.” (The question should be changed to 
“How often have you had pain in the last week?” or the answer should be changed to “yes” 
or “no.”) Another common problem occurs when questions about intensity are given agree/
disagree options. For example, a respondent may be given the statement “I am sometimes 
depressed” and then asked to respond with “agree” or “disagree.” Disagreeing with this state-
ment could mean that the person is often depressed, or never depressed. It is usually clearer 
to use a simple question about how often the person feels depressed matched with options 
about frequency (never, sometimes, often).

Scales and Scores to Measure Abstract Variables

It is difficult to quantitatively assess an abstract concept such as quality of life from a single 
question. Therefore, abstract characteristics are commonly measured by generating scores from 
a series of questions organized into a scale (2, 3).

Using multiple items to assess a concept may have other advantages over single ques-
tions or several questions asked in different ways that cannot be combined. Compared with 
the alternative approaches, multi-item scales can increase the range of possible responses 
(e.g., a  multi-item quality-of-life scale might generate scores that range from 1 to 100 whereas 
a single question rating quality of life might produce four or five responses from “poor” to 
“excellent”). A disadvantage of multi-item scales is that they produce results (quality of life = 
46.2) that can be difficult to understand intuitively.

Likert scales are commonly used to quantify attitudes, behaviors, and domains of health-
related quality of life. These scales provide respondents with a list of statements or questions 
and ask them to select a response that best represents the rank or degree of their answer. Each 
response is assigned a number of points. For example, consider a questionnaire to measure the 
strength of a person’s opinion that a diet high in fruits and vegetables improves health:

For each item, circle the one number that best represents your opinion:

Strongly 
Agree Agree Neutral

Strongly 

a.  Eating more fruits and vegetables reduces the risk 
of heart disease.

1 2 3 4 5

 include meat in their diet.
1 2 3 4 5

c.  Increasing the intake of fruits and vegetables 1 2 3 4 5

An investigator can compute an overall score for a respondent’s answers by simply summing 
the score for each item, or averaging the points for all non-missing items. For example, a person 
who answered that he or she strongly agreed that eating more fruits and vegetables reduces the 
risk of heart disease (one point), and that vegetarians are healthier than people who include 
meat in their diet (one point), but disagreed that increasing the intake of fruits and vegetables 
slows aging (four points), would have a total score of 6. Simply adding up or averaging item 
scores assumes that all the items have the same weight and that each item is measuring the 
same general characteristic.
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The internal consistency of a scale can be tested statistically using measures such as Cron-
bach’s alpha (4) that assess the overall consistency of a scale. Cronbach’s alpha is calculated 
from the correlations between scores on individual items. Values of this measure above 0.80 
are considered excellent, and below 0.50 unacceptable. Low values for internal consistency 
indicate that some of the individual items may be measuring different characteristics.

Creating New Scales

When an investigator needs to measure a characteristic for which there is no standard question-
naire or interview approach, it may be necessary to develop a new instrument or scale. The task 
can range from the creation of a single new question about a minor variable in a small study to 
developing and testing a new multi-item scale for measuring the primary outcome for a multi-
center investigation. At the simplest end of this spectrum, the investigator may use good judg-
ment and basic principles of writing to develop an item that can be pretested to make sure it is 
clear and produces appropriate answers. At the other extreme, developing a new instrument to 
measure an important concept may need a systematic approach that can take years from initial 
draft to final product.

The latter process often begins by generating potential items for the instrument from inter-
views with individuals and focus groups (small groups of people who are relevant to the re-
search question and who are invited to spend 1 or 2 hours discussing specific topics pertaining 
to the study with a group leader). An instrument is then drafted, followed by critical review by 
peers, mentors, and experts. The investigator then proceeds with the iterative sequence of pre-
testing, revising, shortening, and validating that is described in the next section (and  illustrated 
by Example 15.1).

EXAMPLE 15.1 Development of a New Multi-Item Instrument

The National Eye Institute Visual Function Questionnaire exemplifies the  painstaking 
 development and testing of a multi-item instrument. Mangione and colleagues  devoted 
several years to creating and testing the scale because it was intended to serve as a 
primary measurement of outcome of many studies of eye disease (5, 6). They began 
by interviewing patients with eye diseases about the ways that the conditions affected 
their lives. Then they organized focus groups of patients with the diseases and analyzed 
transcripts of these sessions to choose relevant questions and response options. They 
produced and pretested a long questionnaire that was administered to hundreds of par-
ticipants in several studies. They used data from these studies to identify items that made 
the largest contribution to variation in scores from person to person and to shorten the 
questionnaire from 51 to 25 items.

Because the creation and validation of new multi-item instruments is time-consuming, 
it should generally only be undertaken for variables that are central to a study, and when 
existing measures are inadequate or inappropriate for the people who will be included in the 
study.

■  STEPS IN ASSEMBLING THE INSTRUMENTS FOR THE STUDY

Make a List of Variables

Before designing an interview or questionnaire instrument, write a detailed list of the informa-
tion to be collected and concepts to be measured in the study. Consider listing the role of each 
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item (e.g., predictors, outcomes, and potential confounders) in answering the main research 
questions.

Prefer Existing Measures, if Suitable

Assemble a file of questions or instruments that are available for measuring each variable. 
When there are several alternative methods, create an electronic file for each variable to be 
measured and then find and file copies of candidate questions or instruments for each item. It 
is important to use the best possible instruments to measure the main predictors and outcomes 
of a study, so most of the effort of collecting alternative instruments should focus on these 
major variables.

Start by collecting instruments from other investigators who have conducted studies that 
included measurements of interest. Existing questionnaires and information on their validity, 
internal consistency, and reliability can be found in the methods section of published reports, 
and by searching the Web for key terms such as “health outcomes questionnaires.”

Borrowing instruments from other studies has the advantage of saving development time 
and allowing results to be compared across studies. It is ideal to use existing instruments with-
out modification. However, if some of the items are inappropriate (as may occur when a ques-
tionnaire developed for one cultural group is applied to a different setting), it may be necessary 
to delete, change, or add a few items.

If an established instrument is too long, it may be useful to contact those who developed 
the instrument to see if they have shorter versions. Deleting items from established scales risks 
changing the meaning of scores and endangering comparisons of the findings with results from 
studies that used the intact scale. Shortening a scale can also diminish its reproducibility or its 
sensitivity to detect changes. However, it is sometimes acceptable to delete sections or “sub-
scales” that are not essential to the study while leaving other parts intact.

Compose a New Instrument, if Necessary

The first draft of the instrument should have a broad reach, including more questions about 
the topic than will eventually be included in the instrument. The investigator should read the 
first draft carefully, attempting to answer each question as if he were a respondent and trying 
to imagine ways to misinterpret questions. The goal is to identify words or phrases that might 
be confusing or misunderstood, to find abstract words or jargon that could be translated into 
simpler, concrete terms, to notice complex questions that can be split into two or more ques-
tions. Colleagues and experts in questionnaire design should be asked to review the instru-
ment, considering the content of the items as well as clarity.

Revise and Shorten the Set of Instruments for the Study

Studies usually collect more data than will be analyzed. Long interviews, questionnaires, and 
examinations may tire respondents and thereby decrease the accuracy and reproducibility of 
their responses. It is usually best to resist the temptation to include additional questions or 
measures “just in case” they might produce interesting data. Questions that are not essential 
to answering the main research question increase the amount of effort involved in obtaining, 
entering, cleaning, and analyzing data. Time devoted to unnecessary or marginally valuable 
data can detract from other efforts and decrease the overall quality and productivity of the 
study.

To decide if a concept is essential, the investigator can think ahead to analyzing and report-
ing the results of the study. Sketching out the final tables will help to ensure that all needed 
variables are included and to identify those that are less important. Once that is done, here’s a 
maxim for deciding which items to include: When in doubt, leave it out.
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Pretest

Pretest the instrument clarity and timing. For key measurements, large pilot studies may be 
valuable to find out whether each question produces an adequate range of responses and to test 
the validity and reproducibility of the instrument.

Validate

Questionnaires and interviews can be assessed for validity (an aspect of accuracy) and for re-
producibility (precision) in the same fashion as any other type of measurement (Chapter 4). 
The process begins with choosing questions that have face validity, the subjective but impor-
tant judgment that the items assess the characteristics of interest, and continues with efforts 
to establish content validity and construct validity. Whenever feasible, new instruments can 
then be compared with established gold standard approaches to measuring the condition of 
interest. Ultimately, the predictive validity of an instrument can be assessed by correlating 
measurements with future outcomes.

If an instrument is intended to measure change, then its responsiveness can be tested by 
applying it to patients before and after receiving treatments considered effective by other 
measures. For example, a new instrument designed to measure quality of life in people with 
impaired visual acuity might include questions that have face validity (“Are you able to read a 
newspaper without glasses or contact lenses?”). Answers could be compared with the responses 
to an existing validated instrument (Example 15.1) among patients with severe cataracts and 
among those with normal eye examinations. The responsiveness of the instrument to change 
could be tested by comparing responses of patients with cataracts before and after surgery. 
However, the process of validating new instruments is time-consuming and expensive, and 
worthwhile only if existing instruments are inadequate for the research question or population 
to be studied.

■  ADMINISTERING THE INSTRUMENTS

Questionnaires Versus Interviews

There are two basic approaches to collecting data about attitudes, behaviors, knowledge, 
health, and personal history. Questionnaires are instruments that respondents fill out by them-
selves, and interviews are those that are administered verbally by an interviewer. Each approach 
has advantages and disadvantages.

Questionnaires are generally a more efficient and uniform way to administer simple ques-
tions, such as age or habits of tobacco use. Questionnaires are less expensive than interviews 
because they require less research staff time, and they are more easily standardized. Interviews 
are usually better for collecting answers to complicated questions that require explanation 
or guidance, and interviewers can make sure that responses are complete. Interviews may be 
necessary when participants have variable ability to read and understand questions. However, 
interviews are more costly and time-consuming, and the responses may be influenced by the 
relationship between the interviewer and respondent.

Both types of instruments can be standardized, but interviews are inevitably administered 
at least a little differently each time. Both methods of collecting information are susceptible to 
errors caused by imperfect memory; both are also affected, though not necessarily to the same 
degree, by the respondent’s tendency to give socially acceptable answers.

Interviewing

The skill of the interviewer can have a substantial impact on the quality of the responses. 
 Standardizing the interview procedure from one interview to the next is the key to 
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maximizing reproducibility, with uniform wording of questions and uniform nonverbal 
signals during the interview. Interviewers must strive to avoid introducing their own biases 
into the responses by changing the words or the tone of their voice. For the interviewer to 
comfortably read the questions verbatim, the interview should be written in language that 
resembles common speech. Questions that sound unnatural or stilted when said aloud will 
encourage interviewers to improvise their own, more natural but less standardized way of 
asking the question.

Sometimes it is necessary to follow-up on a respondent’s answers to encourage him to 
give an appropriate answer or to clarify the meaning of a response. This “probing” can also 
be standardized by writing standard phrases in the margins or beneath the text of each ques-
tion. To a question about how many cups of coffee respondents drink on a typical day, some 
respondents might respond, “I’m not sure; it’s different from day to day.” The instrument 
could include the follow-up probe: “Do the best you can; tell me about how many you drink 
on a typical day.”

Interviews can be conducted in person or over the telephone. Computer-assisted telephone 
interviewing (CATI) is a telephone surveying technique in which the interviewer follows a 
script and the computer facilitates the collection and editing of data. Interactive voice response 
(IVR) systems replace the interviewer with computer-generated questions that collect subject 
responses by telephone keypad or voice recognition (7). In-peson interviews, however, may be 
necessary if the study requires direct observation of participants or physical examinations, or if 
potential participants do not have telephones (e.g., the homeless).

Methods of Administering Questionnaires

Questionnaires can be given to subjects in person or administered through the mail, by e-mail, 
or through a website. Distributing questionnaires in person allows the researcher to explain the 
instructions before the participant starts answering the questions. When the research requires 
the participant to visit the research site for examinations, questionnaires can also be sent in ad-
vance of an appointment and answers checked for completeness before the participant leaves.

E-mailed questionnaires have several advantages over those sent by paper mail. Although 
they can only be sent to participants who have access to and familiarity with the Internet, 
questionnaires sent by e-mail are an easy way to provide data that can be directly entered into 
databases.

Questionnaires on websites or with handheld electronic devices have come into wide-
spread use as efficient and inexpensive approaches to collecting health survey information (8). 
These approaches can produce very clean data because answers can be automatically checked 
for missing and out-of-range values, the errors pointed out to the respondent, and the  responses 
accepted only after the errors are corrected.

■  CONSIDER DIRECT MEASUREMENTS

Advances in measurement instruments and biological assays are creating alternatives to 
questionnaires and interviews for measuring many common conditions and exposures. For 
example, direct measurement of physical activity by wearing small accelerometers yields more 
objective and precise estimation of total activity, patterns of actigraphy, and energy expenditure 
than do questionnaires about physical activity (9). Sensors worn at night can more accurately 
measure the amount and quality of sleep (10). Measurement of blood levels of nutrients such 
as vitamin D provides a more accurate measurement of the exposure to the nutrient than ask-
ing about consumption of foods containing vitamin D. Investigators should be alert for new 
technologies, often enabled by wireless electronic devices, that directly measure characteristics 
previously assessed only indirectly by questionnaires and interviews.
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■  SUMMARY

 1. For many clinical studies, the quality of the results depends on the quality and appropriate-
ness of the questionnaires and interviews. Investigators should make sure the instruments 
are as valid and reproducible as possible before the study begins.

 2. Open-ended questions allow subjects to answer without limitations imposed by the inves-
tigator, and closed-ended questions are easier to answer and analyze. The response options 
to a closed-ended question should be exhaustive and mutually exclusive.

 3. Questions should be clear, simple, neutral, and appropriate for the population that 
will be studied. Investigators should examine potential questions from the viewpoint 
of potential participants, looking for ambiguous terms and common pitfalls such as 
 double-barreled questions, hidden assumptions, and answer options that do not match 
the question.

 4. Questionnaires should be easy to read, and interview questions should be comfortable to 
read out loud. The format should fit the method for electronic data entry and be spacious 
and uncluttered.

 5. To measure abstract variables such as attitudes or health status, questions can be com-
bined into multi-item scales to produce a total score. Such scores assume that the ques-
tions measure a single characteristic and that the responses are internally consistent.

 6. An investigator should search out and use existing instruments that are known to produce 
valid and reliable results. When it is necessary to modify existing measures or devise a 
new one, the investigator should start by collecting existing measures to be used as poten-
tial models and sources of ideas.

 7. The whole set of instruments to be used in a study should be pretested and timed before 
the study begins. For new instruments, small initial pretests can improve the clarity of 
questions and instructions; later, larger pilot studies can test and refine the new instru-
ment’s range, reproducibility, and validity.

 8. Self-administered questionnaires are more economical than interviews, they are more 
readily standardized, and the added privacy can enhance the validity of the responses. 
Interviews, on the other hand, can ensure more complete responses and enhance validity 
through improved understanding.

 9. Administration of instruments by computer-assisted telephone interviewing, e-mail, por-
table electronic devices, or on the study website can enhance the efficiency of a study.



APPENDIX 15
An Example of a Questionnaire 
About Smoking
The following items are taken from a self-administered paper questionnaire used in our Study 
of Osteoporotic Fractures. Note that the branching questions are followed by arrows that di-
rect the subject to the next appropriate question and that the format is uncluttered with the 
responses consistently lined up on the left of each next area. For a link to an online version of 
this example, see www.epibiostat.ucsf.edu/dcr/.

 1. Have you smoked at least 100 cigarettes in your entire life?

 2. About how old were you when you smoked your first cigarette?

    years old

 3. On the average over the entire time since you started smoking, about how 
many cigarettes did you smoke per day?

    cigarettes per day

 4. Have you smoked any cigarettes in the past week?

Yes 
 5. About how many cigarettes per day did you smoke in 

the past week?

    cigarettes per day

Please skip to next page, question #7
No

 6. How old were you when you stopped smoking?
    years old

Yes

No

Please go to 
question #7
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 8. For about how many years, in total, have you lived with someone who 
smoked cigarettes regularly at the time?

    years

 9. On the average over the entire time you lived with people who smoked, 
about how many cigarettes a day were smoked while you were at home?

    cigarettes per day

 10. Do you now live in the same household with someone who smokes ciga-
rettes regularly?

Yes

No

 7. Have you ever lived for at least a year in the same household with someone who smoked 
cigarettes regularly?

Yes

No

11 etc.
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We have seen that undertaking a clinical research project requires choosing a study  design, 
defining the population, and specifying the predictor and outcome variables. Ultimately, most 
 information about the subjects and variables will reside in a computer database that will be 
used to store, update, and monitor the data, as well as format the data for statistical analysis. 
The study database may also store administrative data, such as call logs, visit  schedules, and 
 reimbursement records. Simple study databases consisting of individual data tables can be 
maintained using spreadsheet or statistical software. More complex databases containing 
 multiple inter-related data tables require database management software.

Data management for a clinical research study involves defining the data tables, develop-
ing the data entry system, and querying the data for monitoring and analysis. In large clinical 
trials, especially trials preparatory to application for regulatory approval of a drug or device, 
the specialists who create data entry forms, manage and monitor the data collection process, 
and format and extract the data for analysis are referred to as clinical data managers (1). Large 
pharmaceutical companies running multiple clinical trials devote significant resources and per-
sonnel to clinical data management. Although the scale is generally much smaller, beginning 
investigators also need to attend carefully to data management issues.

■  DATA TABLES

All computer databases consist of one or more data tables in which the rows correspond to 
individual records (which may represent subjects, events, or transactions) and the columns 
correspond to fields (attributes of the records). For example, the simplest study databases 
consist of a single table in which each row corresponds to an individual study subject and each 
column corresponds to a subject-specific attribute such as name, date of birth, sex, and predic-
tor or outcome status. In general, the first column is a unique subject identification number 
(“subjectID”). Using a unique subject identifier that has no meaning external to the study 
 database simplifies the process of “de-linking” study data from personal identifiers for purposes 
of maintaining subject confidentiality. If the database contains additional tables with records 
corresponding to examinations, laboratory results, or telephone calls, then the first column 
in each of these tables should be a unique record identifier such as ExamID, LabResultID, or 
 CallID. The unique record identifier for a data table is also called the table’s primary key.

Figure  16.1 shows a simplified data table for a hypothetical cohort study (inspired by a 
real study [2]) of the association between neonatal jaundice and IQ score at age 5. Each row 
in the table corresponds to a study subject, and each column corresponds to an attribute of 
that subject. The dichotomous predictor is whether or not the subject had “Jaundice,” and the 
continuous outcome is “IQ,” which is the subject’s IQ at age 5.

If the study data are limited to a single table such as the table in Figure 16.1, they are easily 
accommodated in a spreadsheet or statistical package. We often refer to a database consisting 
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of a single, two-dimensional table as a “flat file.” Many statistical packages have added features 
to accommodate more than one table, but at their core, most remain flat-file databases.

The need to include more than one table in a study database (and move from spreadsheet or 
statistical software to data management software) arises if the study tracks multiple lab results, 
medications, or other repeated measurements per study subject. A single data table with one 
row per study subject cannot accommodate a large and variable number of repeated measure-
ments. The database should store medications, lab results, or other repeated measurements in 
separate tables distinct from the table of study subjects. A row in one of these separate tables 
corresponds to an individual measurement including, for example, the type of measurement, 
the measurement date/time, and the result or value of the measurement. One field in the row 
must include the subject identification number to link the measurement back to subject-
specific fields. In this “multi-table relational database,” the relationship between the table of 
subjects and the tables of measurements is termed one-to-many. Strictly speaking, the term 
 relational has little to do with the between-table relationships. In fact, relation is the formal 
term from mathematical set theory for a data table (3, 4).

Although the subjects in our infant jaundice study received the IQ exam only once at age 5, 
most of them had other examinations during which, along with other measurements, height 
and weight were assessed. The height and weight data were used to calculate body mass index 
(BMI) and growth curve percentiles. (See “Extracting Data [Queries]” later in this chapter.) 
The best way to accommodate these data is in a separate table of examinations in which each 
row corresponds to a discrete examination, and the columns represent examination date, 
examination results, and the subject identification number to link back to information in the 
subject table such as sex, date of birth (DOB), and whether or not the child had neonatal jaun-
dice (Figure 16.2). In this two-table database structure, querying the examination table for all 
exams performed within a particular time period requires searching a single exam date column. 
A change to a subject-specific field like date of birth is made in one place, and consistency is 
preserved. Fields holding personal identifiers such as name and date of birth appear only in the 
subject table, The other table(s) link back to this information via the subjectID. The database 
can still accommodate subjects (such as Alejandro, Ryan, Zachary, and Jackson) who have no 
exams.

■ FIGURE 16.1 Simplified data table for a cohort study of the association between neonatal jaundice and IQ score 
at age 5. The dichotomous predictor is “Jaundice,” defined here as whether total bilirubin rose to 25 mg/dL or more 
in the first 2 days after birth, and the continuous outcome is “IQ,” the subject’s IQ score at age 5. Subjects 2390, 
2819, 3374, and 3901 were not examined at age 5.
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Detailed tracking of lab results also requires a separate table. Neonatal jaundice is presented 
here as a dichotomous subject-specific field. If the investigators need the entire trajectory of 
bilirubin levels after birth, then the database should include a separate lab result table with one 
record per lab result and fields for date/time of lab test, lab test type (total bilirubin), test result 
(bilirubin level), and subjectID for linking back to the subject-specific information (Figure 16.3).

A study’s administrative data such as call logs, visit schedules, and reimbursement records 
also require multiple separate tables. In the infant jaundice study, multiple calls were made to 
the parents of each study subject. It would be difficult or impossible to track these calls in a 
data table with one row per study subject. Instead, a separate table had one row per call with a 
subjectID field linking back to the study subject about whom the call was made.

Structuring the database with multiple related tables, instead of trying to accommodate the 
data in a very wide and complex single table, is called normalization. Some data managers 
refer to normalization as converting from one or a few “short–fat” tables to many “tall–skinny” 
tables (1). Normalization eliminates redundant storage and the opportunity for inconsistencies. 
 Relational database software can be set to maintain referential integrity, meaning that it will 
not allow creation of an exam, lab result, or call record for a subject who does not already exist 
in the subject table. Similarly, it prevents deletion of a subject unless all of that subject’s exams, 
lab results, and calls have also been deleted.

■ FIGURE 16.2 The two-table infant jaundice study database has a table of study subjects in which each row 
corresponds to a single study subject and a table of examinations in which each row corresponds to a particular 
examination. For example, subject 2322 is identified as Helen, date of birth 1/6/2005, in the first table, and is shown 
with data from three exams in the anonymous second table. Since a subject can have multiple examinations, the 
relationship between the two tables is one-to-many. The SubjectID field in the exam table links the exam-specific 
data to the subject-specific data.
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■ FIGURE 16.3 The linkage between the table of subjects and the table of lab results. The lab results capture the 
trajectory of Amy’s total bilirubin over her first 5 days after birth.

Data Dictionaries, Data Types, and Domains

So far we have seen tables only in the “datasheet” view. Each column or field has a name and, 
implicitly, a data type and a definition. In the “Subject” table of Figure 16.2, “FName” is a text 
field that contains the subject’s first name; “DOB” is a date field that contains the subject’s 
birth date, and “Jaundice” is a yes/no field that indicates whether the bilirubin exceeded 25 mg/
dL in the first 2 days after birth. In the “Exam” table, “WghtKg” is a real-number weight in 
 kilograms and “IQ” is an integer IQ score. The data dictionary makes these column definitions 
explicit. Figure 16.4 shows the subject and exam tables in table design (or “data dictionary”) 
view. Note that the data dictionary is itself a table with rows representing fields and columns 
for field name, data type, and field description. Since the data dictionary is a table of informa-
tion about the database itself, it is referred to as metadata. Although Figure 16.4 displays two 
data dictionaries, one for the “Subject” table and one for the “Exam” table, the entire database 
can be viewed as having a single data dictionary rather than one dictionary for each table. For 
each field in the database, the single data dictionary requires specification of the field’s table 
name in addition to the field name, field type, field description, and range of allowed values.

Each field also has a domain or range of allowed values. For example, the allowed values for 
the “Sex” field are “M” and “F”. The software will not allow entry of any other value in this field. 
Similarly the “IQ” field allows only integers between 40 and 200. Data managers for clinical 
trials generally refer to validation rules as “edit checks” (1). Creating validation rules to define 
allowed values affords some protection against data entry errors. Some of the data types come 
with automatic validation rules. For example, the database management software will always 
reject a date of April 31.

Variable Names

Most spreadsheet, statistical, and database management programs allow long column headings 
or variable names. Philosophies and naming conventions abound. We recommend variable 
names that are short enough to type quickly, but long enough to be self-explanatory. Although 
they are often allowed by the software, we recommend avoiding spaces and special characters 
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in variable names. We distinguish separate words in a variable name by using aptly named 
“InterCaps,” but others may prefer using an underscore character. It is generally better to use a 
variable name that describes the field rather than its location on the data collection form (e.g., 
“EverSmokedCigarettes” or “EverSmo,” instead of “Question1”). Most software packages allow 
users to designate a longer, more descriptive, and easier to read variable label to use on data 
entry forms and reports instead of the compact variable name.

Common Data Elements

Several funding and regulatory organizations have launched initiatives to develop common 
data elements for study databases in specific areas of clinical research. These organizations 
include government agencies such as the National Institute for Neurologic Disorders and 
Stroke (5), the National Cancer Institute (6), the United States Food and Drug Administration 
(7), and the European Medicines Agency and nongovernmental, nonprofit associations such as 
the Clinical Data Interchange Standards Consortium (CDISC) (8).

The rationale is that research studies in the same clinical area often need to collect the 
same measurements. Standardizing record structures, field names/definitions, data types/
formats, and data collection forms (case report forms) will eliminate the problem of “reinvent-
ing the wheel” as often occurs in new research studies (5) and enable sharing and combining 
data across multiple separate studies. This entails establishing a data dictionary and a set of 
data collection instruments with accompanying instructions that all investigators in a particular 
area of research are encouraged to use. Part of thorough scholarship in one’s chosen research 
area is awareness of existing data standards.

■ FIGURE 16.4 The table of study subjects (“Subject”) and the table of measurements (“Exam”) in “data 
 dictionary” view. Each variable or field has a name, a data type, a description, and a domain or set of allowed values.
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■  DATA ENTRY

Whether the study database consists of one or many tables and whether it uses spreadsheet, 
statistical, or database management software, a mechanism for populating the data tables (en-
tering the data) is required.

Keyboard Transcription

Historically, the common method for populating a study database has been to first collect 
data on paper forms. In clinical trials, a paper data collection form corresponding to a specific 
subject is commonly called a case report form or CRF. The investigator or a member of the re-
search team may fill out the paper form or, in some cases, the subject himself fills it out. Study 
personnel can then transcribe the data via keyboard from the paper forms into the computer 
tables. Transcription can occur directly into the data tables (e.g., the response to question 3 
on subject 10 goes into the cell at row 10, column 3) or via on-screen forms designed to make 
data entry easier and including automatic data validation checks. Transcription should occur as 
shortly as possible after the data collection, so that the subject and interviewer or data collector 
are still available if responses are found to be missing or out of range. Also, as discussed later in 
this chapter, monitoring for data problems (e.g., outlier values) and preliminary analyses can 
only occur once the data are in the computer database.

If transcribing from paper forms, the investigator may consider double data entry to en-
sure the fidelity of the transcription. The database program compares the two values entered 
for each variable and presents a list of values that do not match. Discrepant entries are then 
checked on the original forms and corrected. Double data entry identifies data entry errors at 
the cost of doubling the time required for transcription. An alternative is to double-enter a 
random sample of the data. If the error rate is acceptably low, double data entry is unlikely to 
be worth the effort and cost for the remaining data.

Distributed Data Entry

If data collection occurs at multiple sites, the sites can e-mail or fax paper forms to a central 
location for transcription into the computer database, but this practice is increasingly rare. 
More commonly, the data are transcribed at the sites directly into the study database via online 
forms. If Internet connectivity is a problem, data are stored on a local computer at the site and 
transmitted online or via a portable memory device such as a USB drive. Government regula-
tions require that electronic health information be either de-identified or transmitted securely 
(e.g., encrypted and password-protected).

Electronic Data Capture

Primary data collection onto paper will always have its place in clinical research; a fast and 
user-friendly way to capture data on a nonvolatile medium is using pen and paper. However, 
hand writing data onto a paper form is increasingly rare. In general, research studies should 
collect data primarily using online forms. In clinical trials, electronic forms are called elec-
tronic case report forms (eCRFs). Data entry via online forms has many advantages:

 The data are keyed directly into the data tables without a second transcription step, remov-
ing that source of error.

 The computer form can include validation checks and provide immediate feedback when an 
entered value is out of range.

 The computer form can also incorporate skip logic. For example, a question about packs per 
day appears only if the subject answered “yes” to a question about cigarette smoking.

 The form may be viewed and data entered on portable, wireless devices such as a tablet 
(iPad), smartphone, or notebook computer.
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When using online forms for electronic data capture, it sometimes makes sense to print out a 
paper record of the data immediately after collection. This is analogous to printing out a receipt 
after a transaction at an automated teller machine. The printout is a paper “snapshot” of the 
record immediately after data collection and may be used as the original or source document 
if a paper version is required.

Coded Responses Versus Free Text

Defining a variable or field in a data table includes specifying its range of allowed values. For 
subsequent analysis, it is preferable to limit responses to a range of coded values rather than 
allowing free text responses. This is the same as the distinction made in Chapter 15 between 
“closed-ended” and “open-ended” questions. If the range of possible responses is unclear, 
initial data collection during the pretesting of the study can allow free text responses that will 
subsequently be used to develop coded response options.

The set of response options to a question should be exhaustive (all possible options are 
provided) and mutually exclusive (no two options can both be correct). A set of mutually 
exclusive response options can always be made collectively exhaustive by adding an “other” 
response. Online data collection forms provide three possible formats for displaying the mutu-
ally exclusive and collectively exhaustive response options: drop-down list, pick list (field list), 
or option group (Figure 16.5). These formats will be familiar to any research subject or data 
entry person who has worked with an online form. Note that the drop-down list saves screen 
space but will not work if the screen form will be printed to paper for data collection, because 
the response options will not be visible.

A question with a set of mutually exclusive responses corresponds to a single field in the 
data table. In contrast, the responses to an “All that apply” question are not mutually exclu-
sive. They correspond to as many yes/no fields as there are possible responses. By conven-
tion, response options for “All that apply” questions use square check boxes rather than the 
round radio buttons used for option groups with mutually exclusive responses. As discussed 
in  Chapter 15, we discourage “All that apply” questions and prefer to require a yes or no re-
sponse to each item. Otherwise an unmarked response could either mean “does not apply” or 
“not answered.” In coding yes/no (dichotomous) variables, make 0 represent no or absent, and 
1 represent yes or present. With this coding, the average value of the variable is interpretable as 
the proportion with the attribute.

Importing Measurements and Laboratory Results

Much study information, such as baseline demographic information in the hospital registra-
tion system, lab results in the laboratory’s computer system, and measurements made by dual 
energy x-ray absorptiometry (DEXA) scanners and Holter monitors, is already in digital elec-
tronic format. Where possible, these data should be imported directly into the study database 
to avoid the labor and potential transcription errors involved in re-entering data. For example, 
in the study of infant jaundice, the demographic data and contact information are obtained 
from the hospital database. Computer systems can almost always produce tab-delimited or 
fixed-column-width text files that the database software can import. In clinical trials, this type 
of batch-uploaded information is referred to as “non-CRF (case report form) data” (1).

Data Management Software

Now that we have discussed data tables and data entry, we can make the distinction between 
the study database’s back end and front end. The back end consists of the data tables them-
selves. The front end or “interface” consists of the online forms used for entering, viewing, 
and editing the data. Table 16.1 lists some software applications used in data management for 
clinical research. Simple study databases consisting of a single data table can use spreadsheet or 
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■ FIGURE 16.5 Formats for entering from a mutually exclusive, collectively exhaustive list of responses. 
The drop-down list (A; dropped down in lower panel) saves screen space but will not work if the screen 
form will be printed to paper for data collection. Both the pick list (which is just a drop-down list that 
is permanently dropped down; B) and the option group (C) require more screen space, but will work if 
printed.

A

B

C

statistical software for the back-end data table and the study personnel can enter data directly 
into the data table’s cells, obviating the need for front-end data collection forms. More com-
plex study databases consisting of multiple data tables require relational database software to 
maintain the back-end data tables. If the data are collected first on paper forms, entering the 
data will require transcription into online forms.
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TABLE 16.1  SOME SOFTWARE USED IN RESEARCH DATA MANAGEMENT

Spreadsheet

Microsoft Excel

Statistical Analysis

Statistical Analysis System (SAS)

Stata

Filemaker Pro

Oracle

OnCore

OpenClinica

Qualtrics

As discussed in Chapter  15, several tools, including SurveyMonkey, Zoomerang, and 
 Qualtrics, exist for developing online surveys that will be e-mailed to study participants or 
posted on the study website. All of these tools provide multiple question format options, skip 
logic, and the capability to aggregate, report on, and export survey results.

Some statistical packages, such as SAS, have developed data entry modules. Integrated 
desktop database programs, such as Microsoft Access and Filemaker Pro, also provide exten-
sive tools for the development of on-screen forms.

Research studies increasingly use integrated, Web-enabled, research data management 
 platforms. REDCap (Research Electronic Data Capture) is a Web-based research data col-
lection system developed by an academic consortium based at Vanderbilt University. It en-
ables researchers to build data entry forms, surveys, and surveys with attached data entry 
forms.  REDCap is made available to academic investigators only and must be hosted at the 
investigator’s institution. This is an outstanding “do-it-yourself” tool for beginning academic 
 investigators that allows rapid development of surveys and on-screen data collection forms. It 
also provides access to a repository of downloadable data collection instruments. As with all 
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do-it-yourself Web development tools, options for customization and advanced functionality 
are limited. A REDCap database consists of a single table containing one row for each of a fixed 
number of user-defined “events” per study subject. It does not permit detailed tracking of a 
large and variable number of repeated measurements per study subject, such as lab results, vital 
signs, medications, or call logs. REDCap also cannot do sophisticated data validation, querying 
(see later in this chapter), or reporting, but does make export into statistical packages easy.

Full-featured, Web-based research data management platforms such as QuesGen, MediData 
RAVE, or Oracle InForm can accommodate complex data structures and provide sophisticated 
data validation, querying, and reporting. The companies that provide these tools also provide 
support and configuration assistance. While there may be some additional cost involved, these 
solutions are worth considering when the do-it-yourself tools lack the sophistication to meet 
the study’s requirements.

■  EXTRACTING DATA (QUERIES)

Once the database has been created and data entered, the investigator will want to organize, 
sort, filter, and view (“query”) the data. Queries are used for monitoring data entry, reporting 
study progress, and ultimately analyzing the results. The standard language for manipulat-
ing data in a relational database is called Structured Query Language or SQL (pronounced 
 “sequel”). All relational database software systems use one or another variant of SQL, but most 
provide a graphical interface for building queries that makes it unnecessary for the clinical 
researcher to learn SQL.

A query can join data from two or more tables, display only selected fields, and filter for re-
cords that meet certain criteria. Queries can also calculate values based on raw data fields from the 
tables. Figure 16.6 shows the results of a query on our infant jaundice database that filters for boys 
examined in February and calculates age in months (from birth date to date of exam) and BMI 
(from weight and height). The query also uses a sophisticated table-lookup function to calculate 
growth curve percentile values for the child’s BMI. Note that the result of a query that joins two 
tables, displays only certain fields, selects rows based on special criteria, and calculates certain 
values still looks like a table in datasheet view. One of the tenets of the relational database model 
is that operations on tables produce table-like results. The data in Figure 16.6 are easily exported 
to a statistical analysis package. Note that no personal identifiers are included in the query.

Identifying and Correcting Errors in the Data

The first step toward avoiding errors in the data is testing the data collection and management 
system as part of the overall pretesting for the study. The entire system (data tables, data entry 

■ FIGURE 16.6 A query in datasheet view that filters for boys examined in February and 
calculates age in months (from birth date to date of exam) as well as body mass index 
(BMI) from weight and height. The query also uses a sophisticated table-lookup function 
to calculate growth curve percentile values for the child’s BMI. For SubjectID 4430, the 
100th percentile value associated with the BMI of 35.0 should trigger investigation of 
the outlier as a possible data entry error.
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forms, and queries) should be tested using dummy data. For clinical trials that will be used 
in an FDA submission, this is a regulatory requirement under Code of Federal Regulations, 
Chapter 21, Part 11 (21 CFR 11) (9).

We have discussed ways to enhance the fidelity of keyboard transcription or electronic 
data capture once data collection begins. Values that are outside the permissible range should 
not get past the data entry process. However, the database should also be queried for missing 
values and outliers (extreme values that are nevertheless within the range of allowed values). 
For example, a weight of 35 kg might be within the range of allowed values for a 5-year-old, 
but if it is 5 kg greater than any other weight in the data set, it bears investigation. Many data 
entry systems are incapable of doing cross-field validation, which means that the data tables 
may contain field values that are within the allowed ranges but inconsistent with one another. 
For example, it would be highly unlikely for a 35 kg 5-year-old to have a height of 100 cm. 
While the weight and height values are both within the allowed ranges, the weight (extremely 
high for a 5-year-old) is inconsistent with the height (extremely low for a 5-year-old). Such an 
inconsistency can be suspected using a query like the one depicted in Figure 16.6.

Missing values, outliers, inconsistencies, and other data problems are identified using que-
ries and communicated to the study staff, who can respond to them by checking original source 
documents, interviewing the participant, or repeating the measurement. If the study relies on 
paper source documents, any resulting changes to the data should be highlighted (e.g., in red 
ink), dated, and signed. As discussed later in this chapter, electronic databases should maintain 
an audit log of all data changes.

If data are collected by several investigators from different locations, means and medians 
should be compared across investigators and sites. Substantial differences by investigator or site 
can indicate systematic differences in measurement or data collection.

Data editing and cleaning should give higher priority to more important variables. For  
example, in a randomized trial, the most important variable is the outcome, so missing data 
and errors should be minimized. In contrast, errors in other variables, such as the date of a 
visit, may not substantially affect the results of analyses. Data editing is an iterative process; 
after errors are identified and corrected, editing procedures should be repeated until very few 
important errors are identified. At this point, for some studies, the edited database may be  
declared final or “locked,” so that no further changes are permitted (1).

■  ANALYSIS OF THE DATA

Analyzing the data often requires creating new, derived variables based on the raw field values 
in the data set. For example, continuous variables may be made dichotomous (e.g., BMI > 25 
defined as overweight), new categories created (specific drugs grouped as antibiotics), and 
calculations made (years of smoking × number of packs of cigarettes per day = pack years). 
Missing data should be handled consistently. “Don’t know” may be recoded as a special cat-
egory, combined with “no,” or excluded as missing. If the study uses database software, queries 
can be used to derive the new variables prior to export to a statistical analysis package. This is 
especially important for variables like the percentiles in Figure 16.6 that require complex pro-
gramming or a separate “look-up” table. Alternatively, derivation of the new fields can occur in 
the statistical package itself. Many investigators are more familiar with statistical packages than 
database programs and prefer to calculate derived variables after export.

■  CONFIDENTIALITY AND SECURITY

If research study subjects are also clinic or hospital patients, their identifying information is 
protected under the Privacy Rule of the Health Insurance Portability and Accountability Act 
(HIPAA) (10); that said, regardless of whether the subjects are also patients, the investigator is 
obligated both ethically and legally to protect their confidentiality. The database should assign 
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each subject a unique subject identifier (subjectID) that has no meaning external to the study 
database (i.e., the subjectID should not incorporate the subject’s name, initials, birth date, or 
medical record number). Any database fields that do contain personal identifiers should be 
deleted prior to sharing the data. If the database uses multiple tables, the personal identifiers 
can be kept in a separate table. Study databases that contain personal identifiers must be main-
tained on secure servers accessible only to authorized members of the research team, each of 
whom will have a user ID and password. Dedicated Web-based research data management plat-
forms such as REDCap and QuesGen allow designation of fields containing subject identifiers. 
 Different user roles can allow or prohibit exporting, changing, or even viewing these specially 
designated fields.

The database system should audit all data entry and editing. Auditing allows determination 
of when a data element was changed, who made the change, and what change was made. For 
new drug trials, this is a regulatory requirement (9). Dedicated Web-based research platforms 
such as REDCap, QuesGen, and MediData RAVE automatically provide user validation and 
auditing.

The study database must be backed up regularly and stored off-site. Periodically the back-
up procedure should be tested by restoring a backed-up copy of the data. As with user valida-
tion and auditing, hosted platforms like REDCap, QuesGen, and MediData RAVE automatically 
provide backups and data security. At the end of the study the original data, data dictionary, 
final database, and the study analyses should be archived for future use. Such archives can be 
revisited in future years, allowing the investigator to respond to questions about the integrity 
of the data or analyses, perform further analyses to address new research questions, and share 
data with other investigators.

■  SUMMARY

 1. The study database consists of one or more data tables in which the rows correspond 
to records (e.g., study subjects) and the columns correspond to fields (attributes of the 
records).

 2. Identifying study subjects with a unique subjectID that has no meaning external to the 
study database enables the “de-linking” of study data from personal identifiers for purposes 
of maintaining confidentiality. Databases that contain personal identifiers must be stored 
on secure servers, with access restricted and audited.

 3. Accommodating a variable number of repeated measurements per study subject, such as 
lab results or medications, requires normalization of the measurement data into separate 
tables in which each row corresponds to a measurement rather than an individual study 
subject.

 4. The study database may also store administrative data such as call logs, exam schedules, 
and reimbursement records.

 5. The data dictionary specifies the name, data type, description, and range of allowed 
 values for all the fields in the database.

 6. The data entry system is the means by which the data tables are populated; electronic data 
capture via online forms is replacing transcription from paper forms for data entry.

 7. A spreadsheet or statistical package is adequate only for the simplest study  databases; 
complex databases require the creation of a relational database using database  management 
software based on Structured Query Language (SQL).

 8. Database queries sort and filter the data as well as calculate values based on raw data fields. 
Queries are used to monitor data entry, provide reports on study progress, and format the 
results for analysis.

 9. Loss of the database must be prevented by regular backups and off-site storage, and by 
archiving copies of key versions of the database for future use.
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Most of this book has dealt with the left-hand side of the clinical research model,  addressing 
matters of design (Figure 17.1). In this chapter we turn to the right hand, implementation side. 
Even the best of plans thoughtfully assembled in the armchair may work out differently in 
practice. Skilled research staff may be unavailable, study space less than optimal, participants 
less willing to enroll than anticipated, the intervention poorly tolerated, and the measurements 
challenging. The conclusions of a well-designed study can be marred by ignorance, careless-
ness, lack of training and standardization, and other errors in finalizing and implementing the 
protocol.

Successful study implementation begins with assembling resources including space, staff, 
and financial management for study start-up. The next task is to finalize the protocol through 
a process of pretesting recruitment, measurement, and intervention plans in an effort to avoid 
the need for protocol revisions after data collection has begun. The study is then carried 
out with a systematic approach to quality control of clinical and lab procedures and of data 
 management, following the FDA-endorsed principles of Good Clinical Practice (GCP).

Some of the strategies in this chapter pertain to major studies with large research teams dis-
tributed across multiple centers that are led by senior investigators. However, the information 
is also relevant to beginning investigators who may be co-investigators in these large studies, 
or PI on a smaller study.

Implementing the Study and 
Quality Control
Deborah G. Grady and Stephen B. Hulley

■ FIGURE 17.1 This chapter focusses on the area within the dashed green line: implementing a research project.
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■ ASSEMBLING RESOURCES

Space

It is possible to conduct some clinical research studies completely online, using Web-based 
interactive systems, mailed interventions (such as drugs or devices), remote monitoring, home 
visits for measurement, and online data entry. However, most research studies still require 
physical space to conduct study visits and make measurements. This space should be acces-
sible, attractive, and sufficient. Failing to successfully negotiate for space early in the study 
planning process can result in difficulty enrolling participants, poor adherence to study visits, 
incomplete data, and unhappy staff. Clinical research space must be easily accessible to par-
ticipants and have adequate available parking. The space should be welcoming, comfortable, 
and spacious enough to accommodate staff, measurement equipment, and storage of study drug 
and study-related files. If there will be a physical examination, provision for privacy and hand 
washing must be available. If the participants must go to other places for tests (such as the 
hospital laboratory or radiology department) these should be easily accessible. In some studies, 
such as those that enroll sick patients or deliver interventions that could be dangerous, access 
to cardiopulmonary resuscitation teams and equipment may be required.

Many academic medical centers have clinical research centers that provide fully equipped 
research space staffed by experienced research staff. Clinical research centers often include the 
ability to make specialized measurements (such as caloric intake, bone density, and insulin 
clamp studies), and may provide access to other services (such as participant recruitment, 
database management, and statistical analysis). These centers provide an excellent option for 
carrying out clinical and translational research, but generally require separate application and 
review procedures, and reimbursement for services.

The Research Team

Research teams range in size from small—often just the investigator and a part-time research 
assistant—to multiple full-time staff for large studies. Regardless of size, all research teams 
must accomplish similar activities and fill similar roles, which are described in Table  17.1. 
Often, one person carries out several of these activities. However, some of these duties require 
special expertise, such as statistical programming and analyses. Some team members, such 
as the financial and human resources managers, are generally employed by the university or 
 medical center, and provided by the investigator’s department or unit. Regardless of the size 
of the study team, the principal investigator (PI) must make sure that each of the functions 
described in Table 17.1 is carried out.

After deciding on the number of team members and the distribution of duties, the next 
step is to work with a departmental administrator to find qualified and experienced job ap-
plicants. This can be difficult, because formal training for some research team members is 
variable, and job requirements vary from one study to the next. For example, the crucial 
 position of project director may be filled by a person with a background in nursing, pharmacy, 
public health, laboratory services, or pharmaceutical research, and the duties of this position 
can vary widely.

Most universities and medical centers have formal methods for posting job openings, 
but other avenues, such as newspaper and Web-based advertisements, can be useful. The 
safest approach is to find staff of known competence; for example, someone working for a 
colleague whose project has ended. It is also common to negotiate with colleagues to hire 
their experienced staff part-time. Some academic medical centers or units within the  medical 
center support a pool of experienced research coordinators and other staff who can be hired 
part-time.
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TABLE 17.1  FUNCTIONAL ROLES FOR MEMBERS OF A RESEARCH TEAM*

ROLE FUNCTION COMMENT

 

Leadership and Team-Building

The quality of a study that involves more than one person on the research team begins with 
the integrity and leadership of the PI. The PI should ensure that all staff are properly trained 
and certified to carry out their duties. He should clearly convey the message that protection 
of human subjects, maintenance of privacy, completeness and accuracy of data, and fair pre-
sentation of research findings are paramount. He cannot watch every measurement made by 
colleagues and staff, but if he creates a sense that he is broadly aware of all study activities and 
feels strongly about human subjects’ protection and the quality of the data, most people will 
respond in kind. It is helpful to meet with each member of the team from time to time, express-
ing appreciation and discussing problems and solutions. A good leader is adept at delegating 
authority appropriately and at the same time setting up a hierarchical system of supervision 
that ensures sufficient oversight of all aspects of the study.
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From the outset of the planning phase, the investigator should lead regular staff  meetings 
with all members of the research team. Meetings should have the agenda distributed in  advance, 
with progress reports by listed individuals who have been given responsibility for specific areas 
of the study. These meetings provide an opportunity to discover and solve problems, and to 
involve everyone in the process of developing the project and conducting the research. Staff 
meetings are enhanced by scientific discussions and updates related to the project. Regular 
staff meetings are a great source of morale and interest in the goals of the study and provide 
 “on-the-job” education and training.

Most research-oriented universities and medical centers provide a wide range of  institutional 
resources for conducting clinical research. These include human resources and financial man-
agement services, consultation services, and centralized clinical research centers that provide 
space and experienced research staff. Many universities also have core laboratories where spe-
cialized measurements can be performed, centralized space and equipment for storage of bio-
logic specimens or images, centralized database management services, professional recruitment 
centers, expertise regarding U.S. Food and Drug Administration (FDA) and other regulatory 
issues, and libraries of study forms and documents. This infrastructure may not be readily ap-
parent in a large sprawling institution, and investigators should seek to become familiar with 
their local resources before trying to do it themselves.

Study Start-Up

At the beginning of the study, the PI must finalize the budget, develop and sign any contracts 
that are involved, define staff positions, hire and train staff, obtain institutional review board 
(IRB) approval, write the operations manual, develop and test forms and questionnaires, de-
velop and test the database, and plan participant recruitment. This period of study activity 
before the first participant is enrolled is referred to as study start-up, and requires intensive 
effort. Adequate time and planning for study start-up are important to the conduct of a high-
quality study.

Adequate funding for conducting the study is crucial. The budget will have been pre-
pared at the time the proposal is submitted for funding, well in advance of starting the study 
 (Chapter 19). Most universities and medical centers employ staff with financial expertise to 
assist in the development of budgets (the preaward manager). It is a good idea to get to know 
this person well, to respect his or her stress level around deadline times by meeting timetable 
goals, and to thoroughly understand regulations related to various sources of funding.

In general, the rules for spending NIH and other public funds are considerably more restric-
tive than for industry or foundation funding. The total amount of the budget usually cannot 
be increased if the work turns out to be more costly than predicted, and shifting money across 
categories of expense (e.g., personnel, equipment, supplies, travel) or substantial reductions in 
the percent effort of key personnel generally require approval by the sponsor. Universities and 
medical centers typically employ financial personnel whose main responsibility is to ensure 
that funds available to an investigator through grants and contracts are spent appropriately. 
This postaward manager should prepare regular reports and projections that allow the investi-
gator to make adjustments in the budget to make the best use of the available finances during 
the life of the study, ensuring that the budget will not be overdrawn at the end of the study. 
Having a modest surplus at the end of the study can be a good thing, as sponsors often approve 
“no-cost extensions” that allow the use of the surplus funds after the formal end of the study 
period to complete or extend the work described in the scope of the award.

The budget for a study supported by a pharmaceutical company is part of a contract that 
incorporates the protocol and a clear delineation of the tasks to be carried out by the investiga-
tor and the sponsor. Contracts are legal documents that obligate the investigator to activities 
and describe the timing and amount of payment in return for specified “deliverables,” such as 
meeting recruitment milestones and submitting progress reports. University or medical center 
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lawyers are needed to help develop such contracts and ensure that they protect the investiga-
tor’s intellectual property rights, access to data, publication rights, and so forth. However, 
lawyers are generally unfamiliar with the tasks required to complete a specific study, and input 
from the investigator is crucial, especially with regard to the scope of work and deliverables.

Institutional Review Board Approval

The IRB must approve the study protocol, consent form, and recruitment materials before 
recruitment can begin (Chapter 14). Investigators should be familiar with the requirements of 
their local IRB and the time required to obtain approval. IRB staff are generally very helpful in 
these matters, and should be contacted early on to discuss any procedural issues and design 
decisions that affect study participants.

Operations Manual and Forms Development

The study protocol is commonly expanded to create the operations manual, which includes the 
protocol, information on study organization and policies, and a detailed version of the methods 
section of the study protocol (Appendix 17A). It specifies exactly how to recruit and enroll 
study participants, and describes all activities that occur at each visit—how randomization and 
blinding will be achieved, how each variable will be measured, quality control procedures, data 
management practices, the statistical analysis plan, and the plan for data and safety monitor-
ing (Chapter 11). It should also include all of the questionnaires and forms that will be used 
in the study, with instructions on contacting the study participants, carrying out interviews, 
completing and coding study forms, entering and editing data, and collecting and processing 
specimens. An operations manual is essential for research carried out by several individuals, 
particularly when there is collaboration among investigators in more than one location. Even 
when a single investigator does all the work himself, written operational definitions help re-
duce random variation and changes in measurement technique over time.

Design of the data collection forms will have an important influence on the quality of the 
data and the success of the study (Chapter 16). Before the first participant is recruited, the 
forms should be pretested. Any entry on a form that involves judgment requires explicit opera-
tional definitions that should be summarized briefly on the form itself and set out in more detail 
in the operations manual. The items should be coherent and their sequence clearly formatted 
with skip patterns (see Appendix 15). Pretesting will ensure clarity of meaning and ease of use. 
Labeling each page with the date, name, and ID number of the subject and staff safeguards the 
integrity of the data. Web-based digital forms, handheld computers, personal digital assistants 
and other devices for collecting data must be pretested during study start-up, and directions for 
their use included in the operations manual.

Database Design

Before the first participant is recruited, the database that will be used to enter, edit, store, 
monitor, and analyze the data must be created and tested. Depending on the type of database 
that will be used and the scope of the study, development and testing of the data entry and 
management system can require weeks to months after staff with the appropriate skills have 
been identified, hired, and trained. Many academic medical centers provide services to help 
investigators develop an appropriate database and provide widely used database software 
programs. For very large studies, professional database design and management services are 
available, but it’s good to get advice on these options from trusted in-house technical experts 
and senior advisors.

Even for small studies, time spent at the outset creating a database that will house the study 
data is usually well spent (Chapter 16). Investigators eager to begin a study and start recording 
data sometimes record data only on paper forms or in a spreadsheet such as Microsoft Excel, 
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rather than an actual database program. This approach, while easier initially, ends up costing 
much more in time and effort later, when it is time to analyze the data. The advantage of set-
ting up a database early is that it allows the investigator to consider at the outset what values 
are acceptable for each variable and disallow or generate alerts for out of range, illogical, and 
missing values. High quality data entry and management systems improve quality control at 
the time of data collection or data entry and reduce time that will need to be spent later on data 
cleaning. But the most important value of a high quality data systemss is to avoid discovering 
late in a study that there are a large number of missing, out of range or illogical values that 
cannot be corrected.

Recruitment

Approaches to successfully recruiting the goal number of study participants are described in 
Chapter 3. We want to emphasize here that timely recruitment is the most difficult aspect of 
many studies. Adequate time, staff, resources, funding and expertise are essential, and should 
be planned well in advance of study start-up.

■  FINALIZING THE PROTOCOL

Pretests and Dress Rehearsals

Pretests and pilot studies are designed to evaluate the feasibility, efficiency, and cost of study 
methods; the reproducibility and accuracy of measurements; likely recruitment rates; and 
(sometimes) outcome rates and effect sizes. The nature and scale of pretests and pilot studies 
depend on the study design and the needs of the study. For most studies, a series of pretests 
or a small pilot study serves very well, but for large, expensive studies a full-scale pilot study 
may be appropriate. It may be desirable to spend up to 10% of the eventual cost of the study 
to make sure that recruitment strategies will work, measurements are appropriate, and sample 
size estimates are realistic.

Pretests are evaluations of specific questionnaires, measures, or procedures that can be 
carried out by study staff to assess their functionality, appropriateness, and feasibility. For ex-
ample, pretesting the data entry and database management system is generally done by having 
study staff complete forms with missing, out-of-range, or illogical data; entering these data; and 
testing to ensure that the data editing system identifies the errors.

Before the study begins, it is a good idea to test plans for clinic visits and other study pro-
cedures in a full-scale dress rehearsal. The purpose is to iron out problems with the final set 
of instruments and procedures. What appears to be a smooth, problem-free protocol on paper 
usually reveals logistic and substantive problems in practice, and the dress rehearsal will gener-
ate improvements in the approach. The PI himself can serve as a mock subject to experience 
the study and the research team from that viewpoint.

Minor Protocol Revisions Once Data Collection Has Begun

No matter how carefully the study is designed and the procedures pretested, problems inevita-
bly appear once the study has begun. The general rule is to make as few changes as possible at 
this stage. Sometimes, however, protocol modifications can strengthen the study.

The decision as to whether a minor change will improve the integrity of the study is often 
a trade-off between the benefit that results from the improved methodology and the disadvan-
tages of altering the uniformity of the study methods, spending time and money to change the 
system, and creating confusion for some members of the team. Decisions that simply involve 
making an operational definition more specific are relatively easy. For example, in a study that 
excludes persons with alcohol abuse, can a person who has been abstinent for several years 
be included? This decision should be made in consultation with co-investigators, but with 
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adequate communication through memos and the operations manual to ensure that it is applied 
uniformly by all staff for the remainder of the study. Often minor adjustments of this sort do 
not require IRB approval, particularly if they do not involve changing the protocol that has been 
approved by the IRB, but the PI should ask an IRB staff member if there is any uncertainty. Any 
change to the protocol, informed consent form, operations manual, or other study documents 
should be identified by giving the revised document a new version number, and approaches 
should be in place to make sure the latest version of each document is in use.

Substantive Protocol Revisions Once Data Collection Has Begun

Major changes in the study protocol, such as including different kinds of participants or chang-
ing the intervention or outcome, are a serious problem. Although there may be good reasons for 
making these changes, they must be undertaken with a view to analyzing and reporting the data 
separately if this will lead to a more appropriate interpretation of the findings. The judgments 
involved are illustrated by two examples from the Raloxifene Use for The Heart (RUTH) trial, a 
multicenter clinical trial of the effect of treatment with raloxifene on coronary events in 10,101 
women at high risk for coronary heart disease events. The initial definition of the primary out-
come was the occurrence of nonfatal myocardial infarction (MI) or coronary death. Early in the 
trial, it was noted that the rate of this outcome was lower than expected, probably because new 
clinical co-interventions such as thrombolysis and percutaneous angioplasty lowered the risk for 
MI. After careful consideration, the RUTH Executive Committee decided to change the primary 
outcome to include acute coronary syndromes other than MI. This change was made early in the 
trial; appropriate information had been collected on potential cardiac events to determine if these 
met the new criteria for acute coronary syndrome, allowing the study database to be searched for 
acute coronary syndrome events that had occurred before the change was made (1).

Also early in the RUTH trial, emerging results from the Multiple Outcomes of Raloxifene 
Evaluation (MORE) trial showed that the relative risk of breast cancer was markedly reduced 
by treatment with raloxifene (2). These results were not conclusive, since the number of breast 
cancers was small, and there were concerns about generalizability since all women enrolled in 
MORE had osteoporosis. To determine if raloxifene would also reduce the risk of breast cancer 
in another population—older women without osteoporosis—the RUTH Executive Committee 
decided to add breast cancer as a second primary outcome (1).

Each of these changes was major, requiring a protocol amendment, approval of the IRB at 
each clinical site, approval of the FDA, and revision of a large number of forms and study docu-
ments. These are examples of substantive revisions that enhanced feasibility or the information 
content of the study without compromising its overall integrity. Tinkering with the protocol is 
not always so successful. Substantive revisions should only be undertaken after weighing the 
pros and cons with members of the research team and appropriate advisors such as the Data and 
Safety Monitoring Board, sponsor or funding agency. The investigator must then deal with the 
potential impact of the change when he analyzes data and draws the study conclusions.

Closeout

At some point in all longitudinal studies and clinical trials, follow-up of participants stops. The 
period during which participants complete their last visit in the study is often called “closeout.” 
Closeout of clinical studies presents several issues that deserve careful planning (3). At a mini-
mum, at the closeout visit staff should thank participants for their time and effort and inform 
them that their participation was critical to the success of the study. In addition, closeout may 
include the following activities:

 Participants (and their physicians) should generally be informed of the results of clinically 
relevant laboratory tests or other measurements that were performed during the study, either 
in person at the last visit (with a copy in writing) or later by mail.
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 In a blinded clinical trial, participants may be told their treatment status, either at the last 
visit or by mail at the time all participants have completed the trial and the main data analy-
ses are complete or the main manuscript based on study results is published.

 A copy of the main manuscript based on the study results and a press release or other de-
scription of the findings written in lay language should generally be mailed to participants 
(and their physicians) at the time of presentation or publication, with a phone number for 
participants who have questions.

 After all participants have completed the study, they may be invited to a reception during 
which the PI thanks them, discusses the results of the study, and answers questions.

■ QUALITY CONTROL DURING THE STUDY

Good Clinical Practice

A crucial aspect of clinical research is the approach to ensuring that all aspects of the study 
are of the highest quality. Guidelines for high-quality research, called Good Clinical Practice 
(GCP), were developed to apply specifically to clinical trials that test drugs requiring approval 
by the FDA or other regulatory agencies, and are defined as “an international ethical and sci-
entific quality standard for designing, conducting, recording, and reporting trials that involve 
the participation of human subjects. Compliance with this standard provides public assurance 
that the rights, safety, and wellbeing of trial subjects are protected” (4).

These principles are increasingly applied to clinical trials sponsored by federal and other 
public agencies, and to research designs other than trials (Table 17.2). GCP requirements are 
described in detail in the FDA Code of Federal Regulations Title 21 (4, 5). The International 
Conference on Harmonization (6) provides quality control guidelines used by regulatory agen-
cies in Europe, the United States, and Japan.

GCP is best implemented by standard operating procedures (SOPs) for all study-related 
activities. The study protocol, operations manual, statistical analysis plan and Data and Safety 
Monitoring plan can be considered SOPs, but often do not cover areas such as how staff are 
trained and certified, how the database is developed and tested, or how study files are main-
tained, kept confidential, and backed up. Many academic medical centers have staff who spe-
cialize in processes for meeting GCP guidelines and can provide various templates and models 
for SOPs. The related topic of ethical conduct of research is addressed in Chapter 14, and in 
this chapter we focus on quality control of study procedures and data management.

Quality Control for Clinical Procedures

It is a good idea to assign one member of the research team to be the quality control co-
ordinator who is responsible for implementing appropriate quality control techniques for all 

TABLE 17.2  ASPECTS OF THE CONDUCT OF CLINICAL RESEARCH 
THAT ARE C OVERED BY GOOD CLINICAL PRACTICES
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aspects of the study, supervising staff training and certification, and monitoring the use of 
quality control procedures during the study. The goal is to detect possible problems before 
they occur and prevent them. The quality control coordinator may also be responsible for 
preparing for and acting as the contact person for audits by the IRB, FDA, study sponsor, or 
NIH. Quality control begins during the planning phase and continues throughout the study 
(Table 17.3).

 The operations manual. The operations manual is a very important aspect of quality control 
(Appendix 17A). To illustrate, consider measuring height in a study where change in height 
will be used as a predictor of osteoporosis. Since measurement of height is a partially subjec-
tive outcome for which there is no feasible gold standard, the operations manual should give 
specific instructions for the type of measurement device to be used (brand and model of sta-
diometer), as well as instructions on preparing the participant for the measurement (remove 
shoes), positioning the patient on the measurement device, and making the measurement.

 Calibration, training, and certification. Measurement devices (scales, stadiometers, imaging 
equipment, laboratory equipment, etc.) should be professionally calibrated before beginning 
the study and periodically during the study. Standardized training of study staff is essential 
to high-quality research. All staff involved in the study should receive appropriate training 
before the study begins, and be certified as to competence with regard to key procedures 
and measurements. With regard to measurement of height, for example, members of the 
team can be trained in each aspect of the measurement and required to obtain satisfactory 
measurements on mock participants whose height is known. The certification procedure 
should be supplemented during the study by scheduled recertifications and a log of training, 
certification, and recertification should be maintained at the study site.

 Performance review. Supervisors should review the way clinical procedures are carried out 
by periodically sitting in on representative clinic visits or telephone calls. After obtaining 
the study participant’s permission, the supervisor can be quietly present for at least one 
complete example of every kind of interview and technical procedure each member of his 
research team performs. This may seem awkward at first, but it soon becomes comfortable. 

TABLE 17.3  QUALITY CONTROL OF CLINICAL PROCEDURES*

Steps that precede the study

Steps during the study
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It is helpful to use a standardized checklist (provided in advance and based on the protocol 
and operations manual) during these observations. Afterward, communication between the 
supervisor and the research team member can be facilitated by reviewing the checklist and 
resolving any quality control issues that were noted in a positive and nonpejorative fashion. 
The timing and results of performance reviews should be recorded in training logs.

Involving peers from the research team as reviewers is useful for building morale and team-
work, as well as for ensuring the consistent application of standardized approaches among 
members of the team who do the same thing. One advantage of using peers as observers in 
this system is that all members of the research team acquire a sense of ownership of the quality 
control process. Another advantage is that the observer often learns as much from observing 
someone else’s performance as the person at the receiving end of the review procedure.

 Periodic reports. It is important to tabulate data on the technical quality of the clinical 
procedures and measurements at regular intervals. This can give clues to the presence of 
missing, inaccurate, or variable measurements. Differences among the members of a blood 
pressure screening team in the mean levels observed over the past 2 months, for example, 
can lead to the discovery of differences in their measurement techniques. Similarly, a gradual 
change over a period of months in the standard deviation of sets of readings can indicate 
a change in the technique for making the measurement. Periodic reports should also ad-
dress the success of recruitment, the timeliness of data entry, the proportion of missing and 
 out-of-range variables, the time to address data queries, and the success of follow-up and 
adherence to the intervention.

 Special procedures for drug interventions. Clinical trials that use drugs, particularly those 
that are blinded, require special attention to the quality control of labeling, drug delivery, 
and storage; dispensing the medication; and collecting and disposing of unused medication. 
Providing the correct drug and dosage is ensured by carefully planning with the manufac-
turer or research pharmacy regarding the nature of the drug distribution approach, by over-
seeing its implementation, and occasionally by testing the composition of the blinded study 
medications to make sure they contain the correct constituents. Drug studies also require 
clear procedures and logs for tracking receipt of study medication, storage, distribution, and 
return by participants.

Quality Control for Laboratory Procedures

The quality of laboratory procedures can be controlled using many of the approaches described 
in Table 17.3 for clinical procedures. In addition, the fact that specimens are being removed 
from the participants (creating the possibility of mislabeling) and the technical nature of labo-
ratory tests lead to several special strategies:

 Attention to labeling. When a participant’s blood specimen is mistakenly labeled with 
another individual’s name, it may be impossible to correct or even discover the error later. 
The only solution is prevention, avoiding mislabeling and transposition errors by care-
fully checking the participant’s name and number when labeling each specimen. Computer 
printouts of labels for blood tubes and records speed the process of labeling and avoid the 
mistakes that can occur when numbers are handwritten. A good procedure when transfer-
ring serum from one tube to another is to label the new tube in advance and hold the two 
tubes next to each other, reading one out loud while checking the other; this can also be 
automated with scannable bar codes.

 Blinding. The task of blinding the observer is easy when it comes to measurements on 
specimens, and it is always a good idea to label specimens so that the technician has no 
knowledge of the study group or the values of other key variables. Even for apparently ob-
jective procedures, like an automated blood glucose determination, this precaution reduces 
opportunities for bias and provides a stronger methods section when reporting the results. 
However, blinding laboratory staff means that there must be clear procedures for reporting 
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abnormal results to a member of the staff who is qualified to review the results and decide 
if the participant should be notified or other action should be taken. In clinical trials, there 
must also be strategies in place for (sometimes emergent) unblinding if laboratory measures 
indicate abnormalities that might be associated with the trial intervention and require im-
mediate action.

 Blinded duplicates, standard pools and consensus measures. When specimens or images 
are sent to a central laboratory for chemical analysis or interpretation, it may be desirable to 
send blinded duplicates—a second specimen from a random subset of participants given a 
separate and fictitious ID number—through the same system. This strategy gives a measure 
of the precision of the laboratory technique. Another approach for serum specimens that can 
be stored frozen is to prepare a pool of serum at the outset and periodically send aliquots 
through the system that are blindly labeled with fictitious ID numbers. Measurements car-
ried out on the serum pool at the outset, using the best available technique, establish its 
values; the pool is then used as a gold standard during the study, providing estimates of 
accuracy and precision. A third approach, for measurements that have inherent variability 
such as a Pap test or mammography readings, is to involve two independent, blinded read-
ers. If both agree within predefined limits, the result is established. Discordant results may 
be resolved by discussion and consensus, or the opinion of a third reader.

 Commercial laboratory contracts. In some studies, biologic measures made on blood, sera, 
cells, or tissue are made under contract to commercial laboratories. The lab must be ap-
propriately licensed and certified and a copy of these certifications should be on file in the 
study office. Commercial labs should provide data on the reproducibility of their measure-
ments, such as coefficients of variation, guarantee timely service and provide standardized 
procedures for handling coded specimens, notifying investigators of abnormal results, and 
transferring data to the main database.

Quality Control for Data Management

The investigator should set up and pretest the data management system before the study begins. 
This includes designing the forms for recording measurements; choosing computer hardware 
and software for data entry, editing and management; designing the data editing parameters for 
missing, out-of-range, and illogical entries; testing the data management system; and planning 
dummy tabulations to ensure that the appropriate variables are collected (Table 17.4).

TABLE 17.4  QUALITY CONTROL OF DATA MANAGEMENT:  
STEPS THAT PRECEDE THE STUDY
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 Missing data. Missing data can be disastrous if they affect a large proportion of the measure-
ments, and even a few missing values can sometimes bias the conclusions. A study of the 
long-term sequelae of an operation that has a delayed mortality rate of 5%, for example, 
could seriously underestimate this complication if 10% of the participants were lost to 
follow-up and if death were a common reason for losing them. Erroneous conclusions due 
to missing data can sometimes be corrected after the fact—in this case by an intense effort to 
track down the missing participants—but often the measurement cannot be replaced. There 
are statistical techniques for imputing missing values based on other information from 
baseline or other follow-up visits or from mean values among other participants. Although 
these techniques are useful, particularly for multivariate analysis in which the accumula-
tion of missing data across a number of predictor variables could otherwise lead to large 
proportions of participants unavailable for analysis, they do not guarantee conclusions free 
of nonresponse bias if there are substantial numbers of missing observations.

The only good solution is to design and carry out the study in ways that avoid missing 
data; for example, by having a member of the research team check forms for completeness 
before the participant leaves the clinic, designing electronic data entry interfaces that do 
not allow skipped entries, and designing the database so that missing data are immediately 
flagged for attention by study staff (Table 17.5). Missing clinical measurements should be 
addressed while the participant is still in the clinic when it is relatively easy to correct errors 
that are discovered.

 Inaccurate and imprecise data. This is an insidious problem that often remains undiscov-
ered, particularly when more than one person is involved in making the measurements. In 
the worst case, the investigator designs the study and leaves the collection of the data to his 
research assistants. When he returns to analyze the data, some of the measurements may be 
seriously biased by the consistent use of an inappropriate technique. This problem is par-
ticularly severe when the errors in the data cannot be detected after the fact. The investigator 
will assume that the variables mean what he intended them to mean, and, ignorant of the 
problem, may draw conclusions from his study that are wrong.

Staff training and certification, periodic performance reviews, and regular evaluation of 
differences in mean or range of data generated by different staff members can help identify 
or prevent these problems. Computerized editing plays an important role, using data entry 
and management systems programmed to flag or not to allow submission of forms with 
missing, inconsistent, and out-of-range values. A standardized procedure should be in place 
for changing original data on any data form. Generally this should be done as soon after 
data collection as possible, and with a process that includes marking through the original 
entry (not erasing it), signing and dating the change. Similar processes should be included in 

TABLE 17.5  QUALITY CONTROL OF DATA MANAGEMENT:  
STEPS DURING THE STUDY
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electronic data entry and editing systems. This provides an electronic “audit trail” to justify 
changes in data and prevent fraud.

Periodic tabulation and inspection of frequency distributions of important study variables 
at regular intervals allows the investigator to assess the completeness and quality of the data 
at a time when correction of past errors may still be possible (e.g., by contacting the partici-
pant by email or phone, or requesting that the participant return to the study offices), and 
when further errors in the remainder of the study can be prevented. A useful list of topics 
for quality control reports is provided in Appendix 17B.

 Fraudulent data. Clinical investigators who lead research teams have to keep in mind the 
possibility of an unscrupulous colleague or employee who chooses fabrication of study 
information as the easiest way to get the job done. Approaches to guarding against such 
a disastrous event include taking great care in choosing colleagues and staff, developing a 
strong relationship with them so that ethical behavior is explicitly understood and rigor-
ously followed by all, being alert to the possibility of fraud when data are examined, and 
making unscheduled checks of the primary source of the data to be sure that they are real.

Collaborative Multicenter Studies

Many research questions require larger numbers of participants than are available in a single 
center, and these are often addressed in collaborative studies carried out by research teams that 
work in several locations. Sometimes these are all in the same city or state, and a single inves-
tigator can oversee all the research teams. Often, however, collaborative studies are carried out 
by investigators in cities thousands of miles apart with separate funding, administrative, and 
regulatory structures.

Multicenter studies of this sort require special steps to ensure that all centers are using the 
same study procedures and producing comparable data that can be combined in the analysis 
of the results. A coordinating center establishes a communication network; coordinates the 
development of the operations manual, forms, and other standardized quality control aspects of 
the trial; trains staff at each center who will make the measurements; and oversees data manage-
ment, analysis, and publication. Collaborative studies generally use distributed electronic data 
entry systems connected through the Internet.

There is also a need for establishing a governance system with a steering committee made 
up of the PIs and representatives of the funding institution, and with various subcommittees. 
One subcommittee needs to be responsible for quality control issues, developing the standard-
ization procedures and the systems for training, certification, and performance review of study 
staff. These tend to be complicated and expensive, requiring centralized training for relevant 
staff from each center, site visits for performance review, and data audits by coordinating 
center staff and peers (Appendix  17B). Other subcommittees generally include groups that 
oversee recruitment and clinical activities, a group that reviews and approves publications and 
presentations, and one that considers proposed ancillary studies.

In a multicenter study, changes in operational definitions and other study methods often 
result from questions raised by a clinical center that are answered by the relevant study staff 
or committee and posted on the study website in a running list to make sure that everyone 
involved in the study is aware of the changes. If a significant number of changes accumulate, 
dated revised pages in the operations manual and other study documents should be prepared 
that include these changes. Small single-site studies can follow a simpler pattern, making notes 
about changes that are dated and retained in the operations manual.

A Final Thought

A common error in research is the tendency to collect too much data. The fact that the baseline 
period is the only chance to measure baseline variables leads to a desire to include everything 
that might conceivably be of interest, and there is a tendency to have more follow-up visits and 
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collect more data at them than is useful. Investigators tend to collect far more data than they 
will ever analyze or publish.

One problem with this approach is the time and costs required by measuring less important 
things; participants become tired and annoyed, and the quality of more important measure-
ments deteriorates. Another problem is the added size and complexity of the database, which 
makes quality control and data analysis more difficult. It is wise to question the need for 
every variable that will be collected and to eliminate many that are optional. Including a few 
intentional redundancies can improve the validity of important variables, but parsimony is the 
general rule.

■  SUMMARY

 1. Successful study implementation begins with assembling resources including space, staff, 
and funding for the study and its start-up, all of which require strong leadership by the PI.

 2. Study start up requires managing the budget, obtaining IRB approval and finalizing the 
protocol and operations manual through a process of pretesting the appropriateness 
and feasibility of plans for recruitment, interventions, predictor and outcome variable 
measurements, forms, and the database; the goal is to minimize the need for subsequent 
protocol revisions once data collection has begun.

 3. Minor protocol revisions after the study has begun, such as adding an item to a question-
naire or modifying an operational definition, are relatively easily accomplished, though 
IRB approval may sometimes be required and data analysis may be affected.

 4. Major protocol revisions after the study has begun, such as a change in the nature of the 
intervention, inclusion criteria, or primary outcome, have major implications and should 
be undertaken reluctantly and with the approval of key bodies such as the DSMB, IRB, and 
funding institution.

 5. There is a need for closeout precedures to properly inform participants of study findings 
and to manage transition of and implications for their care.

 6. Quality control during the study should be assured with a systematic approach under the 
supervision of a quality control coordinator, following the principles of Good Clinical 
Practice (GCP), and including:
a. Standard operating procedures (SOPs) with an operations manual; staff training, cer-

tification, and performance review; periodic reports (on recruitment, visit adherence, 
and measurements); and regular team meetings.

b. Quality control for laboratory procedures—blinding and systematically labeling speci-
mens taken from study participants, and using standard pools, blinded duplicates and 
consensus measures.

c. Quality control of data management—designing forms and electronic systems to enable 
oversight of the completeness, accuracy, and integrity of collecting, entering, editing, 
and analyzing the data.

 7. Collaborative multicenter studies create subcommittees and other distributed systems for 
managing the study and quality control.



APPENDIX 17A
Example of an Operations Manual 
Table of Contents1

Chapter 1. Study protocol
Chapter 2. Organization and policies

Participating units (clinical centers, laboratories, coordinating center, etc.) and the in-
vestigators and staff

Administration and governance (committees, funding agency, data and safety monitor-
ing, etc.)

Policy guidelines (publications and presentations, ancillary studies, conflict of interest, 
etc.)

Chapter 3. Recruitment
Eligibility and exclusion criteria
Sampling design
Recruitment approaches (publicity, referral contacts, screening, etc.)
Informed consent

Chapter 4. Clinic visits
Content of the baseline visit
Content and timing of follow-up visits
Follow-up procedures for nonresponders

Chapter 5. Randomization and blinding procedures
Chapter 6. Predictor variables

Measurement procedures
Intervention, including drug labeling, delivery, and handling procedures
Assessment of adherence

Chapter 7. Outcome variables
Assessment and adjudication of primary outcomes
Assessment and management of other outcomes and adverse events

Chapter 8. Quality control
Overview and responsibilities
Training in procedures
Certification of staff
Equipment maintenance
Peer review and site visits
Periodic reports

Chapter 9. Data management
Data collection and recording
Data entry
Editing, storage, and backup
Confidentiality

Chapter 10. Data analysis plans

1N.B. This is a model for a large multicenter trial. The manual of operations for a small study can be less elaborate.
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Chapter 11. Data and Safety Monitoring Guidelines
Appendices

Letters to participants, primary providers, and so on
Questionnaires, forms
Details on procedures, criteria, and so on
Recruitment materials (advertisements, fliers, letters, etc.)



APPENDIX 17B
Quality Control Tables and 
Checklists
 I. Tabulations for monitoring performance characteristics2

A. Clinic characteristics
1. Recruitment

a. Number of participants screened for enrollment; number excluded and tabulation 
of reasons for exclusion

b. Cumulative graph of number recruited compared with that required to achieve 
recruitment goal

2. Follow-up
a. Number of completed follow-up examinations for each expected visit; number 

seen within specified time frame
b. Measures of adherence to the study intervention, visits and measures
c. Number of dropouts and participants who cannot be located for follow-up

3. Data quantity and quality
a. Number of forms completed, number that generated edit messages, number of 

unanswered edit queries, time to resolution of queries
b. Number of forms missing, number or proportion of missing variables

4. Protocol adherence
a. Number of ineligible participants enrolled
b. Summary of data on pill counts and other adherence measures by treatment group

B. Data center characteristics
1. Number of forms received and number awaiting data entry
2. Cumulative list of coding and protocol changes
3. Timetable indicating completed and unfinished tasks

C. Central laboratory characteristics
1. Number of samples received and number analyzed
2. Number of samples inadequately identified, lost, or destroyed
3. Number of samples requiring reanalysis and tabulation of reasons
4. Mean and variance of blind duplicate differences, and secular trend analyses based on 

repeat determinations of known standards
D. Reading center characteristics

1. Number of records received and read
2. Number of records received that were improperly labeled or had other deficiencies 

(tabulate deficiencies)
3. Analyses of repeat readings as a check on reproducibility of readings and as a means 

of monitoring for time shifts in the reading process
 II. Site visit components

A. Site visit to clinical center
1. Private meeting of the site visitors with the PI
2. Meeting of the site visitors with members of the clinic staff
3. Inspection of examining and record storage facilities

2Tables should contain results for the entire study period, and, when appropriate, for the time period covered since 
production of the last report. Rates and comparisons among staff and participating units should be provided when 
appropriate.
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 4. Comparison of data contained on randomly selected data forms with those con-
tained in the computer data file

 5. Review of file of data forms and related records to assess completeness and security 
against loss or misuse

 6. Observation of clinic personnel carrying out specified procedures
 7. Check of operations manuals, forms, and other documents on file at the clinic to 

assess whether they are up-to-date
 8. Observation or verbal walk through of certain procedures (e.g., the series of exami-

nations needed to determine participant eligibility)
 9. Conversations with actual study participants during or after enrollment as a check 

on the informed consent process
10. Private conversations with key support personnel to assess their practices and phi-

losophy with regard to data collection
11. Private meeting with the PI concerning identified problems

B. Site visit to data center
 1. Review of methods for inventorying data received from clinics
 2. Review of methods for data management and verification
 3. Assessment of the adequacy of methods for filing and storing paper records received 

from clinics, including the security of the storage area and methods for protecting 
records against loss or unauthorized use

 4. Review of available computing resources
 5. Review of method of randomization and of safeguards to protect against break-

downs in the randomization process
 6. Review of data editing procedures and audit trails
 7. Review of computer data file structure and methods for maintaining the analysis 

database
 8. Review of programming methods both for data management and analysis, including 

an assessment of program documentation
 9. Comparison of information contained on original study forms with that in the com-

puter data file
10. Review of methods for generating analysis data files and related data reports
11. Review of methods for backing up the main data file
12. Review of master file of key study documents, such as handbooks, manuals, data 

forms, minutes of study committees, and so on, for completeness
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Most clinical research takes place in university medical centers or other large medical 
institutions. Such sites offer many advantages for conducting research, including the obvious 
one of having experienced researchers. An established culture, reputation, and infrastructure 
for research all facilitate the work of everyone from novice investigator to tenured professor. 
Success breeds more success, thus concentrating clinical research in centers of excellence. This 
chapter, in contrast, deals with research that takes place outside of such centers.

We define community research as research that takes place outside the usual medical cen-
ter setting and that is designed to meet the needs of the communities where it is conducted. 
International research, particularly in poor countries, can involve many of the same challenges 
of responding to local needs and establishing a research infrastructure where none existed 
before. Further, such research requires understanding of numerous political, bureaucratic, 
and cultural complexities that arise in international research. Community and international 
research both often involve collaboration between local investigators and colleagues from an 
established research center. Such collaborations are critical in solving longstanding or emerg-
ing global or local health problems, and they can be extraordinary opportunities for personal 
growth and mutual learning. However, these collaborations can be challenging because of 
physical distances separating the investigators, cultural differences involving the participants, 
political issues involving local and national institutions, and funding constraints at both the 
donor and recipient levels.

■  WHY COMMUNITY AND INTERNATIONAL RESEARCH?

Collaborative research is often the only way to address research questions that have to do with 
special settings, new and re-emerging diseases, or specific populations. Research in academic 
medical centers tends to focus on clinical or basic science priorities that may be quite different 
from local community needs, and,even more different from global health problems that affect 
large segments of the world’s population. These global problems require collective efforts for 
humanitarian reasons and because national, state, or local borders do not insulate communi-
ties from the effects of such problems. The “10/90 gap” in health research, in which 90% of 
the global burden of disease receives only 10% of global research investment (1), is ample 
 justification for more collaborative research that addresses the enormous health problems of 
low- and middle-income countries (LMICs). As such, there exists a need to bolster the research 
capacity in LMICs and communities through international and national collaboration. This 
includes careful attention to developing institutional review processes and human subjects’ 
protections. Furthermore, participation in the research process has benefits for a community 
and for researchers that go beyond the value of the information collected in a particular study. 
Lasting relationships, a sense of pride, and perhaps even economic development may result 
from community research that is done with care and concern for the public good.

Community and International 
Studies
Norman Hearst and Thomas Novotny
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Local Questions

Many research questions require answers available only through local research. National or 
state level data from central sources may not accurately reflect local disease burdens or the 
distribution of risk factors in the local community. Interventions, especially those designed to 
change behavior, may not have the same effect in different settings. For example, the public 
health effectiveness of condom promotion as an HIV/AIDS prevention strategy is quite differ-
ent in the United States than it is in Africa (2). Finding approaches that fit local needs requires 
local research methods (Table 18.1).

Biologic data on the pathophysiology of disease and the effectiveness of treatments are usu-
ally generalizable to a wide variety of populations and cultures. However, there may be racial, 
cultural, or genetic differences or differences based on regional disease etiology that require 
 local research. For example, the efficacy of antihypertensive drugs may be different in patients 
of African and European descent (3); the causative agents and patterns of antimicrobial sensi-
tivity for pneumonia are different in Bolivia and Boston; and the perception of health, health 
care, and illness can differ significantly across different communities (4).

Greater Generalizability

Community research is sometimes useful for producing results that are more generalizable. 
For example, patients with back pain who are seen at referral hospitals are very different from 
patients who present with back pain to primary care providers. Studies of the natural history of 
back pain or response to treatment at a tertiary care center therefore may be of limited use for 
clinical practice in the community.

Partly in response to this problem, several practice-based research networks have been 
organized in which physicians from community settings work together to study research ques-
tions of mutual interest (5). An example is the response to treatment of patients with carpal 
tunnel syndrome in primary care practices (6). Most patients improved with conservative 
therapy; few required referral to specialists or sophisticated diagnostic tests. Previous studies 
had recommended early surgical intervention for carpal tunnel syndrome based on studies of 
patients treated at a major referral center.

Issues of generalizability are also important in international research. Research findings 
from one country will not always apply in another. But while results generalize best to where 
the research was done, they may also be relevant for migrant populations that originated in 
the country of the research. Such displaced populations are of ever increasing importance in a 
globalized world that had 214 million international migrants as of 2010 (7). Globalization now 
necessitates a broader perspective on disease risk and also on collaborative research approaches 
to address diseases that cross national borders so easily.

Building Local Capacity

Clinical research should not be the exclusive property of academic medical centers. The priori-
ties of researchers in these sites are bound to reflect the priorities of funders, the issues they 

TABLE 18.1  EXAMPLES OF RESEARCH QUESTIONS REQUIRING LOCAL 
RESEARCH
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encounter in their daily practice, and what they believe to be of general scientific or  economic 
importance. Conducting research in community and international settings ensures that 
 questions of local importance must be prioritized (8).

The value of community participation in research goes beyond the specific information 
collected in each study. Conducting research has a positive ripple effect by raising local 
scholarly standards and by encouraging creativity and independent thinking. Each project 
builds skills and confidence that allow local researchers to see themselves as participants 
in the scientific process, not just as consumers of knowledge produced elsewhere. This in 
turn encourages more research. Furthermore, participating in research can bring intellec-
tual and financial resources to a community and help to encourage local empowerment and 
self-sufficiency.

■  COMMUNITY RESEARCH

In theory, starting up community research is the same process as for any other research en-
deavor. The general approach outlined in this book applies just as well in a small town in rural 
America or Nepal as it does in San Francisco or London. In practice, the greatest challenge is 
finding experienced colleagues or mentors with whom to interact and learn. Such help may not 
be available locally. This often leads to an important early decision for would-be community or 
international investigators: to work alone or in collaboration with more established investiga-
tors based elsewhere.

Starting on Your Own

Getting started in research without the help of a more experienced colleague is like teaching 
oneself how to swim: It is not impossible, but it is difficult and sometimes fraught with un-
foreseen dangers. Often, however, it is the only option. Following a few rules may make the 
process easier.

 Start simple. It is seldom a good idea to begin research in a community with a randomized 
controlled trial. Small pilot descriptive studies producing useful local data may make more 
sense—it is better to achieve a small success than a large failure. More ambitious projects can 
be saved for later and can draw on the pilot data you generated previously. For example, a 
descriptive study of condom use among young men in Uganda conducted by a novice local 
researcher served as a first step toward a larger intervention trial on HIV/AIDS prevention in 
that community (9).

 Think about the local comparative advantages. What questions can an investigator answer 
in his local setting better than anywhere else? This usually means leaving the development of 
new laboratory techniques and treatments to academic medical centers and pharmaceutical 
research organizations. It is often best for a young investigator to focus on health problems 
or populations that are unusual elsewhere, but common in the local community.

 Network. As discussed in Chapter 2, networking is important for any investigator. A new 
investigator should make whatever contact he can with scientists elsewhere who are address-
ing similar research questions. If formal collaborators are not available, it may at least be 
 possible to find someone to give feedback on a draft of a research protocol, a questionnaire, 
or a manuscript through e-mail and telephone. Attending a scientific conference in one’s 
field of interest is a good way to make such contacts and referring to a senior colleague’s 
work can be a good way to initiate such a contact.

Collaborative Research

Because it is difficult to get started on one’s own, a good way to begin research in a community 
is often in collaboration with more experienced researchers based elsewhere, especially if those 
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investigators have established trust, contacts, and methodologies in the target country. There 
are two main models for such collaboration: top-down and bottom-up (10).

The top-down model refers to studies that originate in an academic center and involve com-
munity investigators in the recruitment of patients and the conduct of the study. This occurs, 
for example, in large multicenter trials that invite hospitals and clinics to enroll patients into an 
established research protocol. This approach has the advantages that come with built-in senior 
collaborators who are usually responsible for designing the study and obtaining the necessary 
resources and clearances to carry it out.

In the bottom-up model, established investigators provide guidance and technical assistance 
to local investigators and communities developing their own research agendas. Some academic 
medical centers offer training programs for community investigators or international research-
ers. If one can gain access to such a program or establish an equivalent relationship, this can 
be ideal for building local research capacity, especially when such a partnership is sustained on 
a long-term basis. However, establishing an institutional relationship of this type is not easy. 
Most funding agencies are more interested in sponsoring specific research projects than in de-
voting resources to building local research capacity and collaborations. Even when funding to 
cover training and travel expenses is available, experienced investigators may prefer to spend 
their time conducting their own research rather than helping others get started. Still, the value 
of collaborative community-based participatory research (CBPR), in which the community par-
ticipates fully in all aspects of the research, cannot be overemphasized in terms of satisfaction, 
importance, and relevance to the local community (11).

Community researchers need to take advantage of the potential incentives they can offer to 
more established investigators with whom they would like to work. In the top-down model, the 
most important thing they can offer is access to subjects. In the bottom-up model, the incen-
tives can include the intrinsic scientific merit of a study in the community, co-authorship of 
resulting publications, and the satisfaction of building a collaborative relationship and helping 
a community develop research capacity.

To start a new research program, the ideal option may be to form a long-term partnership 
with an established research institution. Memoranda of Understanding (MOUs) can be signed 
by collaborating agencies so that written evidence of communication and agreements can be 
provided to potential funders. Having this collaboration established in advance can save time 
and frustration. Collaboration under such a structure can include a combination of top-down 
and bottom-up projects. It must be remembered, however, that good research collaboration 
is fundamentally between individual investigators. An academic institution may provide the 
climate, structure, and resources that support individual collaboration, but the individuals 
themselves must provide the cultural sensitivity, mutual respect, hard work, and long-term 
commitment to make it work.

■  INTERNATIONAL RESEARCH

International research often involves collaboration between groups with different levels of ex-
perience and resources and thus is subject to many of the same issues as community research. 
However, international research brings additional challenges. The issues described in the fol-
lowing section are especially important.

Barriers of Distance, Language, and Culture

Without a thorough understanding of a community’s cultural perspectives, many researchers 
find that even the best laid plans fail despite careful planning and advanced technologies. To 
avoid failure, researchers must understand the cultural perceptions of disease in the communi-
ties where they intend to work and develop culturally sound approaches to their collaborative 
research. Because of the distances involved, opportunities for face-to-face communication 
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between international colleagues are limited. If at all possible, colleagues on both sides should 
make at least one site visit to each other’s institutions. International conferences may some-
times provide additional opportunities to meet, but such opportunities are likely to be rare. 
Fortunately, e-mail, the Internet, and Skype have made international communication easier, 
faster, and less expensive. Good communication is possible at any distance, but it requires 
effort on both sides. The most modern methods of communication are of no help if they are 
not used regularly. Lack of frequent communication and prompt response to queries made on 
either side is a sign that a long-distance collaboration may be in trouble.

Language differences are often superimposed on the communication barriers caused by 
distance. If the first language spoken by investigators at all sites is not the same, it is important 
that there be a language that everyone can use (usually that language is English). Expecting that 
all interactions are to be in English, however, places investigators in many countries at a disad-
vantage. Foreign investigators who do not speak the local language are unlikely to have more 
than a superficial understanding of the country’s culture and cannot participate fully in many 
key aspects of a study, including questionnaire development and validation. They will not be 
able to conduct conversations with study subjects and research assistants. This communication 
is especially important in studies with behavioral components.

Even when linguistic barriers are overcome, cultural differences can cause serious misun-
derstandings between investigators and their subjects or among investigators. Literal, word-for-
word translations of questionnaires may have different meanings, be culturally inappropriate, 
or omit key local factors. Institutional norms may be different. For example, in some settings, 
a foreign collaborator’s department chief who had little direct involvement in a study might 
expect to be first author of the resulting publication. Such issues should be anticipated and 
clearly laid out in advance, as part of the process of institutional development for the project. 
Patience, goodwill, and flexibility on all sides can usually surmount problems of this type. For 
larger projects, it may be advisable to include an anthropologist, ethicist, or other expert on 
cultural issues as part of the research team.

Frequent, clear, and open communications and prompt clarification of any questions or 
confusion are essential. When dealing with cultural and language differences, it is better to be 
repetitive and risk stating the obvious than to make incorrect assumptions about what the other 
person thinks or is saying. Written affiliation agreements that spell out mutual responsibilities 
and obligations may help clarify issues such as data ownership, authorship order, publication 
rights, and decisions regarding the framing of research results. Development of such agree-
ments requires the personal and careful attention of collaborators from both sides.

Issues of Funding

Because of economic inequities, collaborations between institutions in rich and poor countries 
are generally only possible with funding originating from the rich country or, less often, from 
other rich countries or international organizations. An increasing number of large donor orga-
nizations are active in global health research, but their support is often limited to a very specific 
research agenda with strict requirements for measurable results. Much bilateral donor funding 
tends to flow through the institution in the rich country, reinforcing the subordinate position 
of institutions in LMICs. As in any situation with an unequal balance of power, this creates 
ethical challenges. When investigators from rich countries control the purse strings, it is not 
uncommon for them to treat their counterparts in poor countries more like employees than col-
leagues. International donors and funding agencies need to be especially careful to discourage 
this and instead to promote true joint governance of collaborative activities (8).

Different practices of financial management are another potential area for conflict among 
research consortium members. Institutions in rich countries may attempt to impose accounting 
standards that are difficult or impossible to meet locally. Institutions in LMICs may load bud-
gets with computers and other equipment that they expect to keep after the study is over. While 
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this is understandable given their needs and lack of alternative funding sources, it is important 
that any subsidies beyond the actual cost of conducting the research be clearly negotiated and 
that accounting practices be put in place to meet the needs of the funding agencies. Conversely, 
high institutional overheads and investigator salaries often create an inequitable situation with 
the majority of funding for collaborative research staying in the donor country even when most 
of the work is done in the partner country.

Donor country institutions and donors should pay particular attention to building the re-
search administration capacity of local partners. This could mean providing administrative and 
budgetary training or using consultants in the field to help with local administrative tasks. A 
requirement for international partners is to obtain a D-U-N-S Number, a unique nine digit iden-
tification number for each physical location of institutions applying for contracts or grants from 
the US Federal Government (http://fedgov.dnb.com/webform). Efforts invested in developing 
administrative capacity may pay off in improved responsiveness to deadlines, more efficient 
reporting, avoiding unnecessary conflict, and building a solid infrastructure for future research.

Ethical Issues

International research raises ethical issues that must be faced squarely. All the general ethical 
issues for research apply (Chapter 14). Because international research may present particular 
risks for violations of human subject protections, it requires additional considerations and 
safeguards.

What, for example, is the appropriate comparison group when testing new treatments in an 
LMIC where conventional treatment is unavailable? Placebo controls are unethical when other 
effective treatments are the standard of care elsewhere. But what is the “standard of care” in 
a community where most people are too poor to afford proven treatments that may be avail-
able in many countries? On the one hand, it may not be possible for investigators to provide 
state-of-the-art treatment to every participant in a study. On the other hand, allowing placebo 
controls simply because of inadequate access to drugs and medical care is unethical and has 
been challenged by many intergovernmental groups and patient advocacy organizations. For 
example, studies of less expensive oral antiretroviral treatments to prevent mother-to-child 
transmission of HIV done in countries where most women did not have access to a proven 
existing treatment regimen demonstrate some of these issues (12, 13).

A related issue has to do with testing treatments that are unlikely to be economically ac-
cessible to the population of the host country. Are such studies ethical, even if they follow all 
the usual rules? For example, would it be ethical to study a new drug for Type II diabetes in 
a LMIC where this drug would probably be unaffordable? These questions do not have simple 
answers. Established international conventions governing ethical research, such as the Decla-
ration of Helsinki, have been challenged and are subject to multiple interpretations (14, 15).

A key test may be to consider why the study is being conducted in an LMIC in the first place. 
If the true goal is to gather information to help the people of that country, this should weigh in 
the study’s favor and it should be designed accordingly. Ideally, the goal of research should be 
sustainable change and added value for the host country (16). If, on the other hand, the goal is 
expediency or to avoid obstacles to doing a study in a rich country, the study should be subject 
to all ethical requirements that would apply in the sponsoring country, including the important 
requirement of distributive justice (see Chapter 14).

For this and other reasons, studies in poor countries that are directed or funded from else-
where should be approved by ethical review boards in both countries. But while such approval 
is necessary, it does not guarantee that a study is ethical. Systems for ethical review of research in 
many poor countries are weak or nonexistent and can sometimes be manipulated by local inves-
tigators or politicians. Conversely, review boards in rich countries are sometimes ignorant of or 
insensitive to the special issues involved in international research. Official approval does not re-
move the final responsibility for the ethical conduct of research from the investigators themselves.

http://fedgov.dnb.com/webform
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Another important ethical concern is the treatment of collaborators from partner LMICs. 
Several issues must be agreed upon in advance. Who owns the data that will be generated? 
Who needs whose permission to conduct and publish analyses? Will local investigators get the 
support they need to prepare manuscripts for international publication without having to pay 
for this by giving up first authorship? How long a commitment is being made on both sides? A 
large trial in several poor countries of voluntary counseling and testing to prevent HIV infection 
abruptly dropped its collaborating site in Indonesia (17). According to the investigators, this 
was because the outcome variable of interest turned out to be less common at that site than 
projected in the study’s power calculations. Even though this decision made practical sense, it 
was perceived by the Indonesians as a breach of faith.

Other ethical issues may have to do with local economic and political realities. For exam-
ple, a planned clinical trial of pre-exposure HIV prophylaxis with tenofovir for commercial sex 
workers was cancelled even though it had been cleared by multi-national ethical review boards 
(18). The intended study subjects were concerned that they might end up with no source of 
medical care for problems related to HIV infection or drug effects and were not willing to 
participate without guarantees of lifetime health insurance. The prime minister of the country 
intervened to stop the trial.

Finally, an explicit goal of all international collaboration should be to increase local re-
search capacity. What skills and equipment will the project leave behind when completed? 
What training activities will take place for project staff? Will local researchers participate in 
international conferences? Will this be only for high-level local investigators who already have 
many such opportunities, or will junior colleagues have a chance as well? Will the local re-
searchers be true collaborators and principal authors of publications, or are they simply being 
hired to collect data? Scientists in poor countries should ask and expect clear answers to these 
questions. As summarized in Table 18.2, good communication and long-term commitment are 
recurring themes in successful international collaborative research.

The World Health Organization recently published a set of case studies dealing with ethical 
issues in global health research (19) to help investigators, ethics review committee members, 
health authorities, and others to play their respective roles in the ethical conduct of research. 

TABLE 18.2  STRATEGIES TO IMPROVE INTERNATIONAL COLLABORATIVE 
RESEARCH
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Much can be learned from the mistakes and successes of others, but with goodwill on the part 
of funders, donor-country partners, and officials on both sides of the research partnerships, 
ethical principles can be assured in international research and capacity for such research 
strengthened globally.

Risks and Frustrations

Researchers from rich countries who contemplate becoming involved in international research 
need to start with a realistic appreciation of the difficulties and risks involved. Launching 
such work is usually a long, slow process. Bureaucratic obstacles are common on both ends. 
In countries that lack infrastructure and political stability, years of work can be vulnerable to 
major disruption from natural or manmade catastrophes. In extreme cases, these situations can 
threaten the safety of project staff or investigators. For example, important collaborative HIV/
AIDS research programs that had been built over many years were completely destroyed by civil 
wars in Rwanda and the Congo. Less catastrophic and more common challenges are the daily 
hardships and health risks that expatriate researchers may face, ranging from unsafe water and 
malaria to smog, common crime, and traffic accidents.

Another frustration for researchers in LMICs is the difficulty in applying their findings. 
Even when new strategies for preventing or treating disease can be successfully developed and 
proven to be effective, lack of political will and resources often thwarts their widespread appli-
cation in host countries. Researchers need to be realistic in their expectations, gear their work 
toward investigating strategies that would be feasible to implement if found effective, and be 
prepared to act as advocates for improving the health of the populations they study.

The Rewards

Despite the difficulties, the need for more health research in many parts of the world is over-
whelming. By participating in international research, an investigator in a donor country can 
sometimes have a far greater and more immediate impact on public health than would be pos-
sible by staying within the walls of academia. This impact comes not only from the research 
itself but also from what is sometimes called global health diplomacy. In fact, health is now 
seen as a major driving force for foreign policy priorities (20). Health diplomacy may be prac-
ticed through collaborative research on global health challenges such as HIV/AIDS, malaria, TB, 
maternal and child health, and health systems strengthening. Health and politics have always 
been intertwined, but in a globalized world, there is a growing need for collaborative actions 
to address major trans-border health issues; international research is part of this global effort. 
The chance to have meaningful involvement and make a real contribution to global health is 
a privilege that can enrich careers and our personal lives. All stand to gain through increased 
collaboration and expanded research opportunities.

■  SUMMARY

 1. Community and international research is necessary to discover regional differences in 
such things as the epidemiology of a disease, and the cultural and other local factors that 
determine which interventions will be effective.

 2. Local participation in clinical research can have secondary benefits to the region such as 
enhanced levels of scholarship and self-sufficiency.

 3. Although the theoretical and ethical issues involved in community and international re-
search are broadly applicable, practical issues such as acquiring funding and mentoring are 
more difficult in a community or international setting; tips for success include starting 
small, thinking of local advantages, and networking.

 4. Collaboration between academic medical centers and community researchers can fol-
low a top-down model (community investigators conduct studies that originate from the 
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academic center) or a bottom-up model (investigators from the academic center help com-
munity investigators conduct research that they themselves originate).

 5. International research involves many of the same issues as community research with ad-
ditional challenges, particularly in low- and middle-income countries (LMICs), that are 
related to communication and language, cultural differences, funding, unequal power 
structures, and financial and administrative practices.

 6. International research has its own set of ethical issues, including testing treatments that 
may be unaffordable in the LMICs, use of placebos in vulnerable populations, and the 
status and treatment of collaborators.

 7. Overcoming the challenges in international research can bring the rewards of helping 
people in need, of being part of a larger global health community, and of enriching one’s 
cultural experiences.
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The protocol is the detailed written plan of the study. Writing the protocol forces the inves-
tigator to organize, clarify, and refine all the elements of the study, and this enhances the scien-
tific rigor and the efficiency of the project. Even if the investigator does not require funding for 
a study, a protocol is necessary for guiding the work and for obtaining ethical approval from the 
institutional review board (IRB). A proposal is a document written for the purpose of obtaining 
funds from granting agencies. It includes descriptions of the study’s aims, significance, research 
approach, human subjects concerns, and the budget and other administrative and supporting 
information that is required by the specific agency.

This chapter will describe how to write a proposal that will get funded. It focuses on original re-
search proposals using the format suggested by the National Institutes of Health (NIH), but propos-
als to most other funding agencies (such as the Department of Veterans Affairs, Centers for Disease 
Control, Agency for Healthcare Research and Quality, and private foundations) generally require 
a similar format. Excellent advice on writing an application, preparing budgets, and submitting 
proposals is available on the NIH website (http://grants.nih.gov/grants/writing_application.htm).

■  WRITING PROPOSALS

The task of preparing a proposal generally requires several months of organizing, writing, and 
revising. The following steps can help the project get off to a good start.

 Decide where the proposal will be submitted. Every funding agency has its own unique areas 
of interests, processes, and requirements for proposals. Therefore, the investigator should start 
by deciding where the proposal will be submitted, determining the limit on amounts of fund-
ing, and obtaining specific guidelines about how to craft the proposal and deadlines for that 
particular agency. The NIH is a good place to start, at http://grants.nih.gov/grants/oer.htm. Areas 
of interest can be identified through the websites of individual institutes that describe their 
priorities. Additional information about current areas of interest can be obtained by  talking 
with scientific administrators at the NIH Institutes, whose contact information and areas of 
responsibility are listed on NIH Funding Opportunity Announcements and institute websites.

 Organize a team and designate a leader. Most proposals are written by a team of several 
people who will eventually carry out the study. This team may be small (just the investiga-
tor and his mentor) or large (including collaborators, a biostatistician, a fiscal administrator, 
research assistants, and support staff). It is important that this team include or have access 
to the main expertise needed for designing the study.

One member of the team must assume the responsibility for leading the effort. Generally 
this individual is the principal investigator (PI), who will have the ultimate authority and 
accountability for the study. The PI must exert steady leadership during proposal develop-
ment, delegating responsibilities for writing and other tasks, setting deadlines, conducting 
periodic meetings of the team, ensuring that all necessary tasks are completed on time, and 
personally taking charge of the quality of the proposal.

Writing a Proposal for  
Funding Research
Steven R. Cummings, Deborah G. Grady, and Stephen B. Hulley

19C H A P T E R
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The PI is often an experienced scientist whose knowledge and wisdom are useful for 
design decisions and whose track record with previous studies increases the likelihood of a 
successful study and, therefore, of funding. That said, the NIH encourages new  investigators 
to apply for grants as PIs, has special funding opportunities for them, and often gives prefer-
ence to funding their proposals (http://grants.nih.gov/grants/new_investigators/). The NIH 
definition of “new investigator” is a scientist who has not yet been the PI of an NIH research 
grant. But first-time PIs are most likely to be funded if they already have some experience 
carrying out research—under the guidance of a senior scientist and with funding provided 
by that individual, by a career development award, or by small institutional or foundation 
grants. A track record in publishing, including some first authorships, is essential to provide 
evidence that the new investigator has the potential to be a successful independent scientist, 
and is prepared and able to lead the research.

A first-time PI should include co-investigators on the grant application who have a track 
record of successful research in the area of interest to provide guidance about the conduct of 
the study and to improve the chances of a favorable review. Sometimes this can be accom-
plished by the multiple-PI mechanism; NIH allows more than one PI on proposals if the PIs 
bring different, but complementary expertise and their distinct roles and responsibilities are 
clearly defined (http://grants.nih.gov/grants/multi_pi/overview.htm).

 Follow the guidelines of the funding agency. All funding sources provide written guidelines 
that the investigator must carefully study before starting to write the proposal. This informa-
tion includes the types of research that will be funded and detailed instructions for organiz-
ing the proposal, page limits, the amount of money that can be requested, the timeline, and 
elements that must be included in the proposal.

However, these guidelines do not contain all the important information that the investi-
gator needs to know about the operations and preferences of the funding agencies. Early in 
the development of the proposal it is a good idea to discuss the plan with an individual at 
the agency who can clarify what the agency prefers (such as the scope and detail required 
in the proposal) and comment on whether the agency is interested in the planned research 
area. The NIH, other federal agencies and private foundations have scientific administrators 
(“project officers”) whose job is to help investigators design their proposals to be more 
responsive to the agency’s funding priorities. It can be very helpful to contact the project 
officer responsible for the relevant research area by e-mail or telephone to clarify the agency 
guidelines, interests, and review procedures. Subsequently, meeting with the project officer 
at a scientific conference that happens to be convenient or while traveling near the agency 
headquarters is a good way to establish a working relationship that promotes fundable 
proposals.

It is useful to make a checklist of the details that are required, and to review the checklist 
repeatedly before submitting the proposal. Rejection of an otherwise excellent proposal for 
lack of adherence to specified details is a frustrating and avoidable experience. University 
grant managers generally have checklists that they review before submission of a proposal.

 Establish a timetable and meet periodically. A schedule for completing the writing tasks 
keeps gentle pressure on team members to meet their obligations on time. In addition to ad-
dressing the scientific components specified by the funding agency, the timetable should take 
into account the administrative requirements of the institution where the research will take 
place. Universities often require a time-consuming review of the budget and subcontracts 
before a proposal can be submitted to the funding agency, so the real deadline to complete a 
proposal may be several days or even weeks before the agency deadline. Leaving these details 
to the end can precipitate a last-minute crisis that damages an otherwise well-done proposal.

A timetable generally works best if it specifies deadlines for written products and if each 
individual participates in setting his own assignments. The timetable should be reviewed 
at periodic meetings or conference calls of the writing team to check that the tasks are on 
schedule and the deadlines are still realistic.

http://grants.nih.gov/grants/new_investigators/
http://grants.nih.gov/grants/multi_pi/overview.htm
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 Find model proposals. It is extremely helpful to borrow recent successful proposals to the 
agency from which funding is being sought. Successful applications illustrate in a concrete way 
the format and content of a good proposal. The investigator can find inspiration for new ideas 
from the model and design and write a proposal that is clearer, more logical, and more persua-
sive. It is also a good idea to borrow examples of written criticisms that have been provided by 
the agency for previous successful or unsuccessful proposals. This will illustrate the key points 
that are important to the scientists who will be reviewing the proposal. These examples can often 
be obtained from colleagues or the Office of Sponsored Research at the investigator’s institution.

 Work from an outline. Begin by setting out the proposal in outline form (Table 19.1). This 
provides a starting point for writing and is useful for organizing the tasks that need to be done. 

TABLE 19.1  MAIN ELEMENTS OF A PROPOSAL, BASED ON THE NIH MODEL

Title

Project summary or abstract

Administrative parts

Research strategy

Innovation

Approach

Overview

Study subjects

Selection criteria

Randomization

Blinding

Measurements

Outcome variables

Statistics

Approach to statistical analyses

Hypotheses, sample size, and power

Data management and quality control

Timetable and organizational chart

Limitations and alternative approaches

Human subjects

Appendices and collaborative agreements
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If several people will be working on the grant, the outline helps in assigning responsibilities 
for writing parts of the proposal. One of the most common road-blocks to creating an outline 
is the feeling that an entire research plan must be worked out before starting to write the first 
sentence. The investigator should put this notion aside and let his thoughts flow onto paper, 
creating the raw material for editing, refining, and getting specific advice from colleagues.

 Review and revise repeatedly. Writing a proposal is an iterative process; there are usually 
many versions, each reflecting new ideas, advice, and additional data. Beginning early in the 
process of writing the proposal, drafts should be critically reviewed by colleagues who are 
familiar with the subject matter and the funding agency. Particular attention should go to the 
significance and innovativeness of the research, the validity of the design and methods, and 
the clarity of the writing. It is better to have sharp and detailed criticism before the proposal 
is submitted than to have the project rejected because of failure to anticipate and address 
problems. When the proposal is nearly ready for submission, the final step is to review it 
carefully for internal consistency; format; adherence to agency guidelines; and formatting, 
grammatical, and typographical errors. Sloppy writing implies sloppy work and incompetent 
leadership, and significantly detracts from otherwise good ideas.

■  ELEMENTS OF A PROPOSAL FOR A MAJOR GRANT

The elements of a proposal for a major research grant such as an NIH R01 are set out in 
Table 19.1. Applications for other types of NIH grants and contracts, and from other funding 
institutions, may require less information or a different format, and the investigator should pay 
careful attention to the guidelines of the agency that will receive the proposal.

The Beginning

The title should be descriptive and concise. It provides the first impression and a lasting 
 reminder of the overall research goal and design of the study. For example, this title - “A random-
ized trial of MRI-guided high frequency ultrasound vs. sham ultrasound for treating symptomatic 
fibroids.” - succinctly summarizes the research question and study design. Avoid unnecessary 
and empty phrases like “A study to determine the. . . .”

The project summary or abstract is a concise summary of the protocol that should begin 
with the research aims and rationale, then set out the design and methods, and conclude with 
a statement of the impact of potential findings of the study. The abstract should be informative 
to persons working in the same or related fields, and understandable to a scientifically literate 
lay reader. Most agencies require that the abstract be kept within a limited number of words, 
so it is best to use efficient and descriptive terms. The abstract should go through enough re-
visions to ensure that it is first rate. This will be the only page read by some reviewers, and a 
convenient reminder of the specifics of the proposal for everyone else. It must therefore stand 
on its own, incorporate all the main features of the proposed study, and persuasively describe 
the strengths and potential impacts.

The Administrative Parts

Almost all agencies require an administrative section that includes a budget and a description 
of the qualifications of personnel, the resources of the investigator’s institution, and access to 
equipment, space, and expertise.

The budget section is generally organized according to guidelines from the funding insti-
tution. The NIH, for example, has a prescribed format that requires a detailed budget for the 
first 12-month period and a summary budget for the entire proposed project period (usually 
2–5 years). The detailed 12-month budget includes the following categories of expenses: per-
sonnel (including names and positions of all persons involved in the project, the percent of time 
each will devote to the project, and the dollar amounts of salary and fringe benefits for each 
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individual); consultant costs; equipment; supplies; travel; patient care costs; alterations and 
renovations; consortium/contractual costs; and other expenses (e.g., the costs of telephones, 
mail, conference calls, copying, illustration, publication, books, fee-for-service contracts, etc.).

The budget should not be left until the last minute. Many elements require time (e.g., to get 
good estimates of the cost of space, equipment, and personnel). Universities generally employ 
knowledgeable administrators whose job is to help investigators prepare budgets and the other 
administrative parts of a proposal. The best approach is to notify this administrator as soon as 
possible about the plan to submit a proposal, and schedule regular meetings or calls with him 
to review progress and the timeline for finishing the administrative sections. An administrator 
can begin working as soon as the outline of the proposal is formulated, recommending the 
amounts for budget items and helping to ensure that the investigator does not overlook impor-
tant expenses. Institutions have regulations that must be followed and deadlines to meet, and 
an experienced administrator can help the investigator anticipate his institution’s rules, pitfalls, 
and potential delays. The administrator can also be very helpful in drafting the text of the sec-
tions on budget justification and resources, and in collecting the biosketches, appendices, and 
other supporting materials for the proposal.

The need for the amounts requested for each item of the budget must be fully explained in a 
budget justification. Salaries will generally comprise most of the overall cost of a typical clinical 
research project, so it is important to document the need and specific responsibilities for each 
person to justify the requested percent effort. Complete but concise job descriptions for the 
investigators and other members of the research team should leave no doubt in the reviewers’ 
minds that the estimated effort of each individual is essential to the success of the project.

Reviewers are often concerned about the percentages of time committed by key members of 
the research team. Occasionally, proposals may be criticized because key personnel have only a 
very small commitment of time listed in the budget and a large number of other commitments 
implying that they may not be able to devote the necessary energy to the proposed study. More 
often, the reviewers may balk at percentages that are inflated beyond the requirements of the 
job description.

Even the best-planned budgets will change as the needs of the study change or there are 
unexpected expenses and savings. In general, once the grant is awarded the investigator is al-
lowed to spend money in different ways from those specified in the budget, provided that the 
changes are modest and the expenditures are related to the aims of the study. When the investi-
gator wants to move money across categories or to make a substantial change (up or down) in 
the effort of key investigators, he may need to get approval from the funding agency. Agencies 
generally approve reasonable requests for rebudgeting so long as the investigator is not asking 
for an increase in total funds.

The NIH requires a biosketch for all investigators and consultants who will receive funding 
from the grant. Biosketches are four-page resumes that follow a specified format that includes a 
personal statement about how the investigator’s experience makes him well suited for conduct-
ing this study, and lists education and training, positions and employment, honors, a limited 
number of relevant publications, and relevant research grants and contracts.

The section of the proposal on resources available to the project may include computer 
and technical equipment, access to specialized imaging or measurement devices, office and 
laboratory space, and resources available to facilitate participant recruitment, data collection 
and management, and specimen storage. The resources section often draws on “boilerplate”— 
descriptions from previous proposals, or from material supplied by the investigator’s institu-
tion, center, or laboratory.

Specific Aims

The specific aims are statements of the research question(s) using concrete terms to specify 
the desired outcome. This section of an NIH proposal must be concise because it is limited to 
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a single page. And because this is the page that many reviewers pay most attention to, it should 
be written carefully and revised repeatedly as the proposal is developed.

A common pattern is to begin with two to three short paragraphs that summarize the back-
ground information: the research question and why it’s important, the studies that have been 
done and how they haven’t solved the problem, and the approach that is planned for answering 
the question in the proposed study. This is followed by a concise statement of the specific aims, 
expressed as tangible descriptive objectives and, whenever possible, as testable hypotheses.

The aims are presented in a logical sequence that the investigator tailors to the study he 
plans. He may begin with cross-sectional aims for the baseline period followed by aims related 
to follow-up findings. Or he may begin with aims that address pathophysiologic mechanisms 
and end with aims that address clinical or public health outcomes. A pattern that works 
 especially well for career development awards (termed “mixed methods research”) begins 
with qualitative aims that may use focus groups to design a key instrument or intervention, 
followed by quantitative aims with predictors, outcomes and hypothesis tests. Yet another pat-
tern is to start with the most important aim to highlight it; the sequence of aims often serves 
as an  outline for organizing later sections of the proposal, so this has the advantage of giving 
the primary aim first place in all other sections of the proposal, such as sample size and power.

The Specific Aims section often ends with a short final paragraph that concisely sums up 
the potential impact of the study findings on knowledge of health and disease, clinical practice, 
public health, or future research. The goal is to make a compelling case that will lead review 
committee members who were not primary or secondary reviewers (and who may only have 
read this one page in the proposal) to support an outstanding score.

Research Strategy

The current NIH format limits most types of proposals to 12 pages for presenting the research 
strategy, in three sections:

 The significance section, typically two to three pages, describes how the study findings 
would advance scientific understanding, address an important problem or a barrier to prog-
ress in the field, improve clinical practice or public health, or influence policy. This section 
can briefly state the magnitude of the problem, summarize what has already been accom-
plished, define problems with current knowledge, and show how the proposed study will 
advance the field.

 The innovations section, typically one to two pages, points out ways the proposed study 
differs from prior research on the topic. It can emphasize the potential to document new 
mechanisms of disease, new measurement methods, different or larger populations, new 
treatment or prevention methods, or new approaches to analyzing the data. The NIH guide-
lines focus on how the research will shift current research or clinical practice paradigms 
by using innovative concepts, methods, or interventions. That said, many funded clinical 
studies result in only incremental improvements and refinements in concept, methods, 
or interventions. Our advice is to describe the novel features of the research accurately, 
without overstating claims that the study will change paradigms or use wholly innovative 
methods.

 The approach section (formerly termed “methods”) is typically seven to nine pages long. It 
provides the details of study design and conduct, and receives close scrutiny from reviewers. 
NIH guidelines suggest that the approach section be organized by specific aims, and that it 
include the components and approximate sequence in Table  19.1. This section generally 
starts with a concise overview of the approach, sometimes accompanied by a schematic dia-
gram or table, to orient the reader (Table 19.2). The overview should clearly state the study 
design and give a brief description of the study participants, the main measurements, any 
intervention, length of follow-up, and main outcome(s).
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The approach section typically includes a brief rationale for the research supported by pre-
liminary data—previous research by the investigator and his team indicating that the proposed 
study will be successful. Emphasis should be placed on the importance of the previous work and 
on the reasons it should be continued or extended. Results of pilot studies that support the im-
portance of the research question and the feasibility of the study are important to many types of 
proposals, especially when the research team has limited previous experience with the proposed 
methods, when the question is novel, and when there may be doubts about the feasibility of the 
proposed procedures or recruitment of participants. This is an opportunity to show that the in-
vestigator and his team have the specific experience and expertise necessary to conduct the study.

Other specific components of the approach section have been discussed earlier. The study 
subjects section (Chapter 3) should clearly define and provide a rationale for inclusion and 
exclusion criteria and specify the sampling method. It is important to describe how the study 
participants will be recruited and to assure the reviewers that the investigators are capable of 
enrolling the desired number of study participants. Plans for optimizing adherence to the study 
intervention (if applicable) and study visits should be provided.

The approach section should include a description of important study procedures, such as 
randomization and blinding. Study measurements (Chapter 4) should clearly describe how 
predictor, outcome, and potential confounding variables will be measured and at what point in 
the study these measurements will be made, as well as how interventions will be applied, and 
how the main outcome will be ascertained and measured.

The statistics section usually begins with the plans for analysis, organized by specific aim. 
The plan can be set out in the logical sequence; for example, first the descriptive tabulations 
and then the approach to analyzing associations among variables. This is followed by a dis-
cussion of sample size and power (Chapters 5 and 6) that should begin with a statement of 
the null hypothesis for the aim that will determine the sample size for the study. Estimates of 
sample size and power rely on assumptions about the magnitude of associations that are likely 
to be detected, and the precision of the measurements that will be made. These assumptions 
must be justified by referencing published literature or preliminary work that supports these 
judgments. It is often useful to include a table or figure showing how variations in the effect 
size, power, or other assumptions influence the sample size to demonstrate that the investiga-
tor has made reasonable choices. Most NIH review panels attach considerable importance to 
the statistical section, so it is a good idea to involve a statistician in writing this component.

TABLE 19.2  STUDY TIMELINE FOR A RANDOMIZED TRIAL OF THE EFFECT OF 
TESTOSTERONE ADMINISTRATION ON RISK FACTORS FOR HEART DISEASE, 
PROSTATE CANCER, AND FRACTURES

SCREENING  
VISIT

RANDOMIZATI ON  
VISIT 3 MONTHS 6 MONTHS 12 MONTHS

Medical history X – – – X

Blood pressure X X X X X

Prostate examination X – – – X

X – – – X

Blood lipid levels – X X X X

– X – – X

Bone density – X – – X

– X X – X

Handgrip strength – X X X X

Adverse events – – X X X
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It is helpful to include a table that lists study visits or participant contacts, the timing of 
visits, and what procedures and measurements will occur at each visit. Such a table provides 
a concise overview of all study activities (Table 19.2). Descriptions of data management and 
quality control (Chapters  16 and 17) should address how the study data will be collected, 
stored and edited, along with plans for maximizing data quality and security.

The proposal must provide a realistic work plan and timetable, including dates when each 
major phase of the study will be started and completed (Figure 19.1). Similar timetables can be 
prepared for staffing patterns and other components of the project. For large studies, an organi-
zational chart describing the research team can indicate levels of authority and accountability, 
lines of reporting, and show how the team will function.

While not a required section, it can be helpful to include a discussion of the limitations 
of the proposed research and alternative approaches. Rather than ignore potential flaws, an 
investigator may decide to address them explicitly, discussing the advantages and disadvan-
tages of the various trade-offs in reaching the chosen plan. Pointing out important challenges 
and potential solutions can turn potential criticisms of the application into strengths. It is a 
mistake to overemphasize these problems, however, for this may lead a reviewer to focus dis-
proportionately on the weaker aspects of the proposal. The goal is to reassure the reviewer that 
the investigator has anticipated all of the important potential problems and has a realistic and 
thoughtful approach to dealing with them.

Final Components of a Major Proposal

The human subjects section is devoted to the ethical issues raised by the study, addressing 
issues of safety, privacy, and confidentiality. This section indicates the specific plans to inform 
potential participants of the risks and benefits, and to obtain their consent to participate 
 (Chapter 14). It also describes the inclusion of women, children, and participants from minor-
ity groups, as required of NIH proposals, and justifies exclusion of any of these groups.

The references send a message about the investigator’s familiarity with the field. They 
should be comprehensive but parsimonious and up-to-date—not an exhaustive and unselected 
list. Each reference should be cited accurately; errors in these citations or misinterpretation of 
the work will be viewed negatively by reviewers who are familiar with the field of research.

For some types of proposals, appendices can be useful for providing detailed technical and 
supporting material mentioned briefly in the text. (However, to avoid the use of appendices to 
circumvent page limits for proposals, NIH strictly limits their use.) Appendices may include 
data collection instruments (such as questionnaires) and clinical protocols, and up to three 
manuscripts and abstracts that have been accepted but not yet published. Primary and second-
ary reviewers are the only review committee members who receive the appendices. Therefore, 
everything important must be succinctly summarized in the main proposal.

■ FIGURE 19.1 A hypothetical timetable.

Year 1 Year 2 Year 3 Year 4 Year 5
Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2

Task

1. Preparation of
instruments

2. Recruitment of
subjects

3. Follow-up visits
and data collection

4. Cleaning data

5. Analysis and
writing
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The proposed use and value of each consultant should be described, accompanied by a 
signed letter of agreement from the individual and a copy of his biosketch. (Investigators who 
will receive salary support from the grant do not provide letters, because they are officially part 
of the proposal.) Other letters of support should also be included, such as those from persons 
who will provide access to equipment or resources. An explanation of the programmatic and 
administrative arrangements between the applicant organization and collaborating institutions 
and laboratories should be included, accompanied by letters of commitment from responsible 
officials addressed to the investigator.

■  CHARACTERISTICS OF GOOD PROPOSALS

A good proposal for research funding has several attributes. First is the scientific quality of the 
research strategy: It must be based on a good research question, use a design and approach that 
are rigorous and feasible, and have a research team with the experience, skill, and commitment 
to carry it out. Second is clarity of presentation; a proposal that is concise and engaging, well 
organized, thoughtfully written, attractively presented, and free of errors reassures the reader 
that the conduct of research is likely to be of similar high quality.

Reviewers are often overwhelmed by a large stack of proposals, so the merits of the project 
must stand out in a way that will not be missed even with a quick and cursory reading. A clear 
outline that follows the specific aims, short sections with meaningful subheadings, and the use of 
tables and figures to break up lengthy stretches of text can guide the reviewer’s understanding of 
the important features of the proposal. Current NIH guidelines recommend starting paragraphs 
with a topic sentence in bold type that makes the key point, allowing harried reviewers to under-
stand the essential elements of the proposal by quickly scanning topic sentences. It is important 
to consider the diverse points of view and expertise of the reviewers, including enough detail to 
convince an expert reviewer of the significance and sophistication of the proposed work while 
still engaging the larger number of reviewers unfamiliar with the area of investigation.

Most reviewers are put off by overstatement and other heavy-handed forms of grantsman-
ship. Proposals that exaggerate the importance of the project or overestimate what it can 
accomplish will generate skepticism. Writing with enthusiasm is good, but the investigator 
should be realistic about the limitations of the project. Reviewers are adept at identifying po-
tential problems in design or feasibility.

A final round of scientific review by skilled scientists who have not been involved in de-
veloping the proposal, at a point in time when substantial changes are still possible, can be 
extraordinarily helpful to the proposal as well as a rewarding collegial experience. It is also 
useful to have someone with excellent writing skills supplement word-processing spell- and 
grammar-check programs with advice on style and clarity.

■  FINDING SUPPORT FOR RESEARCH

Investigators should be alert to opportunities to conduct good research without formal proposals 
for funding. For example, a beginning researcher may personally analyze data sets that have been 
collected by others, or receive small amounts of staff time from a senior scientist or his department 
to conduct small studies. Conducting research without funding of formal proposals is quicker and 
simpler but has the disadvantage that the projects are necessarily limited in scope. Furthermore, 
academic institutions often base decisions about career advancement in part on a scientist’s track 
record of garnering funding for research.

There are four main cetegories of funds for medical research:

 The government (notably NIH, but also the Department of Veterans Affairs, Centers for Dis-
ease Control and Prevention [CDC], Agency for Healthcare Research and Quality [AHRQ], 
Patient Centered Outcomes Research Institute [PCORI], Department of Defense [DOD], and 
many other federal, state, and county agencies);
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 Foundations, professional societies such as the American Heart Association (AHA) and the 
American Cancer Society (ACS)), and individual donors;

 Corporations (notably pharmaceutical and device manufacturing companies); and
 Intramural resources (e.g., the investigator’s university).

Getting support from these sources is a complex and competitive process that favors inves-
tigators with experience and tenacity, and beginning investigators are well advised to find a 
mentor with these characteristics. In the following sections, we focus on several of the most 
important funding sources.

NIH Grants and Contracts

The NIH offers many types of grants and contracts. The “R” awards (R01 and smaller R03 and 
R21 awards) support research projects conceived by the investigator on a topic of his choosing 
or written in response to a publicized request by one of the institutes at NIH (see www.nimh.
nih.gov/research-funding/grants/research-grants-r.shtml). The “K” awards (K23, K01, K08, 
K24 and locally awarded K12 and KL2 awards) are an excellent resource that provide salary 
support for training and career development of junior investigators, as well as modest support 
for research (see www.grants.nih.gov/training/careerdevelopmentawards.htm/).

Institute-initiated proposals are designed to stimulate research in areas designated by NIH 
advisory committees, and take the form of either Requests for Proposals (RFPs) or Requests 
for Applications (RFAs). In response to an RFP, the investigator contracts to perform certain 
research activities determined by the NIH. Under an RFA, the investigator conducts research 
in a topic area defined by the NIH, with a specific research question and study plan he has 
proposed. RFPs use the contract mechanism to reimburse the investigator’s institution for the 
costs involved in achieving the planned objectives, and RFAs use the grant mechanism to sup-
port activities that are more open-ended.

After submitting a proposal, the application goes through a review process that includes 
an initial administrative review by NIH staff, peer review by a group of scientists, recommen-
dations about funding by the institute advisory council, and the final decision about funding 
by the institute director. Grant applications are usually reviewed by one of many NIH “study 
sections,” groups of scientific reviewers with a specific area of research expertise drawn from 
research institutions around the country. A list of the study sections and their current member-
ship is available on the NIH website.

The NIH process for reviewing and funding proposals is described at cms.csr.nih.gov. 
When an investigator submits a grant application, it is assigned by the NIH Center for Sci-
entific Review (CSR) to a particular study section (Figure 19.2). Proposals are assigned to a 
primary and two or more secondary reviewers who each provide a separate rating from 1 to 9 
for  significance, innovation, approach, investigators, and environment, and then an overall 
rating of the likely impact of the study. A score of “1” indicates an exceptionally strong ap-
plication with essentially no weaknesses, and a “9” is an application with serious substantive 
weaknesses and very few strengths. The assigned reviewers’ ratings are revealed to the study 
section, and proposals with scores in the upper half are discussed with the entire committee; 
the remainder are “triaged” (not discussed), with a few deferred to the next cycle 4 months 
later pending clarification of points that were unclear. After discussion, the assigned review-
ers again propose ratings (the scores may have changed as a result of the discussion), and all 
committee members then provide scores by secret ballot. These are averaged, multiplied by 10 
to yield an overall score from 10 (best) to 90 (worst), and used by each institute to prioritize 
funding decisions.

The investigator should decide in advance, with advice from senior colleagues, which study 
section would be the best choice to review the proposal. Study sections vary a great deal not 
only in topic area but also in the expertise of the reviewers and in the quality of competing ap-
plications. Although assignment to a study section cannot be fully controlled, the investigator 

http://www.nimh
http://www.grants.nih.gov/training/careerdevelopmentawards.htm/
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may be able to influence assignment by involving the project officer he has been working with 
in steering the application.

In addition to assigning each grant application to a particular study section, the CSR also 
assigns it to a particular institute (or center) at NIH. Each institute then funds the grants as-
signed to it, in order of priority score tempered by an advisory council review and sometimes 
over-ridden by the institute (Figure  19.3). Proposals from new investigators who have not  
yet received NIH research funding are funded at somewhat more lenient scores and percentile 
cutoffs than those from established investigators. If an application is of interest to more than 
one institute, the institutes sometimes arrange to share funding.

After an application has been reviewed, the investigator receives written notification of the 
study section’s action. This summary statement includes the score and detailed comments and 
criticisms from the committee members who reviewed the application.

NIH applications that are not funded, as is often the case for the first submission, can be 
revised and resubmitted only once. If the reviewers’ criticisms and scores suggest that the 
application can be made more attractive to the committee, then a revised version may have 
an excellent chance of obtaining funding when it is resubmitted. (It may be more difficult to 
raise reviewers’ enthusiasm if they indicate that the proposal lacks innovation or significance.) 
Project officers from the relevant institute usually attend the study section meetings and it is 
important to discuss the review with one of them soon after the meeting because the written 
comments have usually been drafted before the meeting and may not reflect issues study sec-
tion members raised that led to revisions in the scores.

An investigator need not automatically make all the changes suggested by reviewers, but 
he should adopt revisions that will satisfy the reviewer’s criticisms wherever possible and 
justify any decision not to do so. NIH limits responses to reviews to a single page introduc-
tion describing the changes that have been made in the revised proposal. A good format for 

■ FIGURE 19.2 Overview of NIH and foundation funding sources and mechanisms.
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the introduction is to succinctly summarize each major criticism from the summary statement 
in bold or italic font and address it with a concise statement of the consequent change in the 
proposal. To help reviewers focus on these revisions, changes should be marked, for example 
by a vertical line in the left hand margin of the text.

Grants from Foundations and Professional Societies

Private foundations (such as The Robert Wood Johnson Foundation) generally restrict their 
funding to specific areas of interest. Some disease-based foundations and professional societies 
(such as the American Heart Association and American Cancer Society) also sponsor research 
programs, many of which are designed to support junior investigators. The total amount of 
research support is far smaller than that provided by NIH, and most foundations have the goal 
of using this money to fund projects of merit that have topics or methods that are unlikely to 
be funded by NIH. A few foundations offer career development awards that are focused on 
specific areas such as quality of health care. The Foundation Center (http://fdncenter.org/) 
maintains a searchable directory of foundations and contact information, along with advice 
about how to write effective proposals to foundations. Decisions about funding follow proce-
dures that vary from one foundation to another, but usually respond rapidly to relatively short 
proposals (Figure 19.3). The decisions are often made by an executive process rather than by 
peer review; typically, the staff of the foundation makes a recommendation that is ratified by 
a board of directors.

To determine whether a foundation might be interested in a particular proposal, an in-
vestigator should consult with his mentors and check the foundation’s website. The website 
will generally describe the goals and purposes of the foundation and often list projects that 
have recently been funded. If it appears that the foundation might be an appropriate source 

■ FIGURE 19.3 NIH and foundation procedures for reviewing grant applications.
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of support, it is best to contact the appropriate staff member of the foundation to describe the 
project, determine potential interest, and obtain guidance about how to submit a proposal. 
Many foundations ask that investigators send a letter describing the background and principal 
goals of the project, the qualifications of the investigators, and the approximate duration and 
costs of the research. If the letter is of sufficient interest, the foundation may request a more 
detailed proposal.

Research Support from Industry

Corporations that make drugs and devices are a major source of funding, especially for random-
ized trials of new treatments. Large companies generally accept applications for investigator- 
initiated research that may include small studies about the effects or mechanisms of action of 
a treatment, or epidemiologic studies about conditions of interest to the company. They will 
often supply the drug or device and a matching placebo for a clinical trial proposed by an inves-
tigator that is of interest to the company. They may also provide small grants to support educa-
tional programs in areas of their interest. However, by far the largest form of industry support 
for clinical research is through contracts to PIs of clinical sites for enrolling participants into 
multicenter trials that test new drugs and devices. These large trials are sometimes designed 
and managed by an academic coordinating center, but usually they are run by the corporate 
sponsor, often through a contract with a clinical research organization (CRO).

Requests for support for research or educational programs, or to participate as a site in a 
trial, generally begin by contacting the regional representative of the company. If the company 
is interested in the topic, the investigator may be asked to submit a relatively short application 
and complete a budget and other forms. Companies often give preference to requests from 
“opinion leaders,” clinicians or investigators who are well known, have been involved in re-
search or consultation with the company, and whose views may influence how other clinicians 
prescribe drugs or use devices. Therefore, a young investigator seeking industry support should 
generally get the help of a well-known mentor in contacting the company and submitting the 
application.

Contracts for enrolling participants in clinical trials generally pay clinical site PIs a fixed 
fee for each participant enrolled in a multi-site trial and the trial closes enrollment when the 
desired study-wide goal has been met. An investigator may enroll enough participants to re-
ceive funding that exceeds his costs, in which case he may retain the surplus as a long-term 
unrestricted account, but he will lose money if he recruits too few participants to pay the staff 
and overhead expenses for the trial. Before deciding to participate as a site in these multi-site 
trials, the investigator should be certain that the contract can be approved by the administrative 
offices and institutional review board of his institution in time to enroll enough participants 
before recruitment closes.

Funding from industry, particularly from marketing departments, is often channeled into 
topics and activities intended to increase sales of the company’s product. The findings in 
industry-managed trials are generally analyzed by company statisticians and manuscripts are 
sometimes drafted by their medical writers. A number of site PIs are generally selected to be 
co-authors of peer-reviewed publications. Federal regulations require that authors have access 
to data (including the right to have analyses performed of study-wide data), make substantial 
contributions to manuscripts, and assume responsibility for the conclusions; we encourage site 
PI’s to seek authorship roles for themselves and their co-investigators, and, if successful, to 
fulfill these authorship requirements. Ideally, analysis plans, manuscripts, and presentations 
from multicenter studies should be reviewed and approved by a publications committee that 
has written guidelines and a majority of members who are not employees of the sponsor.

An advantage of corporate support is that it is the only practical way to address some re-
search questions. There would be no other source of funds, for example, for testing a new 
antibiotic that is not yet on the market. Another advantage is the relative speed with which 
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this source of funding can be acquired; decisions about small investigator-initiated proposals 
are made within a few months and drug companies are often eager to sign up qualified inves-
tigators to participate in multicenter clinical trials. Scientists at the company generally have 
extensive expertise about the treatment and about research methodology that can be useful in 
planning analyses and interpreting the results. Additionally, most pharmaceutical companies 
place a high premium on maintaining a reputation for integrity which enhances their dealings 
with the FDA and their stature with the public. The research expertise, statistical support, and 
financial resources they provide can improve the quality of the research.

Intramural Support

Universities typically have local research funds for their own investigators. Grants from these 
intramural funds are generally limited to relatively small amounts, but they are usually avail-
able much more quickly (weeks to months) and to a higher proportion of applicants than 
grants from the NIH or private foundations. Intramural funds may be restricted to special pur-
poses, such as pilot studies that may lead to external funding, or the purchase of equipment. 
Such funds are often earmarked for junior faculty and provide a unique opportunity for a new 
investigator to acquire the experience of leading a funded project.

■  SUMMARY

 1. A proposal is an expanded version of the detailed written plan of a study (the protocol) 
that is used to request funding and also contains budgetary, administrative and supporting 
information required by the funding agency.

 2. An investigator who is working on a research proposal should begin by getting advice 
from senior colleagues about the research question he will pursue and the choice of fund-
ing agency. The next steps are to study that agency’s written guidelines and to contact 
a  scientific administrator in the agency for advice.

 3. The process of writing a proposal, which often takes much longer than expected, includes 
organizing a team with the necessary expertise; designating a principal investigator (PI); 
outlining a proposal to conform strictly to agency guidelines; establishing a timetable for 
written products; finding a model proposal; and reviewing progress at regular meetings. 
The proposal should be reviewed by knowledgeable colleagues, revised often, and polished 
at the end with attention to detail.

 4. The major elements of a proposal include the abstract (summary), the administrative 
parts centered around the budget, budget justification, biosketches and resources, the very 
important specific aims, and the research strategy with its significance, innovations, and 
approach sections including previous research by the investigator.

 5. A good proposal requires not only a good research question, study plan, and research 
team, but also a clear presentation: The proposal must communicate clearly and concisely, 
following a logical outline and indicating the advantages and disadvantages of trade-offs 
in the study plan. The merits of the proposal should stand out using subheadings, tables 
and diagrams so that they will not be missed by a busy reviewer.

 6. There are four main sources of support for clinical research:
a. The NIH and other governmental sources are the largest providers of support, using 

a complex system of peer and administrative review that moves slowly but funds a wide 
array of grants and contracts for research, and for career development.

b. Foundations and societies are often interested in promising research questions that 
escape NIH funding, and have review procedures that are quicker but more parochial 
than those of NIH.
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c. Manufacturers of drugs and devices are a very large source of support that is mostly 
channeled to company-run studies of new drugs and medical devices; however, 
 corporations value partnerships with leading scientists and support some investigator-
initiated research.

d. Intramural funds from the investigator’s institution tend to have favorable funding 
rates for getting small amounts of money quickly, and are an excellent first step for pilot 
studies and new investigators.
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Chapter 1  Getting Started: The Anatomy  
and Physiology of Clinical Research
 1. Appendix 1 provides an outline of the Early Limited Formula (“ELF”) study carried out in 

two academic medical centers in California with the goal of encouraging breastfeeding by 
newborn babies who had lost > 5% of their body weight. In this randomized clinical trial, 
the proportion of mothers who reported exclusive breastfeeding at 3 months to a blinded 
interviewer was 79% in the ELF group, compared with 42% in the control group (P = 0.02) 
(Flaherman et al. Pediatrics 2013;131 [in press]. For each of the following statements, indi-
cate (1) whether it is an internal validity or external validity inference; (2) whether you think 
it is a valid inference; and (3) any reasons why it might not be valid.
a. For the women in this study, provision of early limited formula increased breastfeeding 

rates at 3 months.
b. Provision of early limited formula to infants with ≥ 5% weight loss in the first 36 hours 

born in a Boston community hospital will likely lead to higher breastfeeding rates at age 
6 months.

c. Based on the results of this study, an international effort to provide formula to most 
newborns is likely to enhance successful breastfeeding and improve the health of the 
newborns and their mothers.

 2. For each of the following summaries drawn from published studies, write a single sentence 
that specifies the design and the research question, including the main predictor and 
 outcome variables and the population sampled.
a. Investigators in Winston-Salem, North Carolina, surveyed a random sample of 2,228 

 local high school students about their frequency of watching wrestling on television 
in the previous 2 weeks, and 6 months later asked the same students about fighting 
at school and on dates. The adjusted odds of reporting fighting with a date increased 
by 14% for each episode of wrestling the students reported having watched 6 months 
before. (DuRant et al. Pediatrics 2006;118:e265–272.)

b. To assess whether the amount of breastfeeding protects women against ovarian cancer, 
investigators surveyed 493 Chinese women with newly diagnosed ovarian cancer and 
472 other hospitalized women, all of whom had breastfed at least one child. They found 
a dose–response relationship between total months of breastfeeding and reduced risk of 
ovarian cancer. For example, women who had breastfed for at least 31 months had an 
odds ratio of 0.09 (95% CI 0.04, 0.19) compared with women who had breastfed less 
than 10 months (Su et al. Am J Clin Nutr 2013;97:354–359).

c. To see whether an association between dietary saturated fat intake and reduced sperm 
concentration in infertile men extended to the general population, Danish investigators 
collected semen samples and food frequency questionnaires from consenting young 
men at the time of their examination for military service. They found a significant dose–
response relation between self-reported dietary saturated fat intake and reduced sperm 
concentrations (e.g., 41% [95% CI 4%, 64%] lower sperm concentration in the highest 
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quartile of saturated fat intake compared with the lowest) (Jensen et al. Am J Clin Nutr 
2013;97:411–418).

d. There is no known effective drug treatment for the ~20% of patients with Clostridium 
difficile diarrhea who relapse after treatment with antibiotics. Investigators in Amster-
dam studied patients ≥ 18 years of age who had a relapse of C. difficile diarrhea follow-
ing at least one course of adequate antibiotic therapy. They were randomly assigned 
(without blinding) to one of three regimens: a 5-day course of vancomycin followed by 
bowel lavage and infusion of a suspension of volunteer donor feces through a nasoduo-
denal tube or a standard 14-day course of vancomycin with or without bowel lavage on 
day 4 or 5. The trial was stopped early after an interim analysis showed the rate of cure 
without relapse for 10 weeks was 13 of 16 (81%) in the donor feces group, compared 
with 4 of 13 with vancomycin alone and 3 of 13 with vancomycin plus lavage (P <0.001 
for both comparisons)(van Nood et al. New Engl J Med 2013;368:407–415).

Chapter 2  Conceiving the Research Question 
and Developing the Study Plan
 1. Consider the research question: “What is the relationship between depression and health?” 

First, convert this into a more informative description that specifies a study design, predic-
tor, outcome, and population. Then discuss whether this research question and the design 
you have chosen meet the FINER criteria (Feasible, Interesting, Novel, Ethical, Relevant). 
Rewrite the question and design to resolve any problems in meeting these criteria.

 2. Consider the research question: “Does acetaminophen (paracetamol) cause asthma?” 
Put yourself back to the year 2000, when this question was just starting to be asked, 
and  provide 1-sentence descriptions of two observational studies and one clinical trial to 
progressively address this research question. Make sure each sentence specifies the study 
design, predictor, outcome, and population. Then, for each, consider whether this research 
question and the design you have chosen meet the FINER criteria (Feasible, Interesting, 
Novel, Ethical, Relevant).

 3. Use the ideas in this chapter and your own interests to conceive a research question and 
devise a 1-page outline of a study you might carry out. Does it meet the FINER criteria? 
Discuss different designs, population samples, and variables with a colleague, seeking to 
optimize your study’s FINER nature.

Chapter 3  Choosing the Study Subjects: Specification, 
Sampling, and Recruitment
 1. An investigator is interested in the following research question: “What are the factors that 

cause people to start smoking?” She decides on a cross-sectional sample of high school 
students, invites eleventh graders in her suburban high school to participate, and studies 
those who volunteer.
a. Discuss the suitability of this sample for the target population of interest.
b. Suppose that the investigator decides to avoid the bias associated with choosing vol-

unteers by designing a 25% random sample of the entire eleventh grade, and that the 
actual sample turns out to be 70% female. If it is known that roughly equal numbers of 
boys and girls are enrolled in the eleventh grade, then the disproportion in the sex dis-
tribution represents an error in drawing the sample. Could this have occurred through 
random error, systematic error, or both? Explain your answer.



294  Exercises

 2. An investigator is considering designs for surveying rock concert patrons to determine 
their attitudes toward wearing ear plugs during concerts to protect their hearing. Name 
the following sampling schemes for selecting individuals to fill out a brief questionnaire, 
commenting on feasibility and whether the results will be generalizable to all people who 
attend rock concerts.
a. As each patron enters the theater, he or she is asked to throw a virtual die (on the inves-

tigator’s cell phone). All patrons who throw a 6 are invited to fill out the questionnaire.
b. As each patron enters the theater, he or she is asked to throw a virtual die. Men who 

throw a 1 and women who throw an even number are invited.
c. Tickets to the concert are numbered and sold at the box office in serial order, and each 

patron whose ticket number ends in 1 is invited.
d. After all the patrons are seated, five rows are chosen at random by drawing from a 

shuffled set of cards that has one card for each theater row. All patrons in those five rows 
are invited.

e. The first 100 patrons who enter the theater are invited.
f. Some tickets were sold by mail and some were sold at the box office just before the 

performance. Whenever there were five or more people waiting in line to buy tickets at 
the box office, the last person in line (who had the most time available) was invited.

g. When patrons began to leave after the performance, those who seemed willing and able 
to fill out the questionnaire were invited.

 3. Edwards et al. (Edwards et al. N Engl J Med 2013;368:633–643) reported on the burden 
of infection caused by human metapneumovirus (HMPV) among children < 5 years old. 
The subjects were children in counties surrounding Cincinnati, Nashville, and Rochester, 
NY, during the months of November to May, from 2003 to 2009, who sought medical at-
tention for acute respiratory illness or fever. Consenting inpatients were enrolled Sunday 
through Thursday, outpatients 1 or 2 days per week, and emergency department patients 
1 to 4 days per week. The authors combined the proportion of children testing positive at 
each site with nationwide data (from the National Ambulatory Medical Care Survey and 
the National Hospital Ambulatory Care Survey) on the population frequency of visits for 
acute respiratory illness or fever to estimate the overall burden of HMPV in the United 
States. They estimated HMPV was responsible for 55 clinic visits and 13 emergency depart-
ment visits per 1,000 children annually.
a. What was the target population for this study?
b. What was the accessible population, and how suitable was it for generalizing to the 

target population?
c. What was the sampling scheme, and how suitable was it for generalizing to the acces-

sible population?
d. Describe in general terms how the sampling scheme would need to be taken into ac-

count when calculating confidence intervals for the HMPV rates they calculate.

Chapter 4  Planning the Measurements: Precision, 
Accuracy, and Validity
 1. Classify the following variables as dichotomous, nominal, ordinal, continuous, or discrete 

numerical. Could any of them be modified to increase power, and how?
a. History of heart attack (present/absent)
b. Age
c. Education (college degree or more/less than college degree)
d. Education (highest year of schooling)
e. Race
f. Number of alcohol drinks per day
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g. Depression (none, mild, moderate, severe)
h. Percent occlusion of coronary arteries
i. Hair color
j. Obese (BMI ≥ 30)/non-obese (BMI<30)

 2. An investigator is interested in the research question: “Does intake of fruit juice at age 
6 months predict body weight at age 1 year?” She plans a prospective cohort study, measur-
ing body weight using an infant scale. Several problems are noted during pretesting. Are 
these problems due to lack of accuracy, lack of precision, or both? Is the problem mainly 
due to observer, subject, or instrument variability, and what can be done about it?
a. During calibration of the scale, a 10-kilogram (kg) reference weight weighs 10.2 kg.
b. The scale seems to give variable results, but weighing the 10-kg reference weight 

20 times gives a mean of 10.01 ± 0.2 (standard deviation) kg.
c. Some babies are frightened and when they try to climb off the scale the observer holds 

them on it to complete the measurement.
d. Some babies are “squirmy,” and the pointer on the scale swings up and down wildly.
e. Some of the babies arrive for the examination immediately after being fed, whereas 

 others are hungry; some of the babies have wet diapers.
 3. The investigator is interested in studying the effect of resident work hour limitations on 

surgical residents. One area she wishes to address is burnout, and she plans to assess it 
with two questions (answered on a 7-point scale) from a more extensive questionnaire: 
(a) “How often do you feel burned out from your work?” and (b) “How often do you feel 
you’ve become more callous toward people since you started your residency?”

The investigator sets out to assess the validity of these questions for measuring burnout. 
For each of the following descriptions, name the type of validity being assessed:
a. Residents with higher burnout scores were more likely to drop out of the program in the 

following year.
b. These items seem like reasonable questions to ask to address burnout.
c. Burnout scores increase during the most arduous rotations and decrease during vacations.
d. A previous study of more than 10,000 medical students, residents, and practicing 

physicians showed that these two items almost completely captured the emotional 
exhaustion and depersonalization domains of burnout as measured by the widely ac-
cepted (but much longer) Maslach Burnout Inventory (West et al. J Gen Intern Med 
2009;24:1318–1321).

Chapter 5  Getting Ready to Estimate Sample Size: 
Hypotheses and Underlying Principles
 1. Define the concepts in red font.

An investigator is interested in designing a study with sufficient sample size to deter-
mine whether body mass index is associated with stomach cancer in women between 50 
and 75  years of age. She is planning a case–control study with equal numbers of cases 
and controls. The null hypothesis is that there is no difference in mean body mass index 
between cases of stomach cancer and controls; she has chosen an alternative hypothesis 
with two sides. She would like to have a power of 0.80, at a level of statistical significance 
(a) of 0.05, to be able to detect an effect size of a difference in body mass index of 1 kg/m2 
between cases and controls. Review of the literature indicates that the variability of body 
mass index among women is a standard deviation of 2.5 kg/m2.

 2. Which of the following is likely to be an example of a type I error? A type II error? Neither?
a. A randomized trial finds that subjects treated with a new analgesic medication had 

greater mean declines in their pain scores during a study than did those treated with 
placebo (P = 0.03).
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b. A 10-year study reports that 110 subjects who smoke do not have a greater incidence of 
lung cancer than 294 non-smokers (P = 0.31).

c. An investigator concludes that “Our study is the first to find that use of alcohol reduces 
the risk of diabetes in men less than 50 years of age (P < 0.05).”

Chapter 6  Estimating Sample Size and Power: 
Applications and Examples
 1. Review exercise 1 of Chapter 5. Determine how many cases of stomach cancer would be 

required for the study. What if the investigator wanted a power of 0.90? Or a level of sta-
tistical significance of 0.01?
Extra credit: Suppose the investigator only had access to 60 cases. What could she do?

 2. Muscle strength declines with advancing age. Preliminary evidence suggests that part of 
this loss of muscle strength might be due to progressive deficiency of dehydroepiandros-
terone (DHEA). Investigators plan a randomized trial to administer DHEA or an identical 
placebo for 6  months to elderly subjects, and then measure muscle strength. Previous 
studies have reported a mean grip strength in elderly persons of 20 kg with a standard 
deviation of 8 kg. Assuming a (two-sided) = 0.05 and b = 0.10, how many subjects would 
be required to demonstrate a 10% or greater difference between strength in the treated and 
placebo groups? How many subjects would be needed if b = 0.20?

 3. In exercise 2, sample size calculations indicated more subjects were needed than can be 
enrolled. A colleague points out that elderly people have great differences in grip strength. 
This accounts for much of the variability in the strength measured after treatment and 
might be obscuring the treatment effect. She suggests that you measure strength at baseline 
and again after treatment, using the change in strength as the outcome variable. A small 
pilot study shows that the standard deviation of the change in strength during a 6-month 
period is only 2 kg. How many subjects would be required per group using this design, 
assuming a (two-sided) = 0.05 and b = 0.10?

 4. An investigator suspects that left-handedness is more common in dyslexic than in non-
dyslexic third graders. Previous studies indicated that about 10% of people are left-handed 
and that dyslexia is uncommon. A case–control study is planned that will select all the dys-
lexic students in a school district as cases, with an equal number of nondyslexic students 
randomly selected as controls. What sample size would be required to show that the odds 
ratio for dyslexia is 2.0 among left-handed students compared with right-handed students? 
Assume a = 0.05 (two-sided) and b = 0.20.

 5. An investigator seeks to determine the mean IQ of medical students in her institution, with 
a 99% CI of ± 3 points. A small pilot study suggests that IQ scores among medical students 
range from about 110 to 150. Approximately what sample size is needed?

Chapter 7  Designing Cross-Sectional and Cohort Studies
 1. The research question is: “Does vitamin B12 deficiency cause hip fractures in the elderly?”

a. Briefly outline a study plan to address this research question with a prospective cohort 
study.

b. An alternative approach would be to take a sample from a geriatric clinic population and 
compare  vitamin B12 levels in those who have had a previous hip fracture with levels 
in those who have not. Compared with this cross-sectional approach, list at least one 
advantage and one disadvantage of your prospective cohort study.

c. Could the cohort study be designed as a retrospective study? If so, how would this affect 
these advantages or disadvantages?
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 2. Sung et al. (Sung et al. Am J Obstet Gynecol 2009 May;200(5):557.e1-5) examined the base-
line association between the frequency of urinary incontinence and depressive symptoms 
among 338 overweight or obese women at least 30 years old enrolled in the PRIDE (Pro-
gram to Reduce Incontinence by Diet and Exercise) clinical trial. They reported that women 
with depressive symptoms (N = 101) reported a higher mean number of incontinence epi-
sodes per week than women without depressive symptoms (28 vs 23; P = 0.005).
a. What kind of study is this?
b. One possible explanation for this is that depression increases the frequency of urinary 

incontinence. What are some other explanations for this association, and how might 
changes in the study design help you sort them out?

Chapter 8  Designing Case–Control Studies
 1. The research question is: “How much does a family history of ovarian cancer increase 

the risk of ovarian cancer?” The investigator plans a case–control study to answer this 
question.
a. How should she pick the cases?
b. How should she pick the controls?
c. Comment on potential sources of bias in the sampling of cases and controls.
d. How would she measure “family history of ovarian cancer” as the predictor variable of 

interest? Comment on the sources of bias in this measurement.
e. What measure of association would she use, and what test of statistical significance?
f. Do you think the case–control method is an appropriate approach to this research ques-

tion? Discuss the advantages and disadvantages of the case–control design relative to 
other possibilities for this research question.

 2. The investigator wants to investigate the relationship between playing video games involv-
ing car racing and the risk of being involved in a real car crash (as the driver).
a. Assume the exposure of interest is long-term effects of habitual use of these games. How 

would she select cases and controls and measure the exposure for a case–control study 
of this question?

b. Now imagine the exposure of intererst is whether use of such games in the hour im-
mediately preceding driving increases short-term risk. What is a design for studies of 
short-term effects of intermittent exposures? Lay out how such a study would be carried 
out for this research question.

Chapter 9  Enhancing Causal Inference  
in Observational Studies
 1. The investigator undertakes a case–control study to address the research question: “Does 

eating more fruits and vegetables reduce the risk of coronary heart disease (CHD)?” Sup-
pose that her study shows that people in the control group report a higher intake of fruits 
and vegetables than people with CHD.

What are the possible explanations for this inverse association between intake of fruits 
and vegetables and CHD? Give special attention to the possibility that the association be-
tween eating fruits and vegetables and CHD may be confounded by exercise (if people who 
eat more fruits and vegetables also exercise more, and this is the cause of their lower CHD 
rates). What approaches could you use to cope with exercise as a possible confounder, and 
what are the advantages and disadvantages of each plan?

 2. A study by the PROS (Pediatric Research in Office Settings) network of pediatricians found 
that among young infants (< 3 months) brought to their pediatricians for fever, uncircumcised 
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boys had about 10 times the risk of urinary tract infection, compared with circumcised boys 
(Newman et al.: Arch Pediatr Adolesc Med 2002 Jan;156(1):44–54), an association that has 
been seen in numerous studies. Interestingly, uncircumcised boys in that study appeared to 
have a lower risk of ear infections (risk ratio = 0.77; P = 0.08). Explain how including only 
babies with fever in this study could introduce an association between circumcision and ear 
infections that is not present in the general population of young infants.

 3. In exercise  1 of Chapter  2, we asked you to suggest studies to address the question of 
whether acetaminophen causes asthma. A proposed mechanism for this association is 
acetaminophen-induced depletion of glutathione, which protects the lungs from oxidative 
injury that can lead to inflammation. Describe briefly how you could take advantage of 
variation in maternal anti-oxidant genotypes to enhance the inference that an association 
between maternal acetaminophen use and asthma in the offspring is causal.

Chapter 10  Designing a Randomized Blinded Trial
 1. An herbal extract, huperzine, has been used in China as a remedy for dementia, and prelimi-

nary studies in animals and humans have been promising. The investigator would like to 
test whether this new treatment might decrease the progression of Alzheimer’s disease. Stud-
ies have found that the plasma level of Abeta (1–40) is a biomarker for Alzheimer’s disease: 
Elevated levels are associated with a significantly increased risk of developing  dementia and 
the levels of Abeta (1–40) increase with the progression of dementia. In planning a trial to 
test the efficacy of huperzine for prevention of dementia in elderly patients with mild cogni-
tive impairment, the investigator considers two potential outcome  measurements: change in 
Abeta (1–40) levels or incidence of a clinical diagnosis of dementia.
a. List one advantage and one disadvantage of using Abeta (1–40) as the primary outcome 

for your trial.
b. List one advantage and one disadvantage of using the new diagnosis of dementia as the 

primary outcome for the trial.
 2. A relatively large (>200 person per arm) trial of huperzine is being planned. The primary 

aim is to test whether this herbal extract decreases the incidence of a clinical diagnosis of 
dementia among elderly men and women with mild cognitive impairment.
a. Huperzine is expected to occasionally cause gastrointestinal symptoms, including diar-

rhea, nausea, and vomiting. Describe a plan for assessing adverse effects of this new 
treatment on symptoms or diseases besides dementia.

b. Describe a general plan for baseline data collection: what types of information should 
be collected?

c. People who carry an Apoε4 allele have an increased risk of dementia. List one reason in fa-
vor and one against using stratified blocked randomization instead of simple randomization 
to assure a balance of people with the Apoε4 genotype in the treatment and control group.

Chapter 11  Alternative Clinical Trial Designs  
and Implementation Issues
Topical finasteride is moderately effective in treating male pattern baldness and is approved by 
the U.S. Food and Drug Administration (FDA) for treating this condition. Statins have been 
found to increase hair growth in rodents and they act by a different pathway than does finas-
teride. Imagine that a start-up company wants to obtain FDA approval for marketing a new 
topical statin (HairStat) for the treatment of male pattern baldness.
 1. Describe a phase I trial of HairStat for male pattern baldness. What would be the treatment 

group(s)? What type of outcomes are expected?
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 2. The company wants to compare the efficacy of HairStat to finasteride. List at least one 
 advantage and one disadvantage of the following approaches to testing the relative effec-
tiveness of finasteride and the topical statin.
a. Randomize bald men to either finasteride or topical statin.
b. In a factorial design, randomly assign men to (1) finasteride and HairStat, (2) finasteride 

and HairStat-placebo, (3) finasteride-placebo and HairStat, or (4) double placebo.
 3. Imagine that the company plans a 1-year placebo-controlled study of HairStat for treat-

ment of baldness. The outcome is change in rating of the amount of hair in photographs 
of the bald region that is undergoing treatment. Follow-up visits (with photographs) are 
scheduled every 3 months. Outline a plan—with at least two elements—for encouraging 
compliance with the study treatment and return for visits to assess the outcome.

 4. During the study, 20% of the men in the trial did not return for the 3-month follow-up visit 
and 40% stopped by 1 year. Some stopped because a rash developed on their scalp. List 
one disadvantage and one advantage of analyzing the effect of treatment on hair growth by 
a strict intention-to-treat approach.

 5. In the intention-to-treat analysis, HairStat increased hair growth (rated by blinded out-
come assessors based on comparison of baseline and 1-year photographs) 20% more than 
placebo (P = 0.06). Subsequent analyses showed that HairStat increased hair growth 45% 
more than placebo in men younger than age 40 (P = 0.01 in that subgroup). What are the 
problems with the company’s conclusion that HairStat is effective for treating baldness in 
men younger than age 40?

Chapter 12  Designing Studies of Medical Tests
 1. You are interested in studying the usefulness of the erythrocyte sedimentation rate (ESR) 

as a test for pelvic inflammatory disease (PID) in women with abdominal pain.
a. To do this, you will need to assemble groups of women who do and do not have PID. 

What would be the best way to sample these women?
b. How might the results be biased if you used final diagnosis of PID as the gold standard 

and those assigning that diagnosis were aware of the ESR?
c. You find that the sensitivity of an ESR of at least 20 mm/hr is 90%, but the specificity is 

only 50%. On the other hand, the sensitivity of an ESR of at least 50 mm/hr is only 75%, 
but the specificity is 85%. Which cutoff should you use to define an abnormal ESR?

 2. You are interested in studying the diagnostic yield of computed tomography (CT) head 
scans in children presenting to the emergency department (ED) with head injuries. You 
use a database in the radiology department to find reports of all CT scans done on patients 
less than 18 years old and ordered from the ED for head trauma. You then review the ED 
records of all those who had an abnormal CT scan to determine whether the abnormality 
could have been predicted from the physical examination.
a. Out of 200 scans, 10 show intracranial injuries. However, you determine that in 8 of 

the 10, there had been either a focal neurological examination or altered mental status. 
Since only two patients had abnormal scans that could not have been predicted from the 
physical examination, you conclude that the yield of “unexpected” intracranial injuries 
is only 2 in 200 (1%) in this setting. What is wrong with that conclusion?

b. What is wrong with using all intracranial injuries identified on CT scan as the outcome 
variable for this diagnostic yield study?

c. What would be some advantages of studying the effects of the CT scan on clinical deci-
sions, rather than just studying its diagnostic yield?

 3. You now wish to study the sensitivity and specificity of focal neurological findings to 
predict intracranial injuries. (Because of the small sample size of intracranial injuries, you 
increase the sample size by extending the study to several other EDs.) One problem you 
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have when studying focal neurological findings is that children who have them are much 
more likely to get a CT scan than children who do not. Explain how and why this will af-
fect the sensitivity and specificity of such findings if:
a. Only children who had a CT scan are included in the study.
b. Eligible children with head injuries who did not have a CT scan are included, and as-

sumed not to have had an intracranial injury if they recovered without neurosurgical 
intervention.

Chapter 13  Research Using Existing Data
 1. The research question is: “Do Latinos in the United States have higher rates of gallblad-

der disease than whites, African Americans, or Asian Americans?” What existing databases 
might enable you to determine race-, age-, and sex-specific rates of gallbladder disease at low 
cost in time and money?

 2. A research fellow became interested in the question of whether mild or moderate renal dys-
function increases risk for coronary heart disease events and death. Because of the expense 
and difficulty of conducting a study to generate primary data, he searched for an existing 
database that contained the variables he needed to answer his research question. He found 
that the Cardiovascular Health Study (CHS), a large, NIH-funded multicenter cohort study  
of predictors of cardiovascular disease in older men and women, provided all of the vari-
ables required for his planned analysis. His mentor was able to introduce him to one of the 
key investigators in CHS who helped him prepare and submit a proposal for analyses that 
was approved by the CHS Steering Committee.
a. What are the advantages of this approach to study this question?
b. What are the disadvantages?

 3. An investigator is interested in whether the effects of treatment with postmenopausal 
 estrogen or selective estrogen receptor modulators (SERMs) vary depending on endog-
enous estrogen levels. How might this investigator answer this question using an ancillary 
study?

Chapter 14  Addressing Ethical Issues
 1. The research question is to identify genes that are associated with an increased risk of 

developing Type II diabetes mellitus. The investigator finds that frozen blood samples and 
clinical data are available from a large prospective cohort study on risk factors for coronary 
artery disease that has already been completed. That study collected baseline data on diet, 
exercise, clinical characteristics, and measurements of cholesterol and hemoglobin A1c. 
Follow-up data are available on coronary endpoints and the development of diabetes. The 
proposed study will carry out DNA sequencing on participants; no new blood samples are 
required.
a. Can the proposed study be done under the original informed consent that was obtained 

for the cohort study?
b. If the original informed consent did not provide permission for the proposed study, how 

can the proposed study be done?
c. When designing a study that will collect blood samples, how can investigators plan to 

allow future studies to use their data and samples?
 2. The investigator plans a phase III randomized controlled trial of a new cancer drug that 

has shown promise in treating colon cancer. To reduce sample size, he would like to carry 
out a placebo-controlled trial rather than compare it to current therapy.
a. What are the ethical concerns about a placebo control in this situation?
b. Is it possible to carry out a placebo-controlled study in an ethically acceptable manner?
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 3. The investigator plans a study to prepare for a future HIV vaccine trial. The goals of the 
study are to determine (1) if it is possible to recruit a cohort of participants who have a high 
HIV seroconversion rate despite state-of-the-art HIV prevention counseling, and (2) if the 
follow-up rate in the cohort will be sufficiently high to carry out a vaccine trial.  Participants 
will be persons at increased risk for HIV infection, including injection drug users, persons 
who trade sex for money, and persons with multiple sexual partners. Most participants will 
have low literacy and poor health literacy. The study will be an observational cohort study, 
following participants for 2 years to determine seroconversion and follow-up rates.
a. What do the federal regulations require to be disclosed to participants as part of in-

formed consent?
b. What steps can be taken to ensure that consent is truly informed in this context?
c. What is the investigator’s responsibility during this observational study to reduce the 

risk of HIV infection in these high-risk participants?

Chapter 15  Designing Questionnaires, Interviews, 
and Online Surveys
 1. As part of a study of alcohol and muscle strength, an investigator plans to use the following 

item for a self-response questionnaire to determine current use of alcohol:
“How many drinks of beer, wine, or liquor do you drink each day?”

 0
 1–2
 3–4
 5–6
 7–8

Briefly describe at least two problems with this item.
 2. Write a short series of questions for a self-response questionnaire that will better assess 

current alcohol use.
 3. Comment on the advantages and disadvantages of a self-response questionnaire versus a 

structured interview to assess risky sexual behavior.

Chapter 16  Data Management
 1. Refer to the first six items on the sample questionnaire about smoking in Appendix 15. You 

have responses for three study subjects:

Subject ID Description of Smoking History

1001 Started smoking at age 17 and has continued to smoke an average of  
30  cigarettes/day ever since

1002 Started smoking at age 21 and smoked 20 cigarettes/day until quitting 3 years ago 
at age 45

1003 Smoked a few cigarettes (<100) in high school

Create a data table containing the responses of these subjects to the first six questions in 
Appendix 15. The table should have three rows (one for each subject) and seven columns 
(one for Subject ID, and one each for the six questions).

 2. The PHTSE (Pre-Hospital Treatment of Status Epilepticus) Study (Lowenstein et al. Con-
trol Clin Trials 2001;22:290–309; Alldredge et al., N Engl J Med 2001;345:631–637) was a 
randomized blinded trial of lorazepam, diazepam, or placebo in the treatment of prehos-
pital status epilepticus. The primary endpoint was termination of convulsions by hospital 
arrival. To enroll patients, paramedics contacted base hospital physicians by radio. The 
following are base-hospital physician data collection forms for two enrolled patients:
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PHTSE

Base Hospital Physician Data Collection Form

PHTSE Subject ID :

Study Drug Administration 189

Study Drug Kit #: A322

Date and Time of Administration :    3   /  12   /   94            17   :    39   
 (Use 24 hour clock)

Transport Evaluation
Seizure Stopped
Time Seizure Stopped     17  :  44   
 (Use 24 hour clock)

Final (“End-of-Run”) Assessment
Time of Arrival at Receiving Hospital ED: 17  :  48   
 (Use 24 hour clock)

On arrival at the receiving hospital:
[X ] 1 Seizure activity (active tonic/clonic convulsions) continued
[ ] 0 Seizure activity (active tonic/clonic convulsions) stopped Verbal GCS

[ ] 1 No Verbal Response
[ ] 2 Incomprehensible Speech
[ ] 3 Inappropriate Speech
[ ] 4 Confused Speech
[ ] 5 Oriented

PAGE ON-CALL PHTSE STUDY PERSONNEL !!
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PHTSE

Base Hospital Physician Data Collection Form

PHTSE Subject ID :

Study Drug Administration 410

Study Drug Kit #: B536

Date and Time of Administration :    12   /   01   /   98            01   :   35  
 (Use 24 hour clock)

Transport Evaluation
[X ]Seizure Stopped
Time Seizure Stopped       01  :   39   
 (Use 24 hour clock)

Final (“End-of-Run”) Assessment
Time of Arrival at Receiving Hospital ED: 01  :  53
 (Use 24 hour clock)

On arrival at the receiving hospital:
[ ] 1 Seizure activity (active tonic/clonic convulsions) continued
[X ] 0 Seizure activity (active tonic/clonic convulsions) stopped

Verbal GCS
[ ] 1 No Verbal Response
[ ] 2 Incomprehensible Speech
[ ] 3 Inappropriate Speech
[X ] 4 Confused Speech
[ ] 5 Oriented

PAGE ON-CALL PHTSE STUDY PERSONNEL !!
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a. Display the data from these two data collection forms in a two-row data table.
b. Create a nine-field data dictionary for the data table in exercise 2a.
c. The paper data collection forms were completed by busy base hospital physicians who 

were called from the emergency department to a radio room. What are the advantages 
and disadvantages of using an on-screen computer form instead of a paper form? If you 
designed the study, which would you use?

 3. The data collection forms in exercise 2 include a question about whether seizure activ-
ity continued on arrival at the receiving hospital (which was the primary outcome of the 
study). This data item was given the field name HospArrSzAct and was coded 1 for yes 
(seizure activity continued) and 0 for no (seizure activity stopped).

Interpret the average values for HospArrSzAct as displayed below:

HospArrSzAct

(1 = Yes, seizure continued; 0 = No, seizure stopped)

N Average

Lorazepam 66 0.409

Diazepam 68 0.574

Placebo 71 0.789

Chapter 17  Implementing the Study and Quality Control
 1. An investigator carried out a study of the research question: “What are the predictors of 

death following hospitalization for myocardial infarction?” Research assistants collected 
detailed data from charts and conducted extensive interviews with 120 hospitalized pa-
tients followed over the course of 1 year. About 15% of the patients died during the follow-
up period. When data collection was complete, one of the research assistants entered the 
data into a computer using a spreadsheet. When the investigator began to run analyses 
of the data, he discovered that 10% to 20% of some predictor variables was missing, and 
others did not seem to make sense. Only 57% of the sample had been seen at the 1-year 
follow-up, which was now more than a year overdue for some subjects. You are called in 
to consult on the project.
a. What can the investigator do now to improve the quality of his data?
b. Briefly describe at least three ways that he could reduce missing values and errors in his 

next study.

Chapter 18  Community and International Studies
 1. The investigator decides to study the characteristics and clinical course of patients with 

abdominal pain of unclear etiology. He plans to enroll patients with abdominal pain in 
whom no specific cause can be identified after a standard battery of tests. There are two 
options for recruiting study subjects: (1) the G.I. clinic at his university medical center, or 
(2) a local network of community clinics. What are the advantages and disadvantages of 
each approach?

 2. The investigator has been assigned to work with the Chinese Ministry of Health in a new 
program to prevent smoking-related diseases in China. Of the following research questions, 
to what degree does each require local research as opposed to research done elsewhere?
a. What is the prevalence and distribution of cigarette smoking?
b. What diseases are caused by smoking?
c. What strategies are most effective for encouraging people to quit smoking?
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Chapter 19  Writing a Proposal for Funding Research
 1. Search the NIH website (http://grants.nih.gov/grants/oer.htm) to find at least three types of 

investigator-initiated R-series grant awards.
 2. Search the Foundation Center website (http://fdncenter.org/) for foundations that might be 

interested in the area of your research. List at least two.
 3. Contact mentors and colleagues to find a research protocol that addresses a question in 

your area of interest and was funded. Read this protocol carefully.

http://grants.nih.gov/grants/oer.htm
http://fdncenter.org/
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Answers to Exercises

Chapter 1  Getting Started: The Anatomy  
and Physiology of Clinical Research
 1a. This is an internal validity inference (because it refers to the women in this study) that 

is probably valid. However, it could be invalid if something other than Early Limited 
Formula (ELF) caused the difference in breastfeeding rates (e.g., if the control interven-
tion adversely affected breastfeeding), if self-reported breastfeeding does not reflect actual 
breastfeeding, or if the association is not causal (the P = 0.02 does not rule out that it oc-
curred by chance).

 1b. This is an external validity inference (because it involves generalizing outside the study) 
that may be valid. However, in addition to the threats to internal validity above (which 
also threaten external validity) it is likely that women giving birth in community hospitals 
and in other parts of the country might respond differently to the intervention, or that other 
clinicians providing the ELF might carry out the intervention differently from the way it 
was done in the original study, or that the benefits might not last as long as 6 months.

 1c. This is an external validity inference that goes far beyond the population and interven-
tion that were studied and is probably not valid. It involves generalizing not only to other 
mothers and newborns in other locations, but also includes newborns who have not lost 
5% of their body weight; expands the intervention from early, limited formula to providing 
formula without limitation; and asserts broad, vague health benefits that, while reasonable, 
were not examined in the ELF study.

 2a. This is a cohort study of whether watching wrestling on television predicts subsequent 
fighting among Winston-Salem high school students.

 2b. This is a case–control study of whether the duration of breastfeeding is associated with re-
duced risk of ovarian cancer among Chinese women who have breastfed at least one baby.

 2c. This is a cross-sectional study of the relationship between self-reported saturated fat intake 
and sperm concentration in Danish men being examined for military service.

 2d. This is an open-label randomized trial of whether a short course of vancomycin, bowel 
lavage, and duodenal infusion of donor feces improves the 10-week cure rate in adults 
with recurrent C. difficile diarrhea, compared with a standard vancomycin regimen with 
and without bowel lavage.

Each of these four sentences is a concise description that summarizes the entire study by 
noting the design and the main elements of the research question (key variables and popu-
lation). For example, in exercise 2a the design is a cohort study, the predictor is watching 
wrestling on television, the outcome is fighting, and the population is high school students 
in Winston-Salem.

Chapter 2  Conceiving the Research Question 
and Developing the Study Plan
 1. The process of going from research question to study plan is often an iterative one. One 

might begin with an answer like: “a cross-sectional study to determine whether depression 
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is associated with health status among young adults.” The possibility that “depression” is 
related to “health status” seems Interesting and Relevant, but the question as stated is still 
too vague to judge whether the study is Feasible, Novel, and Ethical. How will depression 
and health status be measured, and in what population? Also, it will be difficult to establish 
causality in a cross-sectional design—does depression lead to worse health or vice versa?

A more specific design that could better meet the FINER criteria (depending on how it 
is fleshed in) might be: “A cohort study to determine whether depression among college 
juniors, assessed by the CES-D questionnaire, predicts their number of medical illness 
visits to the student health service in the next year.”

 2. In the case of the association between acetaminophen and asthma, the observation that 
 acetaminophen use and asthma prevalence have both increased worldwide (and biologic 
plausibility related to depletion of reduced glutathione by acetaminophen) lead to all studies 
being Interesting and Relevant; as more studies are done they become less Novel.
Study #1: A case–control study to compare the self-reported frequency of acetaminophen use 
among adults with asthma symptoms seen in South London general practices (the cases), with 
the frequency reported by randomly selected adults without such symptoms from the same gen-
eral practices (the controls). Case–control studies are often a good way to start investigating 
possible associations (Chapter 8). This study was especially Feasible because it was part 
of a larger population-based case–control study already investigating the role of dietary 
antioxidants in asthma. Odds ratios for asthma increased with frequency of acetamino-
phen use, up to 2.38 (95% CI 1.22 to 4.64) among daily users; P for trend = 0.0002). The  
study was Ethical because it was an observational study that did not put the subjects at risk 
(Shaheen et al. Thorax 2000;55:266–270).
Study #2: A multinational cross-sectional study of parent-reported allergic symptoms (asthma, 
hay fever, and eczema) among 6- to 7-year-old children that included questions about use of 
acetaminophen in the previous year and usual use for fevers in the first year after birth. This 
study (which included 205,487 children ages 6 to 7 years from 73 centers in 31 countries) 
would not have been feasible if it had not been part of the more general International 
Study of Asthma and Allergies in Childhood (ISAAC) study. This illustrates the importance 
of seeking existing data or existing studies when investigating a new research question 
(Chapter 13). The authors found a strong dose–response relationship between current use of 
acetaminophen and wheezing, and an odds ratio of 1.46 (95% CI 1.36 to 1.56) for wheezing 
and a “yes” answer to the question: “In the first 12 months of your child’s life, did you usual-
ly give paracetamol [acetaminophen] for fever?” (Beasley et al. Lancet 2008;372:1039–1048).
Study #3: A randomized double-blind trial of the effect of acetaminophen (12 mg/kg) versus 
ibuprofen (5 or 10 mg/kg) on hospitalizations and outpatient visits for asthma over 4 weeks 
among febrile children 6 months to 12 years old who were being treated for asthma at enroll-
ment. A randomized trial is generally the least feasible design, because of the expense and 
logistics involved. In addition, as evidence of a potential adverse drug effect accumulates, 
randomized trials to confirm it become less ethical. In this case, investigators did a retro-
spective analysis of data on the subset of children with asthma in the Boston University 
Fever Study, a randomized double-blind trial that had completed enrollment in 1993. They 
found that children randomized to acetaminophen had a 59% higher risk of asthma hos-
pitalization (NS) and a 79% higher risk of an outpatient visit for asthma (RR = 1.79, 95% 
CI: 1.05, 2.94; P = 0.01) (Lesko et al. Pediatrics 2002;109:E20).

Chapter 3  Choosing the Study Subjects: Specification, 
Sampling, and Recruitment
 1a. This sample of eleventh graders may not be well suited to the research question if the 

antecedents of smoking take place at an earlier age. A target population of greater 
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interest might be students in junior high school. Also, the accessible population (stu-
dents at this one high school) may not adequately represent the target population—the 
causes of smoking differ in various cultural settings, and the investigator might do 
better to draw her sample from several high schools randomly selected from the whole 
region. Most important, the sampling design (calling for volunteers) is likely to at-
tract students who are not representative of the accessible population in their smoking 
behavior.

 1b. The unrepresentative sample could have resulted from random error, but this would 
have been unlikely unless it was a very small sample. If the sample numbered 10, a 7:3 
disproportion would occur fairly often as a result of chance; in fact, the probability of 
selecting at least seven girls from a large class that is 50% girls is about 17% (plus an-
other 17% chance of selecting at least seven boys). But if the sample size were 100, the 
probability of sampling at least 70 girls is less than 0.01%. This illustrates the fact that 
the investigator can estimate the magnitude of the random component of sampling er-
ror once the sample has been acquired and that she can reduce it to any desired level by 
enlarging the sample size.

The unrepresentative sample could also have resulted from systematic error. The large 
proportion of females could have been due to different rates of participation among boys 
and girls. The strategies for preventing non-response bias include the spectrum of tech-
niques for enhancing recruitment discussed in Chapter 3. The large proportion of females 
could also represent a technical mistake in enumerating or selecting the names to be 
sampled. The strategies for preventing mistakes include the appropriate use of pretesting 
and quality control procedures (Chapter 17).

 2a. Random sample (probability). The main concern for generalizability will be  non-response—
it will be important to keep the questionnaire short, and to provide some incentive to fill 
it out. (Possible non-response bias is an issue for all sampling schemes discussed in this 
question.)

 2b. Stratified random sample (probability), with a threefold over-sampling of women, perhaps 
because the investigator anticipated that fewer women would attend the concert.

 2c. Systematic sample (non-probability). While perhaps convenient, this systematic sampling 
scheme would lead to underrepresentation of both members of couples. Also, at least 
theoretically, the vendor in the box office could manipulate which patrons receive tickets 
ending in 1.

 2d. Cluster sample (probability). This may be convenient, but the clustering needs to be taken 
into account in analyses, because people who sit in the same row may be more similar to 
one another than randomly selected concert-goers. This could be a particular problem if 
the music was louder in some rows than others.

 2e. Consecutive sample (non-probability). Consecutive samples are usually a good choice, 
but people who arrive early for concerts may differ from those who arrive later, so several 
consecutive samples selected at different times would be preferable.

 2f. Convenience sample (non-probability). This scheme will miss subjects who bought 
tickets by mail. In addition, people who come to concerts in groups could be over- or 
under-represented.

 2g. Convenience sample (non-probability). This sampling scheme is not only biased by the 
whims of the investigator, it may run into non-response by patrons who are unable to hear 
the invitation.

 3a. The target population (to which the authors wished to generalize) was the U.S. population 
of children under age 5 in the years they studied. We know this because the authors used 
nationwide survey data to estimate the U.S. human metapneumovirus (HMPV) disease 
burden. Of course it would be of great interest to generalize to future years as well, and 
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many readers will do so without a second thought. However, it is important to realize, 
 especially with infectious diseases that can vary from year to year, that generalizing beyond 
the years of the study is an additional, potentially fragile, inference.

 3b. The accessible population (the population from which they drew their subjects) was chil-
dren < 5 years old living in the counties surrounding the three study sites (Cincinnati, 
Nashville, and Rochester, NY) and obtaining care from the study sites. Presumably these 
cities were selected because of their proximity to the investigators. It is not clear how 
representative they are of other areas in the United States with respect to the frequency of 
HMPV infection.

 3c. The sampling scheme was a convenience sample. The choice of days of the week (which 
is not specified) could have led to some bias if, for example, parents of children with 
milder respiratory symptoms over the weekend wait until Monday to bring them to see 
a doctor and HMPV symptoms are more or less severe than those of other viruses. On 
the days when the investigators were enrolling subjects, they may have tried to get a 
consecutive sample (also not specified), which would have helped to control selection 
bias. The reason for restriction to certain months of the year is not provided, but was 
presumably because the authors believed almost all HMPV cases would occur during 
these months.

 3d. The observations were clustered by geographic area, so the clustering by city would need 
to be taken into account statistically. The more different the estimates were between cities, 
the more this would widen the confidence intervals. Intuitively, this makes sense. Very 
different rates by city would lead one to wonder how much different the estimate would 
have been if different cities had been included, and we would expect to see this uncertainty 
reflected in a wider confidence interval.

A more subtle level of clustering occurs by year. Again, if there is a lot of year-to-year 
variation in the incidence of HMPV, then if the desire is to generalize to future years (rather 
than just to estimate what the incidence was in the years studied), clustering by year would 
need to be accounted for statistically and significant year-to-year variation in incidence 
would also lead to a wider confidence interval.

Chapter 4  Planning the Measurements: Precision, 
Accuracy, and Validity
 1a. Dichotomous
 1b. Continuous
 1c. Dichotomous
 1d. Discrete numerical
 1e. Nominal
 1f. Discrete numerical
 1g. Ordinal
 1h. Continuous
 1i. Nominal
 1j. Dichotomous

Power is increased by using an outcome variable that contains ordered information. For 
example, highest year of schooling has more power than college degree or more/less than 
college degree. Similarly, use of body mass index as a continuous outcome would offer 
more power (contain more information) for most research questions than presence or 
absence of obesity. A commonly used intermediate choice is the ordinal variable normal/
overweight/obese.
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 2a. This is a problem with accuracy. It could be due to an observer not visualizing the reading 
correctly (a second observer could check the result), but more likely the scale needs to be 
adjusted.

 2b. This is a problem with precision. The excessive variability could be an observer error, but 
more likely the scale needs refurbishing.

 2c. This situation can reduce both accuracy and precision. Accuracy will suffer because the ob-
server’s hold on the baby will likely alter the observed weight; this might tend to consistently 
increase the observed weight or to consistently decrease it. This problem with the subjects 
might be solved by having the mother spend some time calming the baby; an  alternative 
would be to weigh the mother with and without the baby, and take the difference.

 2d. This is primarily a problem with precision, because the pointer on the scale will vary 
around the true weight (if the scale is accurate). The problem is with the subjects and has 
the same solution as in exercise 2c.

 2e. This is mainly a problem with precision, since the babies’ weights will vary, depending 
on whether or not they ate and wet their diapers before the examination. This problem 
of subject variability could be reduced by giving the mothers instructions not to feed the 
babies for 3 hours before the examination, and weighing all babies naked.

 3a. Predictive validity: The burnout scores predicted an outcome that we might expect to be 
associated with burnout.

 3b. Face validity: Asking people how often they feel burned out seems like a reasonable ap-
proach to assessing burnout.

 3c. Construct validity: This measure of burnout is responsive to circumstances that we would 
expect to affect burnout.

 3d. Criterion-related validity: These two items agree closely with a well-accepted standard measure.

Chapter 5  Getting Ready to Estimate Sample Size: 
Hypotheses and Underlying Principles
 1. Sample size = the projected number of subjects in a study that are required for the inves-

tigator to be able to detect a given effect size (at the specified levels of a and b).
Null hypothesis = a statement of the research hypothesis that indicates that there is no 

difference between the groups being compared.
Alternative hypothesis = a statement of the research hypothesis that indicates that there 

is a difference between the groups being compared.
Power = the likelihood of detecting a statistically significant difference between the 

groups being compared (with a given sample size, at a given level of statistical significance) 
if the real difference in the population equals the effect size.

Level of statistical significance = the preset chance of falsely rejecting the null hypothesis.
Effect size = the minimum size of the difference in the two groups being compared that 

the investigator wishes to detect.
Variability = the amount of spread in a measurement, usually calculated as either the 

standard deviation or the standard error of the mean.
 2a. Neither. This is a statistically significant result, and there is nothing to suggest that it 

 represents a type I error.
 2b. The sample size was small and very few subjects would have developed lung cancer during 

the study. These negative results are almost certainly due to a type II error, especially given 
extensive evidence from other studies that smoking causes lung cancer.

 2c. There is no prior epidemiologic or pathophysiologic reason to believe that alcohol use 
reduces the risk of developing diabetes; this result is likely due to a type I error. The in-
vestigator could have been more informative: P < 0.05 could be P = 0.04 or P = 0.001; the 
latter would reduce (though not rule out) the likelihood of type I error.
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Chapter 6  Estimating Sample Size and Power:  
Applications and Examples
 1. H0: There is no difference in the body mass index of stomach cancer cases and controls.

HA (two-sided): There is a difference in the body mass index of stomach cancer cases 
and controls. Body mass index is a continuous variable and case–control is dichotomous, 
so a t test should be used.

 Effect size = 1 kg/m2

Standard deviation = 2.5 kg/m2

 E/S = 0.4

From Appendix 6A,
If a = 0.05, b = 0.20, then 100 subjects are needed per group.
If a = 0.05, b = 0.10, then 133 subjects are needed per group.
If a = 0.01, b = 0.20, then 148 subjects are needed per group.

Extra credit: If the investigator only had access to 60 cases, which of the following strate-
gies for increasing power will help the most?
a. Use a continuous variable—body mass index is already being measured as a continuous 

variable.
b. Use a more precise variable—both weight and height are fairly precise variables, so the 

standard deviation of body mass index is composed mostly of between-individual varia-
tion, which cannot be reduced. Careful standardization of height and weight measure-
ments to reduce measurement error would still be a good idea, but this is not the best 
choice.

c. Use paired measurements—not applicable; “change” in body mass index is not relevant 
in this situation.

d. Use a more common outcome—not applicable.
e. Use unequal group sizes—the n of controls can be increased, as it is easy to find subjects 

without stomach cancer. For example, if the number of controls can be increased four-
fold to 240, one can use the approximation formula on page 69:

n′ = ([c + 1] ÷ 2c) × n

where n′ represents the “new” number of cases, c represents the control-to-case ratio (in 
this example, 4), and n represents the “old” number of cases (assuming a control per case). 
In this example,

n′ = ([4 + 1] ÷ 8) × 100 = (5/8) × 100 = 63,

which is just about the number of cases that are available. Therefore, a study with 
60 cases and 240 controls will have similar power as one with 100 cases and 100 controls.

 2. H0: There is no difference in mean strength between the DHEA-treated and placebo-treated 
groups.

HA: There is a difference in mean strength between the DHEA-treated and placebo-
treated groups.

 a = 0.05 (two-sided); b = 0.10
 Test = t test
 Effect size = 10% × 20 kg = 2 kg
 Standard deviation = 8 kg

The standardized effect size (E/S) is 0.25 (2 kg/8 kg). Looking at Appendix 6A, go down the 
left column to 0.25, then across to the fifth column from the left, where a (two-sided) = 0.05 
and b = 0.10. Approximately 338 subjects per group would be needed. If b = 0.20, then the 
sample size is 253 per group.
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 3. H0: There is no difference in the mean change in strength between the DHEA-treated and 
placebo-treated groups.
HA: There is a difference in mean change in strength between the DHEA-treated and 
placebo-treated groups.

 a = 0.05 (two-sided); b = 0.10
 Test = t test
 Effect size = 10% × 20 kg = 2 kg
 Standard deviation = 2 kg

The standardized effect size (E/S) is 1.0 (2 kg/2 kg). Looking at Appendix 6A, go down 
the left column to 1.00, then across to the fifth column from the left where a (two-sided) 
= 0.05 and b = 0.10. Approximately 23 subjects per group will be needed.

 4. H0: There is no difference in frequency of left-handedness in dyslexic and nondyslexic 
students.
HA: There is a difference in frequency of left-handedness in dyslexic and nondyslexic 
students.

 a = 0.05 (two-sided); b = 0.20
Test = chi-squared test (both variables are dichotomous)

 Effect size = odds ratio of 2.0

Given that the proportion of nondyslexic students who are left-handed (P2) is about 
0.1, the investigator wants to be able to detect a proportion of dyslexic students who are 
left-handed (P1) that will yield an odds ratio of 2.0. The sample size estimate will use a 
chi-squared test, and one needs to use Appendix 6B. However, that appendix is set up for 
entering the two proportions, not the odds ratio, and all that is known is one of the pro-
portions (P2 = 0.1).

To calculate the value for P1 that gives an odds ratio of 2, one can use the formula on 
page 59:

P1 = OR × P2 ÷ ([1 – P2] + [OR × P2]).

In this example:

P1 = (2 × 0.1) ÷ ([1 – 0.1] + [2 × 0.1]) = 0.18

So P1 is 0.18 and P2 is 0.1. P1 – P2 is 0.08.
Table 6B.2 in Appendix 6B reveals a sample size of 318 per group.
Extra credit: Try this using the formula on page 78; just slog on through, carrying 

6 places after the decimal. Then get an instant answer from the calculator on our website, 
www.epibiostat.ucsf.edu/dcr/.

 5. Standard deviation of IQ scores is about one-fourth of the “usual” range (which is 170 – 
130 = 40 points), or 10 points.

Total width of the confidence interval = 6 (3 above and 3 below). Confidence 
level = 99%.

Standardized width of the confidence interval = total width/standard deviation:

W/S = 0.6

Using Table 6D, go down the W/S column to 0.60, then across to the 99% confidence 
level. About 74 medical students’ IQ scores would need to be averaged to obtain a mean 
score with the specified confidence interval.

http://www.epibiostat.ucsf.edu/dcr/
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Chapter 7  Designing Cross-Sectional and Cohort Studies
 1a. Measure serum vitamin B12 levels in a cohort of persons more than 70 years of age and 

without a history of hip fractures, follow them for a period of time (say, 5 years) for the oc-
currence of hip fractures, and then analyze the association between B12 levels and incident 
hip fractures. (A smaller, albeit less generalizable study could be performed by studying 
only women, who have a higher rate of hip fractures; an even smaller study would enroll 
only white women, who have the highest rates of fractures.)

 1b. An advantage of the prospective cohort design for studying vitamin B12 sufficiency and hip 
fractures:
 Temporal sequence (i.e., the hip fracture follows the vitamin B12 deficiency) helps estab-

lish a cause–effect relationship. People who fracture their hips might become vitamin 
B12 deficient after the fracture because they have reduced B12 intake, perhaps because of 
nursing home placement.

A disadvantage of the prospective cohort design:
 A prospective cohort study will require that many subjects be followed for multiple 

years. The study will therefore be expensive and the findings delayed.
 1c. A retrospective cohort study could be done if you find a cohort with stored serum and 

with reasonably complete follow-up to determine who suffered hip fractures. The main 
advantage of this design is that it would be less time consuming and expensive. The major 
drawback is that measurements of vitamin B12 might be altered by long-term storage, and 
that measurements of potential confounders (such as physical activity, cigarette smoking, 
etc.) may not be available.

 2a. Although the PRIDE study is a randomized trial, the report of the baseline examination is 
an (observational) cross-sectional study. Cross-sectional studies are often the first step in 
cohort studies or randomized trials.

 2b. While it is possible that depression increases urinary incontinence, it seems at least equally 
plausible that urinary incontinence increases the risk of depression. As we will discuss in 
Chapter 9, it is also possible that the association is due to bias, e.g., if depressed women 
were more likely to report incontinence episodes even if they did not have more of them, 
or confounding, if a third factor (e.g., severity of obesity) caused both depression and 
incontinence.

A longitudinal (cohort) study could help by clarifying the time sequence of the associa-
tion. For example, depressed and non-depressed women with little or no incontinence at 
baseline could be followed to see whether the depressed women develop more or worse 
incontinence over time. Similarly, continent and incontinent women with no history of 
depression could be followed to determine whether more incontinent women are more 
likely to become depressed. Finally, and most convincingly, the investigators could study 
changes in depression or incontinence, either naturally occurring or (ideally) as a result of 
an intervention, and see if changes in one preceded changes in the other. For example, do 
depressive symptoms improve when incontinence is successfully treated? Does (reported) 
continence improve when depression lifts?

Chapter 8  Designing Case–Control Studies
 1a. The cases might consist of all women between 30 and 75 years of age with ovarian cancer 

reported to a local tumor registry, and who can be contacted by telephone and agree to 
participate.

 1b. The controls might be a random sample of all women between 30 and 75 years of age from 
the same counties as in the tumor registry. The random sample might be obtained using 
random-digit dialing (hence the need to restrict cases to those who have telephones).
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 1c. Since ovarian cancer requires intensive therapy and can be fatal, some cases may be unwill-
ing to enroll in the study or may have died before they can be interviewed. If a family his-
tory of ovarian cancer is related to more aggressive forms of ovarian cancer, then the study 
might underestimate its relative risk, because those cases with a positive family history 
would be less likely to survive long enough to be included in the sample of cases. If familial 
ovarian cancer is more benign than other ovarian cancers, the opposite could occur.

  Similarly, it is possible that healthy women who have a family member with ovarian 
cancer will be more interested in the study and more likely to enroll as a control. In that 
situation, the prevalence of family history of ovarian cancer in the control group will be 
artificially high, and the estimate of the risk for ovarian cancer due to family history will be 
falsely low. This problem might be minimized by not telling the potential control subjects 
exactly what the research question is or exactly which cancer is being studied, if this can 
be done in a way that is acceptable to the human subjects committee.

 1d. Family history of ovarian cancer is generally measured by asking subjects about how many 
female relatives they have, and how many of them have had ovarian cancer. Recall bias is a 
possible problem with this approach. Women with ovarian cancer, who may be concerned 
about the possibility of a genetic predisposition to their disease, may be more likely to re-
member or find out about relatives with ovarian cancer than healthy women who have not 
had reason to think about this possibility. This would cause the estimate of the association 
between family history and ovarian cancer to be falsely high.

In addition, women may confuse the gynecological cancers (cervical, uterine, and ovar-
ian) and confuse benign gynecological tumors that require surgery with malignant tumors. 
This may cause misclassification (some women without a family history of ovarian cancer 
will report having the risk factor and be misclassified). If misclassification occurs equally in 
the cases and controls, the estimate of the association between family history and ovarian 
cancer will be falsely low. If this type of misclassification is more common in cases (who 
may be more likely to misinterpret the type of cancer or the reason for surgery in rela-
tives), then the estimate of the association between family history and ovarian cancer will 
be falsely high. Misclassification could be decreased by checking pathological records of 
family members who are reported to have ovarian cancer to verify the diagnosis.

Finally, it would be desirable to take into account the opportunity for cases and controls 
to have a positive family history: women with many older sisters have greater opportu-
nity to have a positive family history than those with only brothers or younger sisters. 
As discussed in Chapter 9, matching and stratification are two ways of dealing with this 
possibility.

 1e. The simplest approach would be to dichotomize family history of ovarian cancer 
(e.g.,   first-degree relatives or not) and use the odds ratio as the measure of association. 
The odds ratio approximates the relative risk because the outcome (ovarian cancer) is 
rare. A simple chi-squared test would then be the appropriate test of statistical significance. 
 Alternatively, if family history were quantified (e.g., proportion of first- and second-degree 
female relatives affected), one could look for a dose–response, computing odds ratios at 
each level of exposure.

 1f. The case–control design is a reasonable way to answer this research question despite the 
problems of sampling bias, recall bias, and misclassification that were previously noted. 
The chief alternative would be a large cohort study; however, because ovarian cancer is 
so rare, a cohort design to answer just this specific question is probably not feasible. A 
retrospective cohort study, in which data on family history were already systematically 
collected, would be ideal, if such a cohort could be found.

 2a. Cases could be younger drivers (perhaps 16 to 20 years old) who were involved in crashes, 
and controls could be friends or acquaintances they identify. It would be important to 
exclude friends with whom they play video games, to avoid overmatching. Random digit 
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dialing would likely be less successful as a strategy for identifying controls, given the high 
prevalence of cellular phones (which, unlike land lines, are not geographically localized) 
in this age group. Cases and controls could also be identified if the investigator had access 
to the records of an automobile insurance company. An argument could be made that cases 
and controls should be matched for sex, given that both playing video games and crashing 
cars are more common in young men. The exposure would be measured using a question-
naire or interview about video game use. It would be important to ask about video games 
that do not involve driving as well as about those that do, because causal inference would 
be enhanced if the association were specific, namely, if there was an effect for use of driv-
ing/racing games, but not for shooting or other games.

 2b. For intermittent exposures hypothesized to have a short-term effect, like use of a video 
game just before driving, a case–crossover study is an attractive option. As in exercise 2a, 
cases could be younger drivers who were involved in crashes. In a case–crossover study 
there are no controls, just control time periods. Thus, case drivers would be asked about 
use of racing video games just before the trip that included the crash, and also about con-
trol time periods when they did not crash. The time period just before the crash is com-
pared in a matched analysis with other time periods to see if racing video game use was 
more common in the pre-crash period than in other time periods.

Chapter 9  Enhancing Causal Inference  
in Observational Studies
 1. There are five possible explanations for the association between dietary fruit and vegetable 

intake and CHD:
a. Chance—The finding that people with CHD eat fewer fruits and vegetables was due 

to random error. As discussed in Chapter 5, the P value allows quantification of the 
magnitude of the observed difference compared with what might have been expected 
by chance alone; the 95% confidence interval shows the range of values consistent with 
the study results. All else being equal, the smaller the P value and the further the null 
value is from the closer end of the confidence interval, the less plausible that chance is 
as an explanation.

b. Bias—There was a systematic error (a difference between the research question and 
the way the study plan was carried out) with regard to the sample, predictor variable, 
or outcome variable. For example, the sample may be biased if the controls were 
patients at the same health plan as the cases, but were selected from those attending 
an annual health maintenance examination, as such patients may be more health con-
scious (and hence eat more fruits and vegetables) than the entire population at risk 
for CHD. The measurements of diet could be biased if people who have had a heart 
attack are more likely to recall poor dietary practices than controls (recall bias), or 
if unblinded interviewers asked the questions or recorded the answers differently in 
cases and controls.

c. Effect–cause—It is possible that having a heart attack changed people’s dietary prefer-
ences, so that they ate fewer fruits and vegetables than they did before the heart attack. 
The possibility of effect–cause can often be addressed by designing variables to examine 
the historical sequence—for example, by asking the cases and controls about their pre-
vious diet rather than their current diet.

d. Confounding—There may be other differences between those who eat more fruits and 
vegetables and those who eat fewer, and these other differences may be the actual cause 
of the lower rate of CHD. For example, people who eat more fruits and vegetables may 
exercise more.
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Possible approaches to controlling for confounding by exercise are summarized in the 
following table:

Method Plan Advantages Disadvantages

Design Phase

Specification Enroll only people 
who report no regu-
lar exercise

Simple Will limit the pool of eligible sub-
jects, making recruitment more 
difficult. The study may not gen-
eralize to people that exercise

Matching Match each case to a 
control with similar 
 exercise level

Eliminates the ef-
fect of exercise as 
a predictor of CHD, 
often with a slight in-
crease in the precision 
(power) to observe 
diet as a predictor

Requires extra effort to identify 
controls to match each case. Will 
waste cases if there is no control 
with a similar exercise level. Elimi-
nates the opportunity to study 
the effect of exercise on CHD

Analysis Phase

Stratification For the analysis, 
group the subjects 
into three or four 
exercise strata

Easy, comprehensible, 
and reversible

Can only reasonably evaluate a 
few strata and a few confounding 
variables. Will lose some of the 
information contained in exercise 
measured as a continuous vari-
able by switching to a categorical 
variable, and this may result in in-
complete control of confounding

Statistical 
adjustment 
(modeling)

Use logistic regres-
sion model to control 
for fitness as well 
as other potential 
confounders

Can reversibly control 
for all the informa-
tion in fitness as a 
continuous predictor 
variable, while simul-
taneously controlling 
for other potential 
confounders such 
as age, race, and 
smoking

The statistical model might not 
fit the data, resulting in incom-
plete control of confounding and 
potentially misleading results. 
For example, the effect of diet or 
physical fitness may not be the 
same in smokers and nonsmok-
ers. The important potential 
confounders must have been 
measured in advance. Sometimes 
it is difficult to understand and 
describe the results of the model, 
especially when variables are not 
dichotomous

In addition to these four strategies for controlling confounding in observational studies, 
there is the ultimate solution: designing a randomized trial.
e. Cause–effect—The fifth possible explanation is that eating fruits and vegetables really 

does reduce the rate of CHD events. This explanation is made likely partly by a process 
of exclusion, reaching the judgment that each of the other four explanations is unlikely 
and partly by seeking other evidence to support the causal hypothesis. Examples of the 
latter are biologic evidence that there are components of fruits and vegetables (e.g., anti-
oxidants) that protect against atherosclerosis, and ecological studies that find that CHD 
is much less common in populations that eat more fruits and vegetables.

 2. This is an example of conditioning on a shared effect: The study included only infants with 
fever, which can be caused by both urinary tract infections and ear infections. Because 
uncircumcised boys were much more likely to have a urinary tract infection, they were 
more likely to have a cause for their fever other than an ear infection (i.e., they were over-
represented among boys who did not have an ear infection).

 3. The association between maternal acetaminophen use and asthma in offspring could be 
examined in a cohort study, in which mothers were asked about acetaminophen use during 
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pregnancy and offspring were followed for the development of asthma. Investigators would 
look for evidence that maternal genotype modifies the effect of maternal acetaminophen ex-
posure on asthma in the children (interaction), with a stronger association between exposure 
and outcome among those predicted to be most genetically susceptible. In fact, this is what  
was reported by Shaheen et al ( J Allergy Clin Immunol 2010;126(6):1141–1148 e7.)  
in the Avon Longitudinal Study of Parents and Children (ALSPAC).

Chapter 10  Designing a Randomized Blinded Trial
 1a. The main advantage of using the biomarker (a continuous variable) as the primary outcome 

of the trial is a smaller sample size and a shorter duration to determine whether the  treatment 
reduces the level of the marker. The main disadvantage is the uncertainty of whether change 
in the level of the marker induced by the treatment means that the treatment will reduce the 
incidence of the clinically far more important outcome, developing dementia.

 1b. The clinical diagnosis of dementia is a more meaningful outcome of the trial that could 
improve clinical practice for prevention of dementia. The disadvantage is that such a trial 
would be large, long, and expensive.

 2a. Participants should be asked at each follow-up visit whether they have experienced diar-
rhea, nausea, or vomiting. This could be done using a check box format that is easy to code 
and analyze. To find other unanticipated adverse effects, participants should also be asked 
at each visit to describe other symptoms, conditions, or medical care (such as hospitaliza-
tion or new prescription drug) that have occurred since the previous visit. These questions 
would be asked in an open-ended way, and the responses would subsequently be classified 
and categorized for data analysis.

 2b. Baseline collection of data should include (1) information about how to contact the par-
ticipant, a close friend, a family member, or a doctor to allow more complete follow-up; 
(2) characteristics of the enrolled population (such as age, ethnicity/race, and gender) to 
allow description of the study cohort; (3) risk factors for the outcome (such as hyperten-
sion or family history of dementia) that might identify participants with the highest rate of 
the outcome and could be used to demonstrate that the study groups were comparable at 
baseline, as well as define subgroups for secondary analyses; and (4) measurement of the 
outcome (severity of cognitive impairment). Biological specimens should be stored to al-
low future measurement of factors, such as genotypes of enzymes that metabolize the drug, 
that could influence the effectiveness of the treatment.

 2c. Stratified blocked randomization could guarantee that there would be a very similar num-
ber of participants with the Apoε4 genotype in the treatment and the placebo groups. This 
could be especially important if the effect of the treatment is influenced by the presence of 
the genotype. On the other hand, this process makes the trial more complicated (assessing 
Apoε4 genotype before enrollment will delay randomization and raises issues that include 
how to counsel participants about the results). The risk of a substantial imbalance in a rela-
tively large trial (>200 per arm) is low, so that simple randomization would be a good choice.

Chapter 11  Alternative Clinical Trial Designs  
and Implementation Issues
 1. The main goal of a phase I trial is to determine if the treatment is sufficiently safe and well 

tolerated to permit additional trials to find the best dose and test its clinical effectiveness. 
A phase I trial would enroll men with male pattern baldness, and use one or more potential 
human doses of the treatment (escalating the dose only if the prior dose did not cause side 
effects) with the main outcome of adverse events, such as the occurrence of rash. There 
would be no control group.
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 2a. The value of comparing finasteride to HairStat depends, in large part, on how strong the 
data are to support using finasteride as the standard-of-care for treatment of male pattern 
baldness. If these data are not very strong or finasteride is not commonly used in clinical 
practice, it would be better to compare HairStat to placebo. A placebo-controlled trial will 
provide clear evidence that HairStat is better than placebo. It may be reasonable to compare 
HairStat to finasteride if finasteride is considered the standard of care for male pattern bald-
ness and there are good quality randomized trials to document the efficacy of finasteride. 
In this case, the investigators should first decide if they think HairStat is more effective 
than finasteride. If so, an active comparison trial would be the best choice to compare Hair-
Stat to finasteride. If the investigators think that HairStat is just as good as finasteride, but 
will be much cheaper, they should consider a non-inferiority trial. In this case, they must 
take care to use a trial design that is very similar to that used to document the efficacy of 
finasteride (inclusion criteria, dose, duration of treatment, outcome measures), and must 
conduct the trial to ensure that there is minimal non-adherence and loss to follow-up. A 
major drawback of a non-inferiority trial is that the sample size is likely to be much larger 
than that required for a placebo-controlled trial.

 2b. A factorial design that includes a placebo has the advantages of comparing each treatment 
to a placebo, and (if planned with adequate statistical power) testing whether the combina-
tion of treatments is better than either one alone. The disadvantages are the larger size and 
greater cost and complexity of the trial.

 3. Adherence to the visits, protocol, and study medication could be improved by:
– Employing friendly research staff who are enthusiastic about the study
– Reminders (by digital messaging, e-mail, telephone, or mail) of upcoming visits and 

the importance of adherence to treatment
– Reimbursement for travel, parking, and other expenses related to the study
– Two screening visits before randomization to identify those participants more likely to 

miss follow-up visits
– A run-in period during which participants are asked to use placebo hair gel, and those 

who are non-adherent are excluded
– Other potential strategies listed in Table 11.2

 4. The main disadvantage of intention-to-treat analysis is that it includes participants who 
did not comply with the randomized treatment, and who therefore reduce the apparent 
magnitude of any effect that is observed for the whole randomized group. However, 
the disadvantages of using as-treated rather than intention-to-treat analysis are even 
greater. Because participants who do not comply with the intervention usually differ 
from those who do comply in important but unmeasured ways, as-treated analysis no 
longer has a true randomized comparison and may incorrectly conclude that the Hair-
Stat is effective.

 5. The conclusion that HairStat works better in younger men, based on a subgroup analy-
sis, may be wrong because the result may be due to chance. The probability of finding a 
“significant” effect in a subgroup when there is no significant effect overall increases with 
the number of subgroups tested; it is not clear how many subgroups were tested to find 
this “significant” effect. The claim that the treatment is effective in men younger than age 
40 implies that the treatment was ineffective—or even had the opposite effect—in older 
men. This result should also be reported and tested statistically for modification of the 
effect on hair growth of HairStat due to age. The claim that HairStat is effective in the 
subgroup of younger men should only be made if the subgroup analyses were specified 
in advance (ideally based on a biologic basis to suspect that HairState might work better 
in younger men), there were not a large number of subgroups tested, and the P value for 
effect modification (interaction) between the effect of treatment and age is statistically 
significant.
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Chapter 12  Designing Studies of Medical Tests
 1a. The best way to sample subjects for a diagnostic test is generally to sample patients at 

risk of a disease, before it is known who has the disease and who does not. In this case, 
sampling women who present acutely to a clinic or emergency department with abdominal 
pain consistent with pelvic inflammatory disease (PID) would probably be best. Comparing  
the erythrocyte sedimentation rates (ESRs) of women hospitalized for PID with those of 
a healthy control population would be the worst approach, because both the spectrum of 
disease and especially the spectrum of non-disease are not representative of the groups in 
whom the test would be used clinically. (Those hospitalized for PID probably have more 
severe disease than average, and healthy volunteers are much less likely to have high ESRs 
than women with abdominal pain due to causes other than PID.)

 1b. If those assigning the final diagnosis used the ESR to help decide who had PID and who did 
not, both the sensitivity and specificity might be falsely high. The more those assigning the 
diagnosis relied on the ESR, the greater the bias (called “incorporation bias”) in the study.

 1c. The best answer is that you should not use any particular cutoff for defining an abnormal 
result. Rather, you should graphically display the trade-off between sensitivity and specific-
ity using a receiver operating characteristics (ROC) curve and present likelihood ratios for 
various ESR intervals (e.g., <20, 20 to 49, ≥50 mm/hr) rather than sensitivity and specific-
ity at different cutoffs. This is illustrated by the following table, which can be created from 
the information in the question:

ESR PID No PID
Likelihood

Ratio

 50 75% 15% 5.00

20–49 15% 35% 0.43

< 20 10% 50% 0.20

100% 100%

>

The ROC curve could also be used to compare the ESR with one or more other tests 
such as a white blood cell count. This is illustrated in the following hypothetical ROC 
curve, which suggests that the ESR is superior to the WBC for predicting PID:
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 2a. This problem illustrates the common error of excluding people from the numerator with-
out excluding them from the denominator. Although it is true that there were only two 
children with “unexpected” intracranial injuries, the denominator for the yield must be 
the number of children in whom intracranial injuries would be considered unexpected, 
i.e.,  those with normal neurological examinations and mental status. This is probably a 
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much smaller number than 200. For example, suppose that only 50 of those sent for a CT 
scan had both a normal mental status and no neurological findings. In that situation, the 
yield would be 2 of 50, or 4%—nearly 4 times greater.

 2b. Unless the finding of an intracranial injury leads to changes in management and there is 
some way to estimate the effects of these management changes on outcome, it will be very 
hard to know what yield is sufficient to make the CT scan worth doing. It would be better 
to use “intracranial injury requiring intervention” as the outcome in this study, although 
this will require some consensus on what injuries require intervention and some estimate 
of the effectiveness of these interventions for improving outcome.

 2c. The first advantage of studying the effects of the CT scan on clinical decisions is the abil-
ity to examine possible benefits of normal results. For example, a normal CT scan might 
change the management plan from “admit for observation” to “send home.” In diagnostic 
yield studies, normal results are generally assumed to be of little value. Second, as men-
tioned earlier, abnormal CT scan results might not lead to any changes in management 
(e.g., if no neurosurgery was required and the patient was going to be admitted anyway). 
Studying effects of tests on clinical decisions helps to determine how much useful new 
information they provide, beyond what is already known at the time the test was ordered.

 3a. If only children who had a CT scan are included, the study will be susceptible to verifica-
tion bias (Appendix 12B), in which sensitivity is falsely increased and specificity is falsely 
decreased, because children without focal neurologic abnormalities (who are either “false 
negatives” or “true negatives”) will be underrepresented in the study.

 3b. If children with head injuries who did not have a CT scan are included, and assumed not 
to have an intracranial injury if they recover without neurosurgery, then the study will be 
susceptible to differential verification bias (“double gold standard bias”; Appendix 12C), 
which will tend to increase both sensitivity and specificity if some intracranial injuries 
resolve without neurosurgery.

Chapter 13  Research Using Existing Data
 1. Some possibilities:

a. Analyze data from the National Health and Nutrition Examination Survey (NHANES). 
These national population-based studies are conducted periodically and their results are 
available to any investigator at a nominal cost. They contain data that include variables 
on self-reported clinical history of gallbladder disease and the results of abdominal 
sonography.

b. Analyze Medicare data on frequency of gallbladder surgery in patients more than 65 years 
of age in the United States, or National Hospital Discharge Survey data on the frequency 
of such surgery for all ages. Both data sets contain a variable for race. Denominators 
could come from census data. Like the NHANES, these are very good population-based 
samples, but have the problem of answering a somewhat different research question 
(i.e., what are the rates of surgical treatment for gallbladder disease). This may be differ-
ent from the actual incidence of gallbladder disease due to factors such as access to care.

 2a. The main advantages are that using CHS data in a secondary data analysis was quick, easy, 
and inexpensive—especially compared to the time and expense of planning and conduct-
ing a large cohort study. In addition, the research fellow has since developed an ongoing 
collaboration with the investigators in CHS and has been able to add more sophisticated 
measures of kidney function to CHS as ancillary studies.

 2b. In some cases, the secondary data set does not provide optimal measures of the predictor, 
outcome, or potential confounding variables. It is important to be sure that the data set 
will provide reasonable answers to the research question before investing the time and ef-
fort required to obtain access to the data. A further drawback is that it can be difficult to 
obtain data from some studies—the investigator generally needs to write a proposal, find 
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a collaborator who is a co-investigator on the study, and obtain approval from the study 
Steering Committee and sponsor.

 3. There have been several large randomized controlled trials of the effect of estrogen and 
selective estrogen receptor modulators on various disease outcomes, including cancer, 
 cardiovascular events, and thromboembolic events. These trials include the Women’s 
Health Initiative randomized trials, the Breast Cancer Prevention trial, the Multiple Out-
comes of Raloxifene Evaluation trial, and the Raloxifene Use for the Heart trial. The best 
place for this investigator to begin would be to determine if estrogen can be measured in 
stored frozen sera and, if so, determine if any of these large trials have stored sera that 
could be used for this measurement. The best design for this question is a nested case–
control or case–cohort study. The investigator will likely need to write a proposal for this 
ancillary study, obtain approval from the trial Steering Committee and sponsor, and obtain 
funding to make the measurements—a relatively inexpensive prospect, since most of the 
costs of the study have already been covered by the main trial.

Chapter 14  Addressing Ethical Issues
 1a. It depends on whether the participants in the original study gave consent for their samples 

to be used for DNA sequencing, whether they gave consent for the DNA measurements 
to be used in future studies, and what kinds of future studies were specified. The original 
consent would not cover the proposed research if the blood samples were collected to be 
used only to repeat the tests specified in the protocol in case of lost samples or laboratory 
accidents (such as cholesterol and hemoglobin A1c). Similarly, the original consent would 
not cover the proposed research if the participants gave consent for the blood specimens to 
be used for genetic measurement of DNA in future studies of coronary artery disease, but 
there was no mention of using the specimens in studies of diabetes.

 1b. Under federal law, a study can be carried out on existing specimens and data if the new in-
vestigator cannot identify the participants, either directly or with the assistance of someone 
else. Thus, if the new researcher receives samples and data labeled by ID only, and the code 
that links the samples and the identities of the participants is destroyed or not accessible 
to the new researcher, additional consent need not be obtained for the secondary study. 
The ethical justification is that making materials anonymous in this fashion protects par-
ticipants from breaches of confidentiality, which is the major risk in research with existing 
materials and data. The presumption is that no one would object to their materials and 
data being used if there was no risk of breaches of confidentiality. Note, however, that some 
participants might find it objectionable for someone to sequence their DNA, even if confi-
dentiality is maintained, since the DNA contains information that could lead ultimately to 
a loss of confidentiality.

 1c. When researchers collect new samples in a research project, it is prudent to ask permission 
to collect and store additional blood to be used in future research studies. Storing samples 
allows future research to be carried out more efficiently than assembling a new cohort. 
Tiered consent is recommended: The participant is asked to consent (1) to the specific 
study (for example, the original cohort study), (2) to other research projects on the same 
general topic (such as risk of coronary artery disease), or (3) to all other future research 
that is approved by an IRB and by a scientific review panel. To address the issues raised 
in exercise 1b, the participant might also be asked to consent specifically to research in 
which his or her DNA would be sequenced. The participant may agree to one, two, or all 
options. Of course, it is impossible to describe future research. Hence, consent for future 
studies is not really informed in the sense that the participant will not know the nature, 
risks, and benefits of future studies. The participant is being asked to trust that IRBs and 
scientific review panels will only permit future studies that are scientifically and ethically 
sound.
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 2a. Withholding from the control group drugs that are known to be effective would subject 
them to harm and would therefore be unethical. Even if participants would give informed 
consent to participate in such a placebo-controlled trial, an IRB would not approve such 
a study, because it violates the regulatory requirements that the risk/benefit balance be 
 acceptable and that the risks be minimized.

 2b. If all participants in the trial were treated with current standard of care chemotherapy, 
the participants could also be randomized to the new treatment or placebo. Alternatively, 
the investigators might try to identify a subgroup of patients for whom no therapy has 
been shown to prolong survival (the most clinically significant endpoint in most cancer 
treatments). For example, patients whose disease has progressed despite several types of 
standard chemotherapy and have no options that are proven effective could be asked to 
participate in a placebo-controlled trial of the experimental intervention. An acceptable 
control arm could be placebo or best current treatment. This approach assumes that if the 
drug is active in previously untreated patients it will also be active after other treatments 
have failed. It is, of course, possible that a drug that does not work in refractory disease 
may be effective as first-line treatment.

 3a. During informed consent, the investigators must discuss: (1) the nature of the study; 
(2)  the number and length of visits; (3) the potential benefits and risks of participation 
(in this case primarily stigma and discrimination if confidentiality is breached); (4) alter-
natives to participation in the trial, including HIV prevention measures that are available 
outside the trial; (5) the voluntary nature of participation and the right to withdraw at 
any time; (6) protection of confidentiality consistent with state public health reporting 
requirements.

 3b. Investigators need to present information in a manner that participants can understand. 
Participants with low health literacy will not be able to comprehend a detailed written con-
sent form. It would be useful for the researchers to consult with community and advocacy 
groups on how to present the information. Suggestions might include videotapes, DVDs, 
and comic books. Extensive pretesting should be carried out. Furthermore, researchers 
should determine what misunderstandings about the study are common and revise the 
consent process to address them.

 3c. Even though the study is an observational study, researchers have an ethical obligation to 
provide information to participants about how to reduce their risk for HIV infection. There 
are both ethical and scientific reasons for doing so. Researchers have an ethical obligation 
to prevent harm to participants in their study. They may not withhold feasible public 
health measures that are known to prevent the potentially fatal illness that is the endpoint 
of the study. Such measures would include counseling, condoms, and referral to substance 
abuse treatment and needle exchange programs. Researchers must also invoke these mea-
sures to prevent harm to participants in the subsequent vaccine trial, even though the 
power of the trial will be reduced.

Chapter 15  Designing Questionnaires, Interviews, 
and Online Surveys
 1a. There is no definition of how big a “drink” is.
 1b. There is no way to respond if the subject is drinking more than 8 drinks per day.
 1c. The question does not specify time—weekdays versus weekend, every day versus less than 

daily.
 1d. It may be better to specify a particular time frame (e.g., in the past 7 days).
 2a. Which of the following statements best describes how often you drank alcoholic beverages 

during the past year? An alcoholic beverage includes wine, liquor, or mixed drinks. Select 
one of the 8 categories.
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2–3 times per month
About once a month
Less than 12 times a year
Rarely or not at all

Every day
5– 6 days per week
3–4 days per week
1–2 days per week

 2b. During the past year, how many drinks did you usually have on a typical day when 
you drank alcohol? A drink is about 12 oz. of beer, 5 oz. of wine, or 11–2 oz. of hard 
 liquor. _____________ drinks

 2c. During the past year, what is the largest number of alcoholic drinks you can recall drinking 
during one day? __________ drinks

 2d. About how old were you when you first started drinking alcoholic beverages? 
_________ years old (If you have never consumed alcoholic beverages, write in “never”)

 2e. Was there ever a period when you drank quite a bit more than you do now?

No
Yes If Yes, which of the following statements best describes how often

you drank during that period? Select one of the 8
categories

e(i).

e(ii).  During that period, how many drinks did you usually have on
a typical day when you drank alcohol?  drinks

e(iii). For about how many years did you drink more than you do
now?  years

About once a month
2–3 times per month

Less than 12 times a year
Rarely or not at all

Every day
5–6 days per week
3–4 days per week
1–2 days per week

 2f. Have you ever had what might be considered a drinking problem?
  Yes
  No

 3a. Obtaining data through interviews requires more staff training and time than a self- 
administered questionnaire and is therefore much more expensive.

 3b. Some subjects do not like to tell another person the answer to sensitive questions in the 
area of sexual behavior.

 3c. Unless the interviewers are well trained and the interviews are standardized, the informa-
tion obtained may vary.

 3d. However, interviewers can repeat and probe in a way that improves comprehension and 
produces more accurate and complete responses in some situations than a self- administered 
questionnaire.

Chapter 16  Data Management
 1. 

SubjectID
EverSmoked-
100Cigs AgeFirstCig

AvgCigs-
PerDay

PastWeek-
CigsAny

PastWeek-
CigsPerDay

Age-
Stopped-
Smoking

1001 1 17 30 1 30

1002 1 21 20 0 45

1003 0 0
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This is how the data might look in a spreadsheet program such as Excel. There are many 
acceptable possibilities for the field names (column headings). These field names use Intra-
Caps (capitals in the middle of the word to separate its parts). Database designers are about 
equally divided between those who like IntraCaps and those who don’t.

 2a. 

Subjec-
tID

KitNum-
ber

AdminD-
ate

Admin-
Time

SzStop-
PreHosp

SzStop-
PreHosp-
Time

HospArr-
Time

HospArr-
SzAct

HospArr-
GCSV

189 A322 3/12/1994 17:39 0 17:48 1

410 B536 12/1/1998 01:35 1 01:39 0.1:53 0 4

 2b. 

Field Name Data Type Description Validation Rule

SubjectID Integer Unique subject identifier

KitNumber Text(5) Five-character Investiga-
tional Pharmacy Code

AdminDate Date Date study drug 
administered

AdminTime Time Time study drug 
administered

SzStopPreHosp Yes/no Did seizure stop during 
prehospital course?

SzStopPreHosp-
Time

Time Time seizure stopped dur-
ing prehospital course 
(blank if seizure did not 
stop)

HospArrTime Time Hospital arrival time

HospArrSzAct Yes/no Was there continued sei-
zure activity on hospital 
arrival?

Check against 
SzStopPreHosp

HospArrGCSV Integer Verbal GCS on hospital 
arrival (blank if seizure 
continued)

Between 1 and 5

 2c. Advantages of an on-screen form:
 No need for transcription from paper forms into the computer data tables
 Immediate feedback on invalid entries
 Programmed skip logic (if seizure stopped during prehospital course, computer form 

prompts for time seizure stopped; otherwise, this field is disabled and skipped)
 Can be made available via a Web browser at multiple sites simultaneously

  Disadvantages of an on-screen form:
 Hardware requirement—a computer workstation
 Some user training required

  Advantages of a paper form:
 Ease and speed of use
 Portability
 Ability to enter unanticipated information or unstructured data (notes in the margin, 

responses that were not otherwise considered, etc.)
 Hardware requirement—a pen
 User training received by all data entry personnel in elementary school
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  Disadvantages of a paper form:
 Requires subsequent transcription into the computer database
 No interactive feedback or automated skip logic
 Data viewing and entry limited to one person in one place

Although data entry via on-screen data collection forms has many advantages and we 
recommend it for most research studies, in this study it is impractical. The simplest,  fastest, 
and most user-friendly way to capture data on a nonvolatile medium is still to use a pen 
and paper.

 3. When coded with 0 for no or absent and 1 for yes or present, the average value of a di-
chotomous (yes/no) variable is interpretable as the proportion with the attribute. Of those 
randomized to lorazepam, 40.9% (27 of 66) were still seizing on hospital arrival; of those 
randomized to diazepam, 57.4% (39 of 68) were still seizing; and of those randomized to 
placebo, 78.9% (56 of 71) were still seizing.

Chapter 17  Implementing the Study and Quality Control
 1a. Not enough! But here are some steps he can take:

 Identify all missing and out-of-range values and recheck the paper forms to make sure 
that the data were entered correctly.

 Retrieve missing data from charts.
 Collect missing interview data from surviving participants (but this will not help for 

those who died or for those whose responses might have changed over time).
 Make a special effort to find subjects who had been lost to follow-up, and at least get a 

telephone interview with them.
 Obtain vital status, using the National Death Index or a company that helps find  people.

 1b.    Collect fewer data.
 Check forms on site immediately after collecting the data to be certain that all items are 

complete and accurate.
 Use interactive data entry with built-in checks for missing, out-of-range and illogical 

values.
 Review the database shortly after data entry, so that missing data can be collected 

 before the participant leaves the hospital (or dies).
 Periodically tabulate the distributions of values for all items during the course of the 

study to identify missing values, out-of-range values, and potential errors.
 Hold periodic team meetings to review progress and emphasize the importance of 

 complete data.

Chapter 18  Community and International Studies
 1a. The G.I. clinic

 Advantages. This is likely to be a convenient and accessible source of patients.  
The clinic staff probably has experience participating in research. Implementing 
a standard battery of diagnostic tests for patients with abdominal pain should not be 
difficult.

 Disadvantages. Patients in this clinic might be a highly selected subset of all patients 
in the community with abdominal pain, and the clinical course of these patients may 
differ from others in the community. The results may therefore have limited generaliz-
ability.

 1b. Community clinics
 Advantages. Here you can identify patients at first presentation without the selection 

and delay caused by the referral process. Community physicians may benefit from the 
opportunity to participate in research.
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 Disadvantages. These are mainly logistic. Identifying participating physicians and 
patients and implementing a standard research protocol will be a major organizational 
task, and quality control will be a challenge.

 2a. This can only be answered with local data. Research elsewhere will not help.
 2b. This is well known from the international literature. Repeating such research in China is 

unlikely to be an efficient use of resources.
 2c. For this question, the generalizability of research from elsewhere is likely to be intermedi-

ate. Strategies for smoking cessation that have proven successful in other countries may 
serve as a basis for strategies to be tried in China, but one cannot be sure they will have the 
same success in China without local research. Previous studies in populations elsewhere 
with cultural ties to China, such as recent Chinese immigrants to the United States, may 
be helpful.

Chapter 19  Writing a Proposal for Funding Research 
 1–3.  We hope you came up with some useful ideas for planning your own research agenda, and 

we encourage you to involve your mentors and peers in discussions of how best to move 
forward.
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Accessible population. The group of people to whom the investigator has access and who could be 
selected for, or approached about participating in, the study. For example, the accessible population for 
the study consisted of women with breast cancer who were treated within 6 weeks of their original diag-
nosis at Longview Hospital from January 1, 2013, through June 30, 2014. See also intended sample and 
target population.

Accuracy. The degree to which a measurement corresponds to its true value. For example, self-reported 
bodyweight is a less accurate measurement of actual bodyweight than one made with a calibrated 
electronic scale.

Adjustment. A general name for various statistical techniques used to account for the effects of one 
or more variables on an association between two other variables. For example, adjustment for income 
reduced the magnitude of the association between education and mortality.

Alpha. When designing a study, the preset maximum probability of committing a type I error, that is, 
rejecting the null hypothesis when it is true. For example, by choosing an alpha of 0.05, the investigator 
set a maximum probability of 5% that her study would find a statistically significant association between 
non-white race and the risk of colon cancer by chance alone. Also called the level of statistical significance.

Alternative hypothesis. The proposition, used in estimating sample size, that there is an association 
between the predictor and outcome variables in the population. For example, the study’s alternative hy-
pothesis was that teenagers who smoke cigarettes have a different likelihood of dropping out of school 
than those who do not smoke. See also null hypothesis.

Analytic study. A study that looks for associations between two or more variables. For example, the in-
vestigator did an analytic study of whether height was correlated with blood pressure in medical students. 
See also descriptive study.

Association. A quantifiable relationship between two variables. For example, the study found an associa-
tion between male sex and risk of cognitive impairment among 60- to 69-year-olds, with a risk ratio of 1.6.

Before-after study. A study that compares the attributes of subjects before and then again after an in-
tervention. For example, the study compared mean serum cholesterol levels before and after institution 
of a low-fat diet.

Beta. When designing a study, the preset maximum probability of committing a type II error, that is, 
failing to reject the null hypothesis when it is false. This measure is only meaningful in the context of an 
effect size. For example, if an investigator specifies a beta of 0.20 (and alpha of 0.05), she would need 
about 25,000 subjects per group followed for 10 years to show that daily aspirin halves the risk of colon 
cancer. Put another way, if aspirin actually had exactly that effect, her study of 25,000 per group would 
have a 20% chance of failing to reject the null hypothesis of no difference (at alpha = 0.05). See also power.

Between-groups design. A study design that compares the characteristics or outcomes of subjects in 
two (or more) different groups. For example, the investigator used a between-groups design to compare 
in-hospital mortality rates among patients treated in intensive care units that had round-the-clock inten-
sivists with those among patients treated in units that used electronic monitoring of patients. See also 
within-group design.

Bias. A systematic error in a measurement, or in an estimated association, due to a shortcoming in a 
study’s design, execution, or analysis. For example, due to a bias in the way subjects remembered their 

Glossary
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exposure to toxic chemicals, patients with leukemia were more likely to report use of insecticides than 
were controls.

Blinding. The process of ensuring that subjects and/or investigators are unaware of the group (e.g., 
intervention or control) to which subjects are assigned, usually in the context of a randomized trial. Also 
called masking, especially in ophthalmologic studies. For example, by using identical placebo pills and 
keeping the list of subject assignments off-site, both the subjects and the investigators (including research 
assistants) were blinded to which subjects were treated with the active medication.

Blocked randomization. A method of assigning subjects to a particular intervention in blocks (groups) 
of a pre-specified size (e.g., four or six) to ensure that similar numbers of subjects are assigned to the in-
tervention and control groups. Often used in multi-center studies in which the investigators want the total 
numbers of intervention and control subjects to be similar at each site. For example, patients within each 
clinic were randomly assigned to either the treatment or control groups in blocks of six, ensuring that the 
number of subjects per group would differ by no more than 3. See also stratified blocked randomization.

Bonferroni correction. A technique to prevent type I errors by dividing the overall alpha in a study 
by the number of hypotheses tested. For example, because the investigators were testing four different 
hypotheses, they used Bonferroni correction to reduce alpha for each hypothesis from 0.05 to 0.0125.

Calibration. The process of ensuring that an instrument gives a consistent reading; usually done by 
measuring a known standard and then adjusting (calibrating) the instrument accordingly. For example, 
the scale was calibrated monthly by weighing a 50-kg block of steel.

Case. A subject who has, or who develops, the outcome of interest. For example, cases were defined as 
those who had unstable angina, myocardial infarction, or sudden death during follow-up. See also control.

Case–cohort study. A research design in which subjects who develop a disease (or other outcome) 
are selected as cases during follow-up of a larger cohort, and then compared with a random sample of 
the overall cohort. For example, a case–cohort study enrolled a cohort of 2,000 men with early prostate 
cancer, and compared levels of androgens and vitamin D from samples obtained at baseline among those 
who died during follow-up with levels in a random sample of the entire cohort.

Case–control study. A research design in which cases who have a disease (or other outcome) are 
compared with controls who do not. For example, a case–control study compared average weekly con-
sumption of nuts and seeds among cases of diverticulitis seen in an emergency room with nut and seed 
consumption of controls who had other gastrointestinal diagnoses.

Case–crossover study. A variant of the case–control design, in which each case serves as his own con-
trol, and the value of a specific time-dependent exposure in the period before the outcome occurred is 
compared with its value during one or more control periods of time. This design is susceptible to recall 
bias and is therefore most useful when an exposure can be ascertained objectively. For example, a case–
crossover design was used to determine whether patients who presented to an emergency room with a 
migraine headache were more likely to have eaten chocolate within the previous 2 hours than during a 
similar time one day previously.

Categorical variable. A variable that can have only several possible values. For example, the investigator 
transformed her measurements of reported educational level into a categorical variable with four values: 
less than high school, high school or some college, college degree, or post-college degree. See also continu-
ous variable, dichotomous variable, nominal variable, and ordinal variable.

Cause–effect. The concept that a predictor is responsible for producing an outcome—or increasing 
the likelihood of an outcome’s occurrence. The purpose of most observational studies is to demonstrate 
cause–effect, though this is difficult to do unless the cause (e.g., a treatment) is assigned randomly. For 
example, the investigator performed a case–control study to determine whether there was a cause–effect 
relation between drinking alcohol (the cause) and pancreatic cancer (the effect). See also confounding and 
effect–cause.

Chi-squared test. A statistical technique that compares two (or more) proportions to determine if they 
are significantly different from one another. For example, a study determined whether the risk of demen-
tia was similar among people who exercised at least twice a week as compared with those who exercised 
less frequently by comparing those risks statistically with a chi-squared test.
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Classification and Regression Trees (CART). See recursive partitioning.

Clinical prediction rule. An algorithm that combines several predictors, including the presence or 
absence of various signs and symptoms and the results of medical tests, to estimate the probability of a 
particular disease or outcome. For example, the investigators developed a clinical prediction rule for the 
diagnosis of wrist fracture among postmenopausal women based on information about prior fractures, the 
characteristics of the fall (if any), physical examination of the forearm, and current medications.

Clinical trial. A research design in which subjects receive one of (at least) two different interventions. 
Usually, the interventions are is assigned randomly; thus, the term randomized clinical trial. Clinical trials 
are sometimes called experiments. For example, the investigator performed a clinical trial to determine 
whether prophylactic treatment with penicillin reduced the risk of bacterial endocarditis among patients 
with abnormal heart valves who were undergoing dental procedures.

Clinic-based control. In the context of a case–control study, the selection of control patients from the 
same clinics (or practices) from which the cases were chosen. For example, the investigator used clinic-
based controls in her study of whether running on pavement for at least two miles per week was associ-
ated with radiographic osteoarthritis of the knee.

Cluster randomization. A technique in which groups of participants, known as clusters, are randomly 
assigned to different treatments, rather than having each participant assigned randomly as an individual. 
For example, in a study of the effects of noise reduction on recovery from cardiac surgery, the investiga-
tor used cluster randomization to assign intensive care units in 40 different hospitals to either a “post-
operative quiet” intervention or a “usual care” control.

Cluster sampling. A sampling technique in which subjects are selected in groups (clusters) rather 
than as individuals. Most often used for convenience when sampling large populations. For example, 
an  investigator interested in determining the prevalence of drug use used cluster sampling to enroll 300 
patients. First, she identified potential subjects by choosing 10 three-digit prefixes (e.g., 285-, 336-, etc.) 
within an area code; then she used random-digit dialing to find 30 willing subjects within each three-digit 
cluster.

Coefficient of variation (CV). A measure of the precision of a measurement, obtained by dividing the 
standard deviation of a series of measurements performed on a single sample by the mean of those mea-
surements. Sometimes, the CV is obtained for values at the middle and the extremes of the measurement. 
For example, the lab determined that its coefficient of variation for serum estradiol levels was 10% in 
a sample from a peri-menopausal woman (in whom the estradiol level was very low), but only 2% in a 
younger woman.

Cohort study. A prospective cohort study involves enrolling a group of subjects (the cohort), perform-
ing some baseline measurements, and then following them forward in time to observe outcomes; a ret-
rospective cohort study involves identifying a group of subjects (the cohort) in whom the measurements 
have already been made, and in whom some or all of the follow-up has already occurred. For example, 
an investigator did a retrospective cohort study of whether the results of an emotional intelligence test 
administered when soldiers enlisted in the U.S. Army was associated with the subsequent likelihood of 
developing post-traumatic stress disorder (PTSD).

Co-intervention. In a clinical trial, an intervention that occurs after randomization, other than the inter-
vention being studied, that affects the likelihood of an outcome. Co-interventions that occur at different 
rates in the study groups can bias the outcome and make it difficult to ascribe causality to the intervention 
being studied. For example, a study of the effect of a breastfeeding promotion intervention on subsequent 
allergic disease in infants was hard to interpret because the women in the intervention group not only 
breastfed longer, but were also more likely than the control group to delay the introduction of solid foods 
and to purchase hypo-allergenic formula, both of which were potential co-interventions.

Complex hypothesis. A research hypothesis that has more than one predictor or outcome variable. 
Complex hypotheses should be avoided, because they are difficult to test statistically. For example, the 
investigators reformulated their complex hypothesis (“That a new program in case management would 
affect both length of stay and the likelihood of readmission”) into two simple hypotheses (“That a new 
program in case management would affect length of stay” and also “That a new program in case manage-
ment would affect the likelihood of readmission”). See also simple hypothesis.
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Concordance. A measure of agreement between two (or more) observers about the occurrence of a 
phenomenon. For example, the concordance between radiologists A and B was 96% for the presence of a 
lobar pulmonary infiltrate, but only 76% for cardiomegaly. See also kappa.

Conditioning. The process of examining the associations between two or more other variables at fixed 
levels of a “conditioned-on” variable. Specification, matching, stratification, and multivariate adjustment 
are the most common ways of conditioning on a variable. For example, the investigator found no associa-
tion between cocaine use and the risk of syphilis after conditioning on the number of sexual partners.

Conditioning on a shared effect. A source of bias in epidemiologic studies in which an association is 
introduced between two different causes of the same effect by conditioning on that effect. For example, 
due to conditioning on a shared effect (total screen time), there is an inverse association between televi-
sion and gaming among children with at least 6 hours per day of screen time: Those who spend more time 
watching television spend less time playing videogames.

Confidence interval. A term that is often misunderstood, a confidence interval is best thought of as 
a measure of precision: the narrower a confidence interval, the more precise the estimate. Confidence 
intervals are closely related to statistical significance: A (1 – α)% confidence interval (approximately) 
includes the range of values that were not statistically significantly different (at significance level α) from 
what was observed. Confidence intervals are often erroneously interpreted as direct statements about 
posterior probability (e.g., that there is a 95% probability that the true value is contained within the 95% 
confidence interval). This is incorrect because posterior probability depends on other information besides 
what was found in the study. For example, a relative risk of 1.6, with a 95% confidence interval from 0.9 
to 2.8, would not be statistically significant at an alpha of 0.05, because the interval includes “no effect” 
(a relative risk of 1.0). See also alpha and P value.

Confounder. See confounding.

Confounding. An epidemiologic phenomenon in which an association between a predictor and an out-
come is due to a third variable (called the confounder or the confounding variable), rather than being a 
cause–effect relation between the predictor and the outcome. For example, the apparent association be-
tween cigarette smoking and cervical cancer was confounded by human papilloma virus (HPV) infection, 
because women who smoked were also more likely to have (multiple sexual partners and) HPV infection. 
See also effect modification.

Confounding by indication. A specific form of confounding in which one of the indications for a treat-
ment is the confounder; usually occurs in observational studies of the association between a treatment and 
an outcome. For example, the reviewers of an observational study were concerned that the reported as-
sociation between a new treatment for bipolar disorder and increased suicide risk might have occurred be-
cause patients with more severe underlying disease had been selectively treated with the new medication.

Confounding variable. See confounding.

Consecutive sample. A study sample in which the subjects are chosen one after another until the sample 
size is achieved. Usually used to refer to the intended sample; it may also refer to the actual sample when 
performing medical records reviews, since informed consent may not be required. For example, the in-
vestigators performed consecutive sampling to review the charts of the first 100 patients with rheumatoid 
arthritis seen in the rheumatology clinic, beginning January 15, 2013.

Construct validity. A term that describes how well a measurement corresponds to the theoretical 
definitions of the trait (the “construct”) that is being measured. For example, a measurement of social 
anxiety was thought to have construct validity, because there were substantial differences in its values 
among people whose friends described them as “fun-loving” and “extroverted” as compared with those 
who were described as “shy” and “unlikely to go to parties.” See also content validity and criterion-related 
validity.

Contamination. The undesirable process by which some or most of the effects of an intervention also 
affect subjects in the control group. For example, a study of the effects of whether teaching children 
to count backwards improved their overall arithmetic skills was plagued by contamination, because 
the children in the intervention group couldn’t resist teaching that skill to their friends in the control 
group.
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Content validity. A term that describes how well a measurement represents several aspects of the phe-
nomenon being studied. For example, a measurement of insomnia was thought to have content validity, 
because it measured total amount of sleep, episodes of nighttime awakening, early morning awakening, en-
ergy on arising for the day, and daytime sleepiness. See also construct validity and criterion-related validity.

Continuous variable. A measurement that, in theory, can have an infinite number of possible values. In 
practice, the term is often used for measurements that have “many” (some say 10 or more, others say 20 or 
more) possible values. For example, systolic blood pressure was measured as a continuous variable in mm Hg 
using a mercury sphygmomanometer. See also categorical variable, dichotomous variable, and discrete variable.

Control. A term that has two distinct meanings. First, control refers to a subject who does not have the 
outcome of interest, and is therefore a member of a comparison group to which those with the outcome 
(the “cases”) are compared. For example, for a study of risk factors for peptic ulcer disease, controls were 
selected from patients hospitalized during the study period with a non-gastrointestinal diagnosis. Second, 
control refers to the inactive “treatment” (i.e., a placebo or “usual care”) received by participants in a 
clinical trial who did not receive the study intervention; in that context, control is also used to refer to a 
participant who received the inactive treatment. For example, the controls were given placebo tablets that 
looked identical to the active drug. See also case and intervention.

Convenience sample. A group of subjects who were selected for a study simply because they were rela-
tively easy to access. For example, the investigator used a convenience sample of patients from her clinic 
to serve as controls for her case–control study of risk factors for meningioma.

Correlation coefficient. A statistical term that indicates the degree to which two continuous measure-
ments are related linearly, such that a change in one measure is associated with a proportional change in 
the other. Often abbreviated as r. For example, height and weight were correlated in a sample of middle-
aged women with r = 0.7.

Cox model. Also called Cox proportional hazards model. A multivariable statistical technique that mea-
sures the individual effects of one or more predictor variables on the rate (hazard) at which an outcome 
occurs in a sample, accounting for differing lengths of follow-up among subjects. For example, using a 
Cox proportional hazards model, men were about twice as likely as women, and blacks about three times 
as likely as whites, to develop strokes, adjusting for age, blood pressure, and diabetes, as well as length of 
follow-up. See also logistic regression model.

Criterion-related validity. A term that describes how well a measurement correlated with other ways of 
measuring the same phenomenon. For example, a measurement of depression in adolescents was thought 
to have criteria-related validity, because it had a high correlation with scores on the Beck depression in-
ventory. See also construct validity and content validity.

Crossover. A term used to describe a subject, usually in a clinical trial, who starts out in one group (say, 
usual care) and switches to the other group (say, the active treatment) during the study. Most commonly 
occurs when the active treatment involves a procedure. For example, 15 subjects with prostate cancer 
who were initially assigned to watchful waiting crossed-over to receive radiation therapy or surgery dur-
ing the trial.

Crossover study. A research design in which all the subjects from one treatment (or control) group are 
switched to the other group, usually at the midway point of the study. Sometimes, there is a washout 
period between the two phases. This design, which enables all subjects to receive the active treatment, 
is only useful for conditions that return to baseline after treatment. For example, patients with migraine 
headaches were involved in a crossover study comparing a new drug with a placebo for the prevention 
of migraines.

Cross-sectional study. A research design in which subjects are selected and measurements made within a 
limited period of time, usually to estimate the prevalence of an exposure or a disease. For example, the prev-
alence of myopia was estimated in a cross-sectional study of 1,200 college students in Berkeley, California.

Cumulative incidence. See incidence.

Data. A plural noun used to describe measurements, usually in numeric format. (The singular of data is 
datum.) For example, data concerning the prevalence of various diseases are useful when making deci-
sions about allocation of health care resources.
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Data dictionary. A table or spreadsheet that includes information about each of the variables in a study, 
including its name and type (e.g., numeric or string), the definition of each value, and the allowed range 
of values. For example, the investigator consulted the data dictionary because she had forgotten that a “5” 
in the field named “race” was used to indicate American Indian/Alaska Native.

Data table. A table of study data in which each row corresponds to a unique record and each column 
corresponds to a field or attribute. All studies will have a table of study subjects in which each row corre-
sponds to an individual participant and the columns correspond to participant-specific information, such 
as sex and date of birth. Most studies will use additional tables in which the rows correspond to study 
visits, laboratory results, telephone contacts, etc.

Dependent variable. See outcome variable.

Descriptive study. A study that does not look for associations, test hypotheses, or make comparisons. 
For example, the investigator performed a descriptive study of the prevalence of obesity among preschool 
children. See also analytic study.

Diagnostic test study. A study that looks at whether the results of a medical procedure are useful in 
assessing the likelihood of a particular diagnosis in a patient. For example, a diagnostic test study was 
designed to determine whether serum bicarbonate levels were useful in the diagnosis of sepsis among 
patients with fever.

Dichotomous variable. A variable that can have only one of two values, such as yes/no or male/female. 
For example, the examiner dichotomized systolic blood pressure into hypertensive (≥ 140 mm Hg) or not. 
See also categorical variable and continuous variable.

Differential bias. A general term for the situation in which a measurement varies systematically by 
the status of the subject, usually by whether or not the subject is a case or a control; it most commonly 
occurs with recalled exposures. For example, because cases of adult celiac disease were more likely to 
recall childhood exposures to wheat-containing products as children than their siblings who had grown 
up in the same household, the investigators suspected that there was differential recall bias. See also non-
differential bias.

Differential verification bias. A bias that occurs in studies of diagnostic tests when different gold stan-
dards are applied to different subjects, depending at least in part on the result of the test being studied. 
For example, in a study of prostate specific antigen (PSA) screening for prostate cancer in men, those with 
high PSA levels received prostate biopsies, while those with normal PSA levels were followed clinically; 
this raised the concern that differential verification bias falsely increased the sensitivity, and decreased the 
specificity, of PSA screening in men with indolent prostate cancer.

Discrete variable. A type of variable that takes on only integer values. For practical purposes, continu-
ous variables are sometimes treated as discrete variables. For example, age is usually expressed as age 
in years at last birthday, and current smoking as average number of cigarettes smoked per day. See also 
continuous variable.

Dose–response. The phenomenon by which the greater the exposure (dose), the greater the magnitude 
or likelihood of the outcome (response). (If an exposure is protective, then the greater the exposure, the 
lower the likelihood of the outcome.) For example, one study reported a dose–response relation between 
sun exposure and numbers of melanocytic nevi; another reported a dose–response relation between 
numbers of nevi and risk of melanoma.

Double-cohort study. A study design in which subjects are enrolled into one of two distinct cohorts, 
often by occupation. For example, a double-cohort study was used to compare the risks of contact derma-
titis of the hands, as well as fungal infections of the feet, among potters versus dancers.

Double gold standard bias. See differential verification bias.

Dropout. A study subject in whom outcome status cannot be ascertained, often because she refused 
follow-up. Sometimes this includes subjects who drop out because they died during the study. For 
example, there were 17 dropouts in a study: 8 due to refusal, 6 due to death, and 3 because of the devel-
opment of dementia.
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Effect–cause. The situation in which an outcome causes the predictor, rather than vice-versa. For 
 example, although a case–control study observed that exposure to inhaled bronchodilators was associated 
with an increased risk of interstitial lung disease, the most likely explanation was effect–cause, namely 
that patients with interstitial lung disease were more likely to have been treated (erroneously) with inhal-
ers. See also cause–effect.

Effectiveness. Although there is no standard definition of this term, we use it to refer to a measure of 
how well an intervention works in actual practice, as opposed to how well it worked in a randomized trial. 
For example, because clinical trials have found that tissue plasminogen activator (tPA) reduces morbid-
ity and mortality from stroke in several trials performed in urban settings, the investigators studied its 
effectiveness in 25 rural emergency rooms. See also efficacy.

Effect modification. The condition in which the strength of the association between a predictor and an 
outcome is affected by a third variable (often called the effect modifier, though it can be difficult to deter-
mine which is the predictor and which the effect modifier). For example, the investigators found that the 
effects of income on stroke risk differed in whites and blacks, such that poverty had stronger association 
with stroke in blacks than in whites. See also confounding.

Effect size. In the context of sample size planning, a measure of how big a difference the investiga-
tor wishes to detect between the groups that will be compared, or of the size of the association. More 
generally, the actual size of that difference or association after the study is completed. For example, the 
investigators based their sample size estimates on an effect size of a 20 mg/dL difference in mean blood 
glucose levels in the two groups.

Efficacy. Although there is no standard definition of this term, we use it to refer to a measure of how 
well an intervention worked in a clinical trial, as opposed to how well it would work in actual practice. 
For example, a clinical trial reported that tissue plasminogen activator (tPA) had an efficacy of 25% in 
reducing morbidity and mortality among patients with acute stroke. See also effectiveness.

Entry criteria. A list of the attributes that subjects must have to be eligible to participate in a study. The 
entry criteria may vary if subjects are enrolled in different groups, such as in case–control or double–cohort 
studies. For example, the entry criteria for a study of a new treatment for gout included age between 20 
and 75 years, at least one episode of physician-diagnosed gout in the previous 12 months, and a serum uric 
acid level of at least 6 mg/dL. See also exclusion criteria and inclusion criteria.

Epidemiologist. A physician, broken down by age and sex. For example, one of the authors (but we are 
not saying which one!).

Epidemiology. The science of determining the frequency and determinants of diseases or other health out-
comes in populations. For example, a study investigated the epidemiology of handgun violence in inner cities.

Equipoise. The situation in which it is not known which of two possibilities (drug X is better than pla-
cebo; drug X is worse than placebo) is more likely to be true. Thus, it is ethical to compare drug X and 
placebo in a randomized trial. For example, the investigators believed that there was clinical equipoise in 
a trial, since it was not known whether a proposed new treatment for esophageal cancer would result in 
better outcomes than the current standard of care.

Equivalence study. A study whose purpose is to show that two (or more) treatments have similar 
outcomes; usually, one of the treatments is new, and the other is known to be effective. For example, 
an equivalence study design was used to compare two antibiotics (new drug A with old drug B) for the 
treatment of pneumonia.

Exclusion criteria. A list of attributes that prevent a potential subject from being eligible for a study. For 
example, the exclusion criteria for the study were prior treatment with an antidepressant medication in 
the previous two years, current use of alpha-blockers or beta-blockers, and an inability to read English at 
the sixth-grade level. See also inclusion criteria.

Experiment. In clinical research, a study in which subjects are assigned randomly to one (or more) 
treatment or comparison groups. It is also called a randomized trial. For example, the investigators 
performed an experiment to determine whether drug X was better than placebo in the treatment of 
fibromyalgia.
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Exposure. A term used to indicate that a study subject has a particular risk factor. For example, exposure 
to aspirin was defined as taking an average of one or more aspirin tablets (of any size) a week during the 
previous 6-month period.

Face validity. A term that describes how well a measurement appears to measure a particular phenom-
enon, based on whether it seems reasonable; it is generally not a very reliable method for assessing valid-
ity. For example, a measurement of popularity in adolescents was regarded as having face validity, because 
the investigators thought that it differentiated the popular students in their high schools from those who 
were not. See also construct validity, content validity, and criterion-related validity.

Factorial trial. A clinical trial of two or more treatments (e.g., A and B), sometimes with two unrelated 
outcomes, in which subjects are assigned randomly to receive active treatment A and placebo B, active 
treatment B and placebo A, both active treatments A and B, or both placebos A and B. For example, the 
investigator performed a factorial trial to determine whether long-term use of beta carotene and aspirin 
affected the risk of gastrointestinal cancer.

False-negative result. A term that can be used in two different ways. In the context of a medical test, it 
refers to a test result that is falsely negative in a patient with the condition being tested for. For example, 
though the patient had biopsy-proven breast cancer, her mammogram had given a false-negative result. 
In the context of a research study, it refers to a study result that fails to detect an effect in the sample (i.e., 
the study result was not statistically significant) that is present in the population. For example, though 
subsequent studies showed that cigarette smoking increases the risk of stroke, an early case–control study 
had a false-negative result (P = 0.23).

False-positive result. A term that can be used in two different ways. In the context of a medical test, 
it refers to a test result that is falsely positive in a patient without the condition being tested for. For 
example, though the patient did not have breast cancer or develop it during 6 years of follow-up, her 
mammogram had a false-positive result. In the context of a research study, it refers to a study result that 
detects an effect in the sample (i.e., the study result was statistically significant) that is not present in the 
population. For example, though subsequent studies showed that cigarette smoking does not increase the 
risk of Parkinson’s disease, an early case–control study had a false-positive result (P = 0.03).

Field. A column in a relational database table that includes data on a specific attribute of the record. For 
example, two of the fields in the Encounters table were the SubjectId (to link back to subject-specific 
information) and WghtKg (weight in kg).

Fixed-effects model. A general term used in multi-level statistical analysis; discussed in this book only 
with respect to meta-analysis, where it describes a statistical model in which the study weights and the 
variance of the summary effect estimate are based only on the within-study variances of the included 
studies. For example, in a meta-analysis of clinical trials of the effect of practicing yoga on depression, 
the results of the trials were variable; the summary effect based on the fixed-effects model was dominated 
by one large study, and the confidence interval was narrower than would have been estimated with a 
random-effects model. See also random-effects model.

Generalizability. The degree to which the results in a study sample are thought to apply to other 
populations. For example, the reviewer questioned the generalizability of the reported 90% success rate 
of intraluminal radioablation of lower esophageal webs, because the procedures were all performed by 
the gastroenterologist who had invented and then perfected the technique in 350 patients, whereas most 
practicing gastroenterologists would see only a handful of patients with the same problem in their careers.

Gold standard. An unambiguous method of determining whether or not a patient has a particular 
disease or outcome. For example, the gold standard for the diagnosis of hip fracture required radiologic 
confirmation by a board-certified radiologist.

Hazard rate. An epidemiologic term that measures the instantaneous rate at which an outcome occurs 
in a population. For practical purposes, it is almost always estimated as the rate of an outcome. For ex-
ample, the hazard rate for developing coronary artery disease among women ages 50 to 59 years old was 
estimated as 0.008 per year.

Hazard ratio. The ratio of the hazard rate in those exposed to a risk factor divided by the hazard 
rate in those who are not unexposed; it is almost always estimated from a proportional hazards model 
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(Cox model). For example, the hazard ratio for developing coronary artery disease was 2.0 comparing 
men ages 50 to 59 years with women of the same ages.

Heterogeneity. A situation in which the association between a predictor and an outcome is not uniform, 
either among different studies or among different subgroups of subjects. For example, there is substantial 
heterogeneity among studies that have looked at the effects of postmenopausal estrogen on mood and 
cognition, with some studies showing positive effects, some adverse effects, and some no effect.

Homogeneity. A situation in which the association between a predictor and outcome is uniform in dif-
ferent studies. For example, there is homogeneity among reasonably sized studies that have looked at the 
effects of smoking on lung cancer: All have found a substantially increased risk among smokers.

Hospital-based controls. In the context of a case–control study, the selection of control patients from 
the same hospital(s) from which the cases were chosen. For example, in her study of whether eating 
processed meats was associated with upper gastrointestinal cancer, the investigator used hospital-based 
controls selected from patients who had non-malignant gastrointestinal diseases treated at the same hos-
pital as the cases.

Hypothesis. A general term for a statement of belief about what the study will find. For example, the 
study hypothesis was that chronic use of anti-epileptic medication was associated with an increased risk 
of oral cancer. See also null hypothesis and research hypothesis.

Incidence. The proportion of subjects who develop an outcome during the follow-up period; sometimes 
called incidence proportion or cumulative incidence. For example, the investigators found that pregnant 
vegetarians had a lower incidence of preterm delivery than pregnant women who ate meat.

Incidence-density sampling. Within a nested case–control study, a technique to sample controls when 
an important exposure changes with time; thus, the exposure needs to be measured at a similar time in 
both cases and controls. For example, a nested case–control study to determine whether use of antihista-
mine medications, which varies seasonally, increases the short-term risk of hip fractures (presumably due 
to an increased risk of falling) used incidence-density sampling of controls, such that a control’s use of an 
antihistamine was measured during the same month that a hip fracture occurred in a case.

Incidence rate. The rate at which a particular disease or outcome occurs in a group of subjects previ-
ously free of that disorder. Usually calculated as the number of new cases of the outcome divided by the 
person-time at risk. For example, the incidence rate of myocardial infarction was 35.3 per 1,000 person-
years in middle-aged men, about twice the rate (17.4 per 1,000 person-years) in middle-aged women. 
See also person-time.

Inclusion criteria. A list of attributes required of the potential subjects for a study. For example, the 
inclusion criteria for a study were people ages 18 to 65 years who lived in San Francisco and had no prior 
history of depression. See also exclusion criteria.

Independent. This term can be used in at least two ways. First, it is the condition in which two variables 
do not influence each other. For example, the investigators determined that dietary consumption of nuts 
and serum glucose levels were independent: there was no evidence in their study that nut consumption 
affected glucose levels, or vice versa. Second, independent is used to refer to an effect that one variable has 
on another variable that does not depend upon (i.e., “is independent of”) a third variable. For example, 
because she was concerned that maternal education and breastfeeding were associated with one another, 
the investigator adjusted for maternal education to estimate the independent effect of breastfeeding on 
language skills at age 2 years.

Independent variable. See predictor variable.

Inference. The process of drawing conclusions about a population based on observations in a sample. 
For example, because twice as many cases of bladder cancer as controls reported drinking well water 
(P = 0.02), the investigators made the inference that consumption of well water increases the risk of blad-
der cancer in the population.

Instrumental variable. A variable that is associated with the predictor variable, but not otherwise as-
sociated with the outcome variable; it therefore can be used to indirectly estimate the effect of the predic-
tor on the outcome. For example, investigators found marked regional differences in the use of a new 
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influenza vaccine, so they were able to use region of residence as an instrumental variable to study the 
effect of the influenza vaccine on total mortality in older adults.

Intended sample. The group of subjects the investigator intended to include in a study, as described in 
the study protocol. For example, the intended sample for the study consisted of women with breast cancer 
who were seen initially for treatment on a Monday or Thursday at Longview Hospital (the days that the 
investigator or her research staff were available) and who were within 6 weeks of their original diagnosis, 
during the period from January 1, 2013, through June 30, 2014. See also accessible population and sample.

Intention-to-treat analysis. In a randomized trial, the process of comparing subjects based on the group 
to which they were randomly assigned, even if this is not the same as the treatment they actually received. 
This is the most rigorous form of analysis. For example, the investigators performed an  intention-to-treat 
analysis to determine whether random assignment to receive 6 months of psychotherapy improved symp-
toms of anxiety as compared with random assignment to a control group that received a pamphlet about 
stress reduction. See also per-protocol analysis.

Interaction. Another name for effect-modification.

Intervention. In a randomized trial, the active treatment that subjects receive. Often used as an adjective 
(intervention group). For example, in a randomized trial of psychotherapy for the treatment of anxiety, 
the intervention consisted of 6  months of weekly one-hour sessions with a licensed psychologist that 
emphasized cognitive-behavioral approaches. See also control (second definition).

Kappa. A statistical term that measures the degree to which two (or more) observers agree whether or 
not a phenomenon occurred, beyond that expected by chance. Varies from –1 (perfect disagreement) to 
1 (perfect agreement). For example, the kappa comparing how well two pathologists agreed about the 
presence of cirrhosis in a sample of liver biopsy specimens was 0.85.

Level of statistical significance. See alpha.

Likelihood ratio. A term used to describe the quantitative effects of a medical test result on the likeli-
hood that a patient has the disease being tested for. It is defined as the likelihood of that test result in a 
patient with the disease divided by the likelihood of that result in a patient without the disease (the mne-
monic is WOWO: with over without). For example, the likelihood ratio for the characteristic symptoms 
of typical angina (exertional substernal pressure) is about 50 for the diagnosis of coronary artery disease.

Likert scale. A set of answers (usually 5) to a question that provides similarly spaced range of choices. 
For example, the potential answers to the question “How likely are you to return to this emergency room 
for care?” were as follows: Very likely, Somewhat likely, Neither likely nor unlikely, Somewhat unlikely, 
Very unlikely.

Logistic regression model. A statistical technique used to estimate the effects of one or more predictor 
variables on a dichotomous outcome variable, adjusting for the effects of other predictor and confound-
ing variables. For example, in a logistic regression model, men were about twice as likely as women, and 
blacks about three times as likely as whites, to develop strokes, adjusting for age, blood pressure, and 
diabetes.

Marginals. The row and column totals of a contingency table. For example, looking at the marginals in 
the 2 x 2 table showed that there were similar numbers of men and women in the study.

Masking. See blinding.

Matching. In a case–control study, the process of selecting controls to be similar in certain attributes to 
cases, to reduce confounding by those attributes. For example, in a case–control study of the risk factors 
for brucellosis, controls were matched to cases by age (within 3 years), sex, and county of residence. See 
also overmatching.

Mean. The average value of a continuous variable in a sample or population; calculated as the sum of all 
the values of that variable divided by the number of subjects. For example, the mean serum cholesterol 
level in a sample of 287 middle-aged women was 223 mg/dL. See also median and standard deviation.

Measurement error. The situation in which the precision or accuracy (or both) of a measurement is 
less than perfect; thus, there is at least some measurement error for most variables (with the possible 



Glossary  337

exception of death). For example, to reduce measurement error, the investigator used a 2 kg stainless steel 
weight to calibrate the baby scale weekly.

Median. The value of a variable that divides a sample or population into two halves of (approximately) 
equal size; equivalent to the 50th percentile. Often used when a continuous variable has a few very high 
(or very low) values that would overly influence the mean value. For example, the median annual income 
in the sample of 54 physicians was $225,000. See also mean and standard deviation.

Mediator. A variable that is caused by the predictor of interest, and also causes the outcome; it accounts 
at least in part for how the predictor causes the outcome. For example, in studying the effect of obesity 
on the risk of stroke, the investigators did not control for diabetes, because they believed one mechanism 
by which obesity might lead to stroke was as a mediator that caused diabetes.

Medical test studies. A general term used for studies that measure how well a test (or a series of tests) 
identifies patients with a particular diagnosis or outcome. For example, the investigator performed a med-
ical test study to determine the likelihood ratios for the presence and absence of typical angina (defined 
as exertional substernal chest pain or pressure) for the diagnosis of coronary artery disease.

Mendelian randomization. A technique for enhancing causal inference by taking advantage of the 
random inheritance of genes that affect susceptibility to a risk factor or treatment. For example, the like-
lihood of a causal relationship between maternal use of acetaminophen and asthma in children was en-
hanced by the observation that the association was significantly greater in mothers with the T1 genotype 
of glutathione S-transferase, an enzyme involved in the detoxification of an acetaminophen metabolite.

Meta-analysis. A process for combining the results of several studies with similar predictor and outcome 
variables into a single summary result. For example, a meta-analysis of 12 published studies found that 
use of nonsteroidal anti-inflammatory drugs was associated with a 28% greater risk of developing asthma.

Misclassification. A measurement error for a categorical variable in which subjects with one value of the 
variable are counted (misclassified) as having another value. For example, investigators were worried that be-
cause medical records were incomplete, some subjects who really had fallen during their hospitalization were 
misclassified as not having had a fall. See also differential misclassification and nondifferential misclassification.

Missing data. Data that were not collected during a study, whether at baseline or during follow-up. For 
example, the investigator was concerned that the relatively large proportion (34%) of subjects who had 
missing data on alcohol use may have biased her study of the risk factors for falls.

Multiple–cohort study. A cohort study that enrolls two or more distinct groups of subjects (the cohorts), 
and then compares their outcomes. Often used in studies of occupational exposures, in which the cohorts 
being compared are either exposed to a potential risk factor or not. For example, the investigators per-
formed a multiple–cohort study of whether exposure to cosmic rays during airplane flights is associated 
with an increased risk of hematologic malignancies; the investigators studied four cohorts: pilots and flight 
attendants (who would be exposed to cosmic rays) and ticket agents and gate attendants (who would not). 
See also double-cohort study.

Multiple hypothesis testing. The situation in which an investigator studies more than one—and usu-
ally many more than one—hypothesis in a study, thereby increasing the risk of making a type I error 
unless the level of statistical significance is adjusted. For example, although the investigator reported a 
statistically significant (P = 0.03) association between consumption of vitamin D and cognitive decline, 
her results were criticized because she did not account for the effect of multiple hypothesis testing, since 
the study had looked at more than 30 nutritional supplements. See also Bonferroni correction.

Multivariate adjustment. A general term for the statistical techniques used to adjust for the effects of 
one or more potential confounding variables on the association between a predictor and outcome. For 
example, using multivariate adjustment, the study found that ingestion of supplemental vitamin D was 
associated with an increased risk of cognitive decline, adjusting for age, sex, education, baseline cognitive 
function, and smoking.

Negative predictive value. See predictive value, negative.

Nested case–control study. A case–control study in which the cases and controls are selected from 
a (larger) defined cohort or from among previously enrolled subjects in a cohort study. This design is 
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usually used when it is too expensive to make certain measurements in all of the subjects in the cohort; 
instead, they are made in samples that were stored at baseline in those subjects. For example, the investi-
gators performed a nested case–control study to determine whether cytokine levels on newborn screening 
blood spots were associated with the development of cerebral palsy in the 2009 birth cohort of the state 
of Ohio.

Nominal variable. A categorical variable for which there is no logical order. For example, religious 
affiliation (Christian, Buddhist, Hindu, Moslem, Jewish, other, none) was coded as a nominal variable.

Non-differential bias. A type of bias that is not affected by whether a subject was a case or control (or 
occasionally, by whether a subject was exposed, or not exposed, to a third variable). Non-differential bias 
tends to make associations harder to find because it reduces apparent differences between groups. For 
example, although recall of past exposure to antibiotics was imperfect in both cases and controls, the bias 
appeared to be non-differential, in that a review of medical records indicated that both groups had similar 
inaccuracies. See also differential bias.

Non-inferiority trial. A clinical trial comparing a new treatment that has some advantages over an estab-
lished treatment (e.g., the new treatment is safer, less expensive, or easier to use), with the goal of dem-
onstrating that the efficacy of the new treatment is not inferior to the established treatment. For example, 
a trial of a new pain medication that does not cause drowsiness demonstrated that the new medication 
was not inferior to oxycodone for relief of post-operative pain.

Non-response bias. A type of bias in which failure to respond (e.g., to a questionnaire) affects the results 
of a study. For example, the investigators were concerned about non-response bias in their study of the 
effects of illicit drug use on the risk of developing renal failure.

Normalization. In a relational database, the process of eliminating redundancy and improving reliability 
by making sure that each data item is stored in no more rows or tables than necessary. For example, after 
the database consultant normalized the database, he could update a subject’s telephone number by alter-
ing just one row in a single table.

Null hypothesis. The form of the research hypothesis that specifies there is no difference in the groups 
being compared. For example, the null hypothesis stated that the risk of developing claudication would be 
the same in subjects with normal lipid levels who were treated with a statin as in those treated with placebo.

Number needed to treat. The absolute number of people who need to receive a treatment in order to 
prevent the occurrence of one outcome. Calculated as the reciprocal of the risk difference. For example, 
when evaluating the benefits of treating mild-to-moderate hypertension, the number needed to treat was 
about 800 patients per year to prevent one stroke.

Observational study. A general term for a research design in which the investigators simply observe the 
subjects without making any interventions. Thus, this term includes cross-sectional, case–control, and 
cohort studies, but not randomized trials or before-after studies. For example, the examiners performed 
an observational study to determine the risk factors for melanoma.

Observer bias. The situation in which an investigator (or research assistant) makes a non-objective 
assessment that is affected by her knowledge of one or more of the subject’s attributes, such as whether 
the subject is a case or control, or was exposed or not exposed to a particular risk factor. For example, 
observer bias was apparently responsible for the finding that, based on an interview, Hispanic teenagers 
were more likely to be characterized as having issues with anger management than Asians, since a self-
administered survey and a review of school records found no differences between the two groups.

Odds. The risk of a disease (or other outcome) divided by 1 – risk. For example, if the lifetime risk of breast 
cancer among women is 15%, then the lifetime odds of developing breast cancer are 0.18 (0.15/0.85). Risk 
and odds are similar for rare diseases (those that develop in less than about 10% of persons).

Odds ratio. The ratio of the odds of a disease (or other outcome) in those exposed to a risk factor com-
pared with the odds of that disease in those not exposed. The risk ratio and the odds ratio are similar when 
a disease is rare in both the exposed and the unexposed, because the odds and the risks of the disease are 
similar. For example, the odds ratio for renal failure among those with hypertension is 2.0, meaning that 
hypertensive patients are about twice as likely to develop renal failure as those who are not hypertensive.
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One-sample t test. A statistical test used to compare the mean value of a variable in a sample to a fixed 
constant (a particular number). The most common type of one-sample t test is a paired t test, in which the 
sample mean for the difference between paired measurements (e.g., on the same subject at different points 
in time) is compared with zero. For example, the investigators found that men gained a mean (± SD) of 
4 ± 3 kg in weight during their residencies (P = 0.03, by one-sample t test). See also two-sample t test.

One-sided hypothesis. An alternative hypothesis in which the investigator is interested in evaluating 
the possibility of committing a type I error in only one of the two possible directions (e.g., greater or 
lesser risk, but not both). For example, the investigator tested the one-sided hypothesis that smoking was 
associated with an increased risk of dementia. See also two-sided hypothesis.

Ordinal variable. A categorical variable whose values have a logical order. For example, current alcohol 
use was treated as an ordinal variable: The values were no alcohol consumption, 1 or 2 drinks per week, 
> 2 but < 7 drinks per week, 1 to 2 drinks per day, and ≥ 3 drinks per day. See also nominal variable.

Outcome. A general term for the endpoint(s) of a study, such as death or the occurrence of a disease. 
For example, in a study of whether radiosurgery was beneficial for patients with solitary brain metastasis, 
subjects were followed for the outcomes of death or placement in a skilled nursing facility.

Outcome variable. The formal definition of the outcome for each subject. For example, in a study of the 
effects of different types of exercise on body weight and body composition, the outcome variables were 
defined as the change in weight in kg from baseline to the final measurement after 1 year, and the change 
in waist circumference in cm during that same time period.

Overfitting. A problem that arises when investigators select variables or cutoff points for a multivari-
ate model based partly on chance variation in the sample, leading to poor generalizability of results. For 
example, reviewers suspected overfitting when the authors reported the best model to predict recurrent 
cataracts included birth in the months of March or August for women between ages 65 and 74 years.

Overmatching. The situation in which matching beyond that necessary to control for confounding re-
duces the investigator’s ability to determine whether a risk factor is associated with an outcome because 
the controls have become too similar to the cases. For example, because the controls were matched to 
cases by age (± 3 years), sex, race, and socioeconomic status, overmatching made it impossible to deter-
mine whether education was associated with the risk of stroke among subjects ages 65 years and older, 
since the matching variables are major determinants of education in that age group.

P value. Based on statistical tests, the probability of finding an effect (more precisely, a value of the test 
statistic) as large or larger than that found in the study by chance alone if the null hypothesis is really 
true. For example, if the null hypothesis is that drinking coffee is not associated with the risk of myocar-
dial infarction, and the study found that the relative risk of myocardial infarction among coffee drinkers 
compared with nondrinkers was 2.0 with a P value of 0.10, there was a 10% probability of finding a rela-
tive risk of 2.0 or larger in this study if there was no association between coffee drinking and myocardial 
infarction in the population.

Paired measurements. Measurements closely linked with one another in some way, such as those 
done on different sides of the same person, different members of a twin pair, or (most commonly) the 
same participant at two different points in time, such as before and after an intervention. For example, 
in a study of the effect of an exercise program on glycohemoglobin levels in patients with Type II diabe-
tes, paired measurements of glycohemoglobin included measurements made at baseline and again after 
3 months of exercise.

Participant. Someone who participates in a research study. The term participant is often preferred over 
subject because it emphasizes that the person enrolled in the study is an active participant in advancing 
science, not merely a subject being experimented upon. For example, in a study of a new drug for treat-
ment of insomnia, the participants are the people who are eligible for and enroll in the study.

Peer review. Review of a protocol, proposal, or manuscript by peers of the investigator who prepared 
these documents. For example, proposals submitted for funding to the NIH undergo a peer review process 
in which scientists in the same field score the protocol using well-defined criteria. Similarly, manuscripts 
submitted to medical journals are peer reviewed by scientists who help the journal editors decide whether 
the manuscript should be published.
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Per-protocol analysis. In a clinical trial, an analysis approach in which data from participants are only 
included if the participants adhered to the study protocol, which is typically defined as taking or using the 
study intervention as instructed. For example, in a randomized trial of surgery compared with physical 
therapy for treatment of severe osteoarthritis of the knee, a per-protocol analysis would include data only 
from participants in the surgery group who actually underwent surgery and from participants in the physi-
cal therapy group who were adherent to the physical therapy regimen. See also intention-to-treat analysis.

Person-time. The sum of the amounts of time each of the subjects in a study or population is at risk, used 
as the denominator for calculation of incidence rates. It can be calculated as the number of subjects who 
are at risk of an outcome multiplied by their average time at risk. For example, the total person-time of 
follow-up among the 1,000 subjects who had an average of 2.5 years at risk was a total of 2,500 person-
years, although 5% of the subjects were followed for 1 month or less. See also incidence rate.

Phase I trial. An early phase, generally unblinded, uncontrolled trial of escalating doses of a new treat-
ment in a small number of human volunteers to test its safety. For example, a phase 1 trial of a new drug 
for treatment of menopausal hot flashes would generally include a small number of volunteers (with or 
without hot flashes) who receive escalating doses of the drug to determine its effects on blood counts, 
liver and renal function, physical findings, symptoms, and other unexpected adverse events.

Phase II trial. A small randomized (and preferably blinded) trial to test the effect of a range of doses of a new 
treatment on side effects as well as on surrogate or clinical outcomes. For example, a phase II trial of a new 
drug for treatment of hot flashes that has been shown to be safe in a phase I trial might enroll a small number 
of postmenopausal women with hot flashes, randomly assign them to two or three different doses of the new 
medication or placebo, and then follow them to determine the frequency of hot flashes, as well as side effects.

Phase III (pivotal) trial. A randomized (and preferably blinded) trial that is large enough to test the ef-
ficacy and safety of a new treatment. For example, if the optimal dose of a new treatment for hot flashes 
has been established in a phase II trial and the new treatment was acceptably safe, the next step would be 
a large phase III trial in which postmenopausal women with hot flashes are randomly assigned to the new 
treatment or placebo and followed for the occurrence of hot flashes and adverse effects.

Phase IV trial. A large study, which may or may not be a randomized trial, conducted after a drug is ap-
proved by a regulatory agency such as the U.S. Food and Drug Administration (FDA), often to determine 
the drug’s safety over a longer term than is possible in a phase III trial. For example, after a new drug for 
the treatment of menopausal hot flashes has been approved by the FDA, a phase IV trial might include 
women with less severe hot flashes than those included in the phase III trial.

Pilot study. A small study conducted to determine whether a full-scale study is feasible, as well as to 
optimize the logistics and maximize the efficiency of the full-scale study. For example, a pilot trial of re-
storative yoga for prevention of diabetes in patients with insulin resistance might aim to demonstrate the 
feasibility of measuring with insulin resistance; refine and standardize the yoga intervention; and show 
that it is possible to recruit and randomize participants to yoga and control groups.

Placebo control. An inactive control that is indistinguishable from the active drug or intervention used 
in a randomized trial. For example, in a randomized, placebo-controlled trial of a new treatment for incon-
tinence, the placebo should look, smell, taste, and feel the same as the new medication that is being tested.

Plagiarism. A type of scientific misconduct in which an investigator appropriates another person’s ideas, 
results, or words without giving appropriate credit. For example, using another investigator’s description 
of a new measurement method without appropriate attribution constitutes plagiarism.

Polychotomous categorical variables. Categorical variables with three or more categories. For 
example, blood group, which includes A, B, and O, is a polychotomous categorical variable.

Population. A complete set of people with specified characteristics. For example, the adult population 
of the United States with Type II diabetes could be defined as all U.S. adults who are taking a glucose-
lowering medication or who have a fasting blood sugar level above 125 mg/dL.

Population-based sample. A sample of people who represent an entire population. For example, the 
National Health and Nutrition Examination Survey (NHANES), which provides data on a random sample 
of the entire population of the United States, is a population-based sample.
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Positive predictive value. See predictive value, positive.

Post hoc hypotheses. Hypotheses that are formulated after data have been analyzed. For example, in a 
study of the association between insomnia and the risk of stroke, the hypothesis that insomnia increases 
the risk of diverticulitis is a post hoc hypothesis.

Power. The probability of correctly rejecting the null hypothesis in a sample if the actual effect in the 
population is equal to or greater than a specified effect size. For example, suppose that exercise leads to an 
average reduction of 20 mg/dL in fasting glucose among diabetic women in the entire population. If an in-
vestigator set power at 90% and drew a sample from the population on numerous occasions, each time car-
rying out the same study with the same measurements, then in 9 of every 10 studies the investigator would 
correctly reject the null hypothesis and conclude that exercise reduces fasting glucose levels. See also beta.

Practice-based research networks. Networks in which physicians from community settings work 
together to study research questions of interest. For example, a study from a practice-based research 
network of treatments for carpal tunnel syndrome in primary care practice showed that most patients im-
proved with conservative therapy. This contrasted with previous literature from academic medical centers 
that indicated that the majority of patients with carpal tunnel syndrome required surgery.

Precision. The degree to which measurement of a variable is reproducible, with nearly the same value 
each time it is measured. For example, a beam scale can measure body weight with great precision, 
whereas an interview to measure severity of depression is more likely to produce values that vary from 
one observer to the next.

Preclinical trial. Studies that occur before an intervention is tested in humans. Such trials might include 
cells, tissues, or animals. For example, the U.S. Food and Drug Administration requires preclinical trials 
in two different animal species to document safety before new drugs can be tested in humans.

Predictive validity. A term that describes how well a measurement represents the underlying phe-
nomenon it is intended to measure, based upon its ability to predict related outcomes. For example, the 
predictive validity of a measurement of depression would be strengthened if it was associated with the 
subsequent risk of suicide.

Predictive value, negative. The probability that a person with a negative test result does not have the 
disease being tested for. For example, in a population of men with a prevalence of prostate cancer of 10%, 
the negative predictive value of a prostate specific antigen (PSA) ≤ 4.0 ng/mL is about 91%. See prevalence, 
prior probability, sensitivity and specificity.

Predictive value, positive. The probability that a person with a positive test result has the disease being 
tested for. For example, in a population of men with a prevalence of prostate cancer of 10%, the positive 
predictive value of a prostate specific antigen (PSA) > 4.0 ng/mL is about 30%. See prevalence, prior prob-
ability, sensitivity and specificity.

Predictor variable. In considering the association between two variables, the one that occurs first or 
is more likely on biologic grounds to cause the other. For example, in a study to determine if obesity is 
associated with an increased risk of sleep apnea, obesity would be the predictor variable. In a randomized 
trial analyzed by intention to treat, the predictor variable is group assignment.

Pretest. An evaluation of specific questionnaires, measures, or procedures that can be carried out by 
study staff before a study starts. Its purpose is to assess the measure’s functionality, appropriateness, or 
feasibility. For example, pretesting the data entry and database management system could be done by 
having study staff complete forms with missing, out of range, and illogical data to ensure that the data 
editing system identifies these errors.

Prevalence. The proportion of persons who have a disease or condition at one point in time. Prevalence 
is affected by both the incidence of a disease and duration of the disease. For example, the prevalence of 
systemic lupus erythematosis is the proportion of people who have this condition at a specific point in 
time; it might increase if the disease becomes more common or if treatment improves such that persons 
with the disease live longer.

Primary key. In a relational database, the field or combination of fields that uniquely identify each row 
in a particular table. For example, the investigator created a unique VisitNumber to serve as the primary 
key for a table of outpatient visits.
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Principal investigator. The person who has ultimate responsibility for the design and conduct of a study, 
and the analysis and presentation of the study findings. For example, the institutional review board asked 
to speak with the study’s principal investigator because some members had questions about the protocol.

Probability sampling. A random process, usually using a table of random numbers or a computer al-
gorithm, to guarantee that each member of a population has a specified chance of being included in the 
sample, thereby providing a rigorous basis for making inferences from the sample to the population. For 
example, an observation from a probability sample of 5% of persons with chronic obstructive pulmonary 
disease (COPD) based on hospital discharge diagnoses from all hospitals in California should provide 
reliable findings about risk factors for rehospitalization and death.

Propensity score. The estimated probability that a study participant will have a specified value of a 
predictor variable, most often the probability of receiving a particular treatment. Controlling for the pro-
pensity score (e.g., by matching, stratification, or multivariable analysis) is one method for dealing with 
confounding by indication: Instead of adjusting for all factors that might be associated with the outcome, 
the investigator creates a multivariate model to predict receipt of the treatment. Each subject is then as-
signed a predicted probability of treatment (the propensity score), which can then be used as the only 
confounder when estimating the association between the treatment and the outcome. For example, the 
investigators used a propensity score to adjust for the factors associated with the use of aspirin to deter-
mine the association between aspirin use and colon cancer.

Proposal. A document that includes a study protocol, budget, and other administrative and supporting 
information that is written for the purpose of obtaining funding from a granting agency. For example, the 
National Institutes of Health (NIH) requires proposals for funding of multiple types of research.

Prospective cohort study. A study design in which a defined group (the cohort) of study participants 
has baseline values of predictor variables measured and then is followed over time for specific outcomes. 
For example, the Nurses Health Study is a prospective cohort study of risk factors for common diseases in 
women. The cohort is a sample of registered nurses in the United States and the outcomes have included 
cardiovascular diseases, cancer, and mortality.

Protected health information. Individually identifiable health information. Federal health privacy 
regulations (called HIPAA regulations after the Health Insurance Portability and Accountability Act) re-
quire researchers to maintain the confidentiality of protected health information in research. For example, 
protected health information should not be stored on flash drives or sent via regular e-mail.

Protocol. The detailed written plan for a study. For example, the study protocol for a study specified 
that only subjects who could understand English at the eighth grade level were eligible for participation.

Publication bias. A distortion of the published literature that occurs when published studies are not rep-
resentative of all studies that have been done, usually because positive results are submitted and  published 
more often than negative results. For example, publication bias was suspected by authors of a meta-
analysis that found that six small positive studies, but only one large negative study, had been published.

Quality control. The processes to ensure that the conduct of a study, including enrollment, measure-
ments, laboratory procedures, and data management and analysis, are of the highest quality. For example, 
the investigators controlled the quality of data collection by preparing explicit written procedures for all 
study measurements in an operations manual and intermittently observing study staff to make sure they 
followed them.

Query. A command or instruction to a relational database to select or manipulate the data. For example, 
the study coordinator wrote a query to select names and contact information for all study participants who 
were due for a follow-up visit in the next 2 months that had not yet been scheduled.

Questionnaire. A measurement instrument consisting of a series of questions to obtain information 
from study participants. Questionnaires can be either self-administered or administered by study staff. 
For example, the Block Food Frequency Questionnaire asks about usual intake of 110 food items to assess 
intake of multiple nutrients and food groups.

Random-effects model. A general term used in multi-level statistical analysis; discussed in this book 
only with respect to meta-analysis, where it describes a statistical model in which the study weights and 
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variance of the summary effect estimate incorporate a term for the variability between the results of the 
individual included studies. For example, in a meta-analysis of clinical trials of the effect of practicing 
yoga on depression, the results of the trials were variable; thus, smaller studies contributed more to the 
summary effect based on the random-effects model, and the confidence interval was wider than with the 
fixed-effects model. See also fixed-effects model.

Random error. A departure of a measurement or estimate from the true value due to chance variation. 
Random error can be reduced by repeating measurements and by increasing the sample size. For example, 
if the true prevalence of the use of fish oil by persons with coronary disease in the population is 20%, a 
study that enrolls 100 participants might find that exactly 20% use fish oil, but just by random error, the 
proportion is likely to be a bit higher or lower than that.

Randomization. The process of randomly assigning eligible participants to one of the study groups in a 
randomized trial. The number of treatment groups and the probability of being assigned to any group are 
determined before randomization begins. Although eligible participants are usually assigned to two study 
groups with equal (50%) probability, random assignment can be made to any number of study groups 
with any predetermined probability. For example, in a study comparing two treatments with a placebo 
control, randomization could be to three groups, with 30% assigned to each of the two active treatment 
groups and 40% assigned to placebo.

Randomized blinded trial. A study design in which eligible participants are randomly assigned to the 
study groups with predetermined probability and study group assignment is not known to investigators, 
participants, or other staff involved in the study. For example, a randomized blinded trial of a new pill 
for treatment of diarrhea would require that eligible participants be randomly assigned to the new pill or 
an identical placebo pill (usually with 50% chance of being assigned to each group) and that the investi-
gators, participants, and study staff not know if a participant is taking the active medication or placebo.

Random sample. A sample drawn by enumerating the units of the population and selecting a subset at 
random. For example, a random sample of persons with cataracts at an investigator’s clinic would require 
that the investigator list all of the patients with cataracts and use a table of random numbers or computer-
generated random numbers to select the sample. See also probability sampling.

Rate. A measure of risk, defined as the number of subjects who develop an outcome divided by the 
person-time at risk. For example, the rate of stroke in the study was 23 per 1,000 person-years. See also 
hazard rate.

Recall bias. A specific type of bias in which whether and how a subject remembers his exposure to a risk 
factor is influenced by another factor, especially by whether the subject is a case or control. For example, 
recall bias was thought to be the reason why cases of amyotrophic lateral sclerosis were more likely to 
recall exposure to insecticides than controls.

Receiver operating characteristic (ROC) curve. A graphical technique to quantify the accuracy of a 
diagnostic test and illustrate the trade-off between sensitivity and specificity at different thresholds for 
considering the test positive. The curve displays the rates of true positives (sensitivity) on the Y-axis and 
the corresponding rates of false positives (1 – specificity) on the X-axis at several cutpoints for consider-
ing the test positive. The area under the ROC curve, which ranges from 0.5 for a useless test to 1.0 for a 
perfect test, is a useful summary of the overall accuracy of the test. For example, the area under the ROC 
curve for the use of CT scans (which could be interpreted as Clearly positive, Likely positive, Not helpful, 
Likely normal, or Clearly normal) to diagnose appendicitis was 0.95, substantially better than the value 
of 0.77 for ultrasound (which had similar categories of interpretation).

Record. A row in a relational database table (best identified by a primary key) which includes informa-
tion about that person, transaction, result, or event. For example, a Subjects table might have one record 
for each subject in the study, with StudyId as its primary key, as well as other information such as date 
of birth and sex as fields.

Recruitment. The process of identifying and enrolling eligible participants in a study. Recruitment meth-
ods vary depending on the nature of the study. For example, recruitment for the study included identify-
ing eligible patients in specialty clinics, advertising in fliers and newspapers, and using the Internet and 
social media sites.
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Recursive partitioning. A multivariate technique for classifying people according to their risk of an 
outcome; unlike techniques that require a model, such as logistic regression, it does not require any 
assumptions about the form of the relationship between predictor variables and outcome. It creates a 
classification tree that includes a series of yes/no questions, called a Classification and Regression Tree 
(CART). For example, using recursive partitioning, investigators determined that emergency department 
patients ages 20 to 65 years who had abdominal pain but who did not have loss of appetite, fever, or re-
bound tenderness were at low risk of acute appendicitis. See clinical prediction rule and overfitting.

Registry. A database of persons with a certain disease or who underwent a particular procedure. Studies 
can be conducted using registries by collecting outcome data as part of the registry, or by linking reg-
istry data to other sources, such as cancer registries or the National Death Index. For example, the San 
Francisco Mammography Registry obtains data on all women who undergo mammography at the three 
largest mammography centers in San Francisco; investigators have linked it with local cancer registries to 
estimate mammography accuracy.

Regression to the mean. The tendency for outlying (very high or very low) values to be closer to the 
population mean when repeated. For example, in a group of children selected for a study based on having 
systolic blood pressures above the 95th percentile, the majority of children were observed to have lower 
blood pressures at the first follow-up visit, even though they had not yet received any treatment.

Relational database. Software that allows storage of related information in a series of tables. The tables 
can be linked with one another through common fields. For example, a relational database for a study 
could include each subject’s StudyID and BirthDate in a Subjects table, and StudyID and VisitDate in an 
Encounters table, which could have many encounters per subject. A participant’s age on the day of an en-
counter can be calculated easily by using the StudyID to link each VisitDate to that participant’s birth date.

Relative risk. See risk ratio.

Representative sample. A sample of people enrolled in a study that represents the target population. 
For example, in the Framingham Heart Study, the target population was all adults. The accessible popula-
tion (to investigators located in Boston) was the adult population of the town of Framingham, Massachu-
setts. Investigators enumerated adults in Framingham and asked every second resident to enroll in the 
study. This approach could result in a representative sample, but some people refused to enroll and were 
replaced by volunteers. Since volunteers often have more healthy habits than non-volunteers, the sample 
may have over-represented healthy persons. In addition, the population of Framingham (which was 
mostly white) does not represent all U.S. adults, and certainly does not represent adults in other countries.

Reproducibility study. A study in which the reproducibility of a measurement is the main research 
question, typically performed by comparing the results of a measurement done multiple times by the 
same person or machine (intra-observer reproducibility) or the results of the same measurement done by 
different persons or machines (inter-observer reproducibility). For example, the investigators performed 
a reproducibility study to determine whether a new electronic stethoscope could improve the ability to 
detect diastolic heart murmurs.

Research hypothesis. A statement by the investigator that summarizes the main elements of the study, 
including the population of interest, the predictor and outcome variables, and an anticipated result. 
For statistical purposes, the research hypothesis is stated in a form that establishes the basis for tests of 
statistical significance, generally including a null and alternative hypothesis. For example, the research 
hypothesis was that migraine headaches would be associated with at least a 20% increase in risk of stroke.

Research misconduct. Illegal or unethical conduct of research, including plagiarism and fabrication or 
falsification of research data. For example, a research coordinator at the VA Medical Center in Albany, 
New York, was found to have repeatedly submitted false documentation to allow persons who did not 
qualify for a study to be enrolled. All data from the Albany site were subsequently excluded, such that the 
participants’ time and effort were wasted. See also scientific misconduct.

Research proposal. A document written for the purpose of obtaining research funding that describes the 
proposed study design, participants, measurements, statistical analyses, and ethical issues. For example, 
the National Institutes of Health receives thousands of research proposals annually from investigators 
who seek funding for their studies.
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Research question. The question a research project is intended to answer. A good research question 
should include the predictor and outcome of interest and the population that will be studied. Research 
questions generally take the form of “Is A associated with B in population C?” or (for a clinical trial) “Does 
A cause B in population C?” For example, “Does regular use of dental floss reduce the risk of coronary 
events in persons with diabetes?”

Response rate. The proportion of eligible participants who respond to a questionnaire or to a particular item 
on it. A low response rate can decrease the internal validity of the study and bias the outcome. For example, 
in a survey of high school students, a response rate of 20% to a question on marijuana use would suggest the 
result is not likely to be a valid estimate of the real rate of marijuana use among students. See also missing data.

Retrospective cohort study. A cohort study in which assembly of the cohort, baseline measurements, 
and follow-up happened in the past. For example, to describe the natural history of thoracic aortic aneu-
rysms, an investigator conducting a retrospective cohort study in 2012 could obtain data from hospital 
discharge records of patients who had a diagnosis of aortic aneurysm in 2007 and use hospital discharge 
records and the National Death Index to determine which patients subsequently had a ruptured aortic 
aneurysm or died before 2012.

Risk difference. The risk for an outcome in one group minus the risk in a comparison group. For 
 example, if the risk for venous thromboembolic events among women who are current users of estrogen 
is 5/1000 (0.5%) and the risk among those who never used estrogen is 2/1000 (0.2%), the risk difference 
among women using estrogen compared to nonusers is 3/1000 (0.3%). See also number needed to treat.

Risk ratio (relative risk). The risk for an outcome in one group divided by the risk in a comparison 
group. For example, if the risk for venous thromboembolic events among women who are current users of 
estrogen is 5/1000 (0.5%) and the risk among those who never use estrogen is 2/1000 (0.2%), the relative 
risk among women using estrogen compared with nonusers is 2.5. See also hazard ratio and odds ratio.

Run-in period. In a clinical trial, a brief period during which eligible participants take either the placebo 
or the active intervention; only those who achieve a certain level of adherence, tolerate the intervention, 
or have a beneficial effect on an intermediate outcome are eligible for the main trial. For example, in the 
Cardiac Arrhythmia Suppression Trial, only those who had a satisfactory reduction in premature ventricu-
lar contractions on active medication during the run-in period were randomized to continue medication 
or switch to placebo.

Sample. The subset of the population that participates in a study. For example, in a study of a new treat-
ment for asthma, where the target population is all children with asthma and the accessible population is 
children with asthma in the investigator’s town this year, the study sample is the children in the investiga-
tor’s town this year who actually enroll in the study.

Sample size. This term has two meanings. It can either be the number of participants enrolled in a study, 
or the estimated number of participants needed for a study to be successful. For example, the investigator 
estimated that she needed to have a sample size of 54 subjects to have 90% power to detect a doubling in 
the risk of aggressive behavior among third-grade boys exposed to violent video games.

Sampling. The process of selecting participants to enroll in a study when the number of eligible par-
ticipants is larger than the estimated sample size. For example, the investigator used a “1 in 3” sampling 
scheme to select, on average, every third eligible subject. See also cluster sampling, consecutive sample, 
convenience sample, probability sampling, stratified random sampling, and systematic sample.

Sampling bias. A systematic error that causes the sample of persons included in a study not to repre-
sent the target population. For example, if participants in a study of risk factors for osteoporosis were 
recruited from among patients hospitalized for hip fracture, falling may falsely appear to be a risk factor 
for osteoporosis due to sampling bias.

Scale. A common approach to measuring abstract concepts by asking multiple questions that are scored 
and combined into a scale. For example, the SF36 scale for measuring quality of life asks 36 questions that 
yield 8 scales related to functional health and well-being. (SF stands for “short form.”) See also Likert scale.

Scientific misconduct. A general term for intentionally defrauding the scientific community, includ-
ing research misconduct (fabrication and falsification of data and plagiarism), as well as guest and ghost 
authorship, and conflict of interest that is not disclosed or managed. For example, the investigator’s 
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institution judged that she was guilty of scientific misconduct because she failed to disclose an equity 
interest in the company that made the medical device she was studying.

Secondary data analysis. Use of existing data to investigate research questions other than the ones 
for which the data were originally collected. Secondary data sets may include previous research studies, 
medical records, health care billing data, and death certificates. For example, hospital discharge data and 
the National Death Index could be used in a secondary data analysis to determine 1-year mortality among 
patients with a discharge diagnosis of acute pancreatitis.

Secondary research question. Questions other than the primary research question, often including 
additional predictors or outcomes. For example, if the primary research question is to determine the 
association of alcohol consumption among pregnant women and low birth weight infants, a secondary 
question might be to determine the association of alcohol consumption and anemia during pregnancy.

Selection criteria. Rules that define who is eligible to enroll in a study, including the inclusion and 
exclusion criteria. For example, in a clinical trial of transdermal testosterone to enhance libido in post-
menopausal women, the selection criteria might be women aged 45 to 60 years with low libido who are 
free of coronary disease and have not had more than three menstrual periods in the prior year.

Sensitivity. The proportion of subjects with disease in whom a test is positive (“positive in disease,” or 
PID). For example, compared with pathology results on biopsy, the sensitivity of a serum PSA test result 
> 4.0 ng/mL is about 20% for the detection of prostate cancer; in other words, 20% of men with prostate 
cancer will have a PSA > 4.0 ng/mL. See also specificity.

Sensitivity analysis. Using different methods (e.g., alternate definitions of predictor or outcome vari-
ables, different statistical tests) to determine if the results of the primary analysis are robust. For example, 
in a meta-analysis of clinical trials of the effect of selective serotonin reuptake inhibitors on depression, in 
a sensitivity analysis, the investigator might include only the blinded trials to demonstrate that the results 
are robust when the analysis is restricted to high-quality trials.

Simple hypothesis. A hypothesis with only one predictor variable and one outcome variable. For  
example, the investigator rephrased his complex hypothesis into the simple hypothesis that people who 
eat fruit at least five times a week are less likely to develop colon cancer. See also complex hypothesis.

Specific aims. In a research proposal, brief statements of the goals of the research. For example, one 
specific aim of a randomized trial of the effect of testosterone on bone mineral density in men might be: 
“To test the hypothesis that, compared with men assigned to receive a placebo patch, those assigned to 
receive the testosterone patch will have less bone loss during 3 years of treatment.”

Specification. A design phase strategy to cope with a confounder by specifying a value of that con-
founder as an inclusion criterion for the study. For example, in a study of the effect of pacifier use on the 
risk of sudden infant death syndrome, the investigator might use specification to include only formula-fed 
infants in the study. If a decreased risk of sudden death was found in pacifier users, it could not be because 
they were more likely to be breastfed.

Specificity. The proportion of subjects without the disease being tested for in whom a test is negative 
(“negative in health,” or NIH). For example, compared with pathology results on biopsy, the specificity of 
a serum PSA test result of > 4.0 ng/mL is about 95% for the detection of prostate cancer; in other words, 
95% of men without prostate cancer will have a PSA ≤ 4.0 ng/mL. See also sensitivity.

Spectrum bias. The situation in which the accuracy of a test is different in the sample than it would have 
been in the population because the spectrum of disease (which affects sensitivity) or non-disease (which 
affects specificity) in the sample differs from that in the population in which the test will be used. For 
example, because of spectrum bias, a new serum test designed to diagnose esophageal cancer was found to 
be relatively accurate in a study of patients with advanced esophageal cancer compared to healthy medical 
students, but performed poorly when used in elderly patients with undiagnosed difficulty swallowing.

Spurious association. An association between a predictor variable and an outcome variable that is seen 
in a study but that is not true in the population, either due to chance or bias. For example, observational 
studies found a decreased risk of cardiovascular disease among persons who took beta carotene supple-
ments. However, a randomized trial of beta carotene supplements found no effect on risk of cardiovascu-
lar disease, suggesting that the association observed in the observational studies was spurious.
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Standard deviation. A measure of the variance (spread) in a continuous variable. For example, the 
investigator reported that the mean age in the cohort of 450 men was 59 years, with a standard deviation 
of 10 years.

Standard error of the mean. An estimate of the precision of the mean of a continuous variable in a 
sample; depends on both the standard deviation and the (square root of the) size of the sample. For ex-
ample, the investigator reported that the mean age in the cohort of 450 men was 59 years, with a standard 
error of 0.48 years.

Standardization. Specific, detailed instructions for how to perform a measurement designed to maxi-
mize reproducibility and precision of the measurement. For example, in a study that measures blood pres-
sure, standardization of the measurement could include instructions on preparing the participant, what 
size cuff to use, where to place the cuff, how high to inflate and deflate the cuff, and which heart sounds 
indicate systolic and diastolic blood pressure.

Steering committee. In a multi-center study, a committee that provides overall governance for the 
study. It is generally composed of the principal investigators of each study site, the coordinating center, 
and representatives of the sponsor. For example, the study’s steering committee decided whether pro-
posed ancillary studies should be conducted.

Stratification. An analysis phase strategy for controlling confounding by segregating the study par-
ticipants into strata according to the levels of a potential confounder and analyzing the association 
between the predictor and outcome separately in each stratum. For example, in a study of the associa-
tion between exercise and the risk of stroke, not exercising regularly might be associated with increased 
risk of stroke because many people who don’t exercise are obese, and obesity increases stroke risk. To 
minimize the potential confounding effect of obesity, participants were stratified by their body mass 
index, and the analyses were carried out separately in those who were normal weight, overweight, or 
obese at baseline.

Stratified blocked randomization. A randomization procedure designed to ensure that equal numbers 
of participants with a certain characteristic (usually a confounder) are randomly assigned to each of the 
study groups. Randomization is stratified by the characteristic of interest; within each stratum, partici-
pants are randomly assigned in blocks of predetermined size. For example, in a trial of a drug to prevent 
fractures, a history of vertebral fracture is such a strong predictor of the outcome and of response to many 
treatments that it would be best to ensure an equal number of participants with and without vertebral 
fracture in each of the study groups. Therefore, the investigators used stratified blocked randomization 
to divide participants into two strata (those with vertebral fractures and those without such fractures); 
within each stratum, randomization was carried out in blocks of six to ten subjects.

Stratified random sampling. A sampling technique in which potential participants are stratified into 
groups based on characteristics, such as age, race, or sex, and a random sample is taken from each stra-
tum. The strata can be weighted in various ways. For example, the investigators used stratified random 
sampling in a study of the prevalence of pancreatic cancer in California to oversample racial and ethnic 
minorities.

Subgroup analysis. Comparisons between randomized groups in a subset of the trial participants. For 
example, in a randomized trial of the effect of a selective estrogen receptor modulator (SERM) on recur-
rence of breast cancer, the investigators performed a subgroup analysis of the effect of treatment by stage 
of cancer, comparing the effect of the SERM to placebo among women with stage I, stage II, and stages III 
and IV disease.

Subject. See participant.

Subject bias. See recall bias.

Summary effect. In a meta-analysis, the weighted average effect seen in the included studies; the 
formula for the weights depends on the model. For example, in a meta-analysis of randomized trials of 
the effect of an angiotensin-converting enzyme (ACE) inhibitor on mortality in patients with coronary 
disease, the summary effect with the fixed-effects model was the weighted mean relative risk, weighted 
by the inverse of the variance of the relative risk in each included study. See also fixed-effects model and 
random-effects model.
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Suppression. A type of confounding in which the confounder diminishes the apparent association 
between the predictor variable and the outcome variable because it is associated with the predictor but 
affects the outcome in the opposite direction. For example, an association between smoking and skin 
wrinkles could be missed (“suppressed”) in a study if smokers were younger and confounding by age was 
not controlled.

Surrogate marker. A measurement thought to be associated with meaningful clinical outcomes. A good 
surrogate marker usually measures changes in an intermediate factor in the main pathway that determines 
the clinical outcome. For example, an increased CD4 lymphocyte count in patients with human immu-
nodeficiency virus (HIV) infection is a good surrogate marker for the effectiveness of antiretroviral drugs 
because it predicts a lower risk of opportunistic infections.

Survey. A cross-sectional study in a specific population, usually involving a questionnaire. For example, 
the National Epidemiologic Survey on Alcohol and Related Conditions enrolled a representative sample 
of adults in the United States and asked questions about present and past alcohol consumption, alcohol 
use disorders, and utilization of alcohol treatment services.

Survival analysis. A statistical technique used to compare times to an outcome (not necessarily survival) 
among groups in a study. For example, in a randomized trial of the effect of coronary artery bypass sur-
gery compared with percutaneous coronary angioplasty for the prevention of myocardial infarction and 
death, survival analysis could be used to compare time from starting treatment to either of those outcomes 
in the two groups.

Systematic error. See bias.

Systematic review. A review of the medical literature that uses a systematic approach to identify all 
studies of a given research question, clear criteria to include a study in the review, and standardized meth-
ods to extract data from the included studies. A systematic review may also include a meta-analysis of the 
study results. For example, the investigator did a systematic review of all studies that tested whether zinc 
supplements reduced the risk of developing colds.

Systematic sample. A sample that is drawn by enumerating the units of the eligible population and 
selecting a subset of the population using a pre-specified process. For example, in the Framingham Heart 
Study, investigators constructed a list of all adult residents of the town of Framingham, Massachusetts, 
and then selected every other resident to be included in the study as part of a systematic sample.

t test (or Student’s t test). A statistical test used to determine whether the mean value of a continuous 
variable in one group differs significantly from that in another group. For example, among study partici-
pants who were treated with two different antidepressants, a t test could be used to compare the mean 
depression scores after treatment in the two groups (an unpaired two-sample t test) or the mean change 
from baseline to after treatment in the two groups (a paired two-sample t test). See also one-sample t test 
and two-sample t test.

Target population. A large set of people defined by clinical and demographic characteristics, to which 
the study investigator wishes to generalize the results of a study. For example, the target population for 
a study of a new treatment for asthma in children at the investigator’s hospital might be children with 
asthma throughout the world.

Time series design. A within-group study design in which measurements are made before and after each 
participant (or a whole community) receives an intervention. This design eliminates confounding because 
each participant serves as his own control. However, within-group designs are susceptible to learning ef-
fects, regression to the mean, and secular trends. For example, using a time series design, fasting blood 
glucose levels were measured among a group of patients with diabetes before starting an exercise program 
and again after the program was completed to determine if exercise lowered fasting glucose levels. See 
also within-group design.

Translational research. Research that aims to translate scientific findings to improve health. Transla-
tional research may aim to test basic science findings from the laboratory in clinical studies in patients 
(often called “bench-to-bedside” or “T1 research”) or to apply the findings of clinical studies to improve 
health in populations (often called “bedside to population” or “T2 research”). For example, a study to 
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determine whether a genetic defect that causes congenital deafness in mice has a similar effect in humans 
would be a T1 research study; a study to determine whether a statewide effort to screen newborns with a 
test that measures cortical response to sound to detect hearing loss improves school performance would 
be a T2 research study.

Two-sample t test. A statistical test used to compare the mean value of a variable in a sample with its 
mean value in another sample. For example, the investigators found that participants treated with olive 
oil supplements gained a mean of 10 mg/dL in high-density lipoprotein cholesterol levels during the study 
as compared with an increase of 2 mg/dL among those treated with placebo (P = 0.14, by two-sample t 
test). See also one-sample t test.

Two-sided hypothesis. An alternative hypothesis in which the investigator is interested in evaluating 
the possibility of committing a type I error in both of the two possible directions (e.g., greater risk or lesser 
risk). For example, the investigator tested the two-sided hypothesis that salsa dancing was associated with 
an increased or decreased risk of dementia. See also one-sided hypothesis.

Type I error. An error in which a null hypothesis that is actually true in the population is rejected be-
cause of a statistically significant result in a study. For example, a type I error occurs if a study of the 
effects of dietary carotene on the risk of developing colon cancer (with alpha set at 0.05) concludes that 
carotene reduces the risk of colon cancer (P < 0.05) when there is actually no association. See also false-
positive result.

Type II error. An error in which a null hypothesis that is actually false in the population is not rejected 
by a study (i.e.,  P > alpha). For example, a type II error occurs if a study fails to reject the null hypothesis 
that carotene has no effect on the risk of colon cancer (P > 0.05) when carotene actually does reduce the 
risk for colon cancer. See also false-negative result.

Validity. The degree to which a measurement represents the phenomenon of interest. For example, the 
score on a quality of life questionnaire is valid to the extent that it really measures quality of life.

Variability. The amount of spread in a measurement, usually calculated as the standard deviation. For 
example, if change in body weight produced by a diet ranges from substantial weight gain to substantial 
weight loss, the change is highly variable. See also standard deviation and standard error of the mean.

Variable. A measurement that can have different values. For example, sex is a variable because it can 
take two different values–male or female. See also categorical variable, confounding variable, continuous 
variable, dichotomous variable, discrete variable, nominal variable, ordinal variable, outcome variable, and 
predictor variable.

Verification bias. (Also called work-up bias or referral bias). A bias in the assessment of the accuracy 
of a test that occurs when participants selectively undergo disease verification by gold standard testing 
based partly on the results of the study test itself. For example, if a study of the accuracy of chest percus-
sion to diagnose pneumonia included only patients who had a chest x-ray, and if those with dullness to 
percussion were more likely to get an x-ray, the sensitivity of percussion would be falsely increased, and 
specificity falsely decreased due to verification bias.

Visual analog scale. A scale (usually a line) that represents a continuous spectrum of answers, from one 
extreme to the other. Typically, the line is 10 cm long and the score is measured as the distance in centi-
meters from the lowest extreme. For example, a visual analog scale for the severity of pain might present 
a straight line with “no pain” on one end and “unbearable pain” on the other end; the study participant 
marks an “X” at the spot that best describes the severity of his pain.

Vulnerable persons. Potential study participants who are at greater risk for being used in ethically inap-
propriate ways in research. For example, because people with cognitive impairments or communication 
problems may be unable to give fully informed consent to participate in research, they are considered 
vulnerable persons. Other examples include children, prisoners, fetuses, and persons of low socioeco-
nomic status.

Washout period. In a crossover study, the period of time between the first and second treatment de-
signed to allow the effects of the intervention to wear off and the outcome measure to return to baseline. 
For example, in a crossover trial comparing a diuretic medication to placebo for treatment of high blood 
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pressure, the investigator might allow a one-month washout period with no treatment between the two 
treatment periods to allow blood pressure to return to baseline.

Within-group design. A study design in which measurements are compared in a single group of par-
ticipants, most often at two different time periods. This design eliminates confounding because each 
participant serves as his own control. However, within-group designs are susceptible to learning effects, 
regression to the mean, and secular trends. For example, using a within-group design, fasting blood glu-
cose levels were measured among a group of patients with diabetes before starting an exercise program 
and after the program was completed to determine if exercise lowered fasting glucose levels. See also 
between-groups design, one-sample t test, and time series design.

Z test. A statistical test used to compare proportions to determine if they are statistically significantly 
different from one another. Unlike the chi-squared test, which is always two-sided, the Z test can be used 
for one-sided hypotheses. For example, a one-sided Z test can be used to determine if the proportion of 
prisoners who have diabetes is significantly greater than the proportion of free-living persons who have 
diabetes. Similarly, a two-sided Z test (or chi-squared test) could be used to determine if the proportion 
of prisoners who have diabetes is significantly different (i.e., smaller or larger) than the proportion not 
in prison who have diabetes.
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